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KAMO and Blend provide particularly effective tools to automatically manage
the merging of large numbers of data sets from serial crystallography. The require-
ment for manual intervention in the process can be reduced by extending Blend
to support additional clustering options to increase the sensitivity to differences
in unit cell parameters and to allow for clustering of nearly complete datasets on
the basis of intensity or amplitude differences. If datasets are already sufficiently
complete to permit it, apply KAMO once, just for reflections. If starting from
incomplete datasets, one applies KAMO twice, first using cell parameters. In this
step either the simple cell vector distance of the original Blend is used, or the more
sensitive NCDist, to find clusters to merge to achieve sufficient completeness to
allow intensities or amplitudes to be compared. One then uses KAMO again using
the correlation between the reflections at the common HKLs to merge clusters in
a way sensitive to structural differences that may not perturb the cell parameters
sufficiently to make meaningful clusters.
Many groups have developed effective clustering algorithms that use a measur-
able physical parameter from each diffraction still or wedge to cluster the data
into categories which can then be merged to, hopefully, yield the electron den-
sity from a single protein iso-form. What is striking about many of these physical
parameters is that they are largely independent from one another. Consequently,
it should be possible to greatly improve the efficacy of data clustering software
by using a multi-stage partitioning strategy. Here, we have demonstrated one pos-
sible approach to multi-stage data clustering. Our strategy was to use unit-cell
clustering until merged data was of sufficient completeness to then use intensity
based clustering. We have demonstrated that, using this strategy, we were able to
accurately cluster data sets from crystals that had subtle differences.

1. Introduction

KAMO(Yamashita et al., 2017b) (Yamashitaet al., 2017a)
(Hasegawaet al., 2017) and Blend(Foadiet al., 2013) pro-
vide particularly effective tools to automatically manage the
merging of large numbers of data sets from serial crystallog-
raphy. The requirement for manual intervention in the process
can be reduced by extending Blend to support additional clus-
tering options to increase the sensitivity to differences in unit
cell parameters and to allow for clustering of nearly complete
datasets on the basis of intensity or amplitude differences. If
datasets are already sufficiently complete to permit it, apply
KAMO once, just for reflections. If starting from incomplete
datasets, one applies KAMO twice, first using cell parameters.
In this step either the simple cell vector distance of the original
Blend is used, or the more sensitive NCDist, to find clusters to
merge to achieve sufficient completeness to allow intensities or
amplitudes to be compared. One then uses KAMO again using
the correlation between the reflections at the common HKLs

(Assmannet al., 2016) to merge clusters in a way sensitive to
structural differences that may not perturb the cell parameters
sufficiently to make meaningful clusters.

X-ray free-electron lasers (XFELS) have pioneered effective
crystallography data collection from large numbers of crys-
tals. (Colella & Luccio, 1984) (Neutzeet al., 2000) Serial
crystallography, an essential technique at x-ray free electron
laser light sources, has become an important technique at syn-
chrotrons (Giordanoet al., 2012) (Liu & Hendrickson, 2013)
(Rossmann, 2014) (Standfuss & Spence, 2017), especially at
newer high intensity synchrotron beamlines. The data may be
organized either as XFEL-like still images or as thousands of
wedges of data produced from very large numbers of crys-
tals. The stills and wedges need to be carefully organized into
reasonably homogeneous clusters of data that can be merged
for processing. This is going to be one of the common tools
to assemble complete data from many partial wedges in MR,
SAD, ligand studies and to sort classes of crystals for studies of
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dynamics, binding, interactions,etc.. KAMO includes cluster
analysis based both on cell parameters and on reflection corre-
lation coefficients.

In this paper we discuss the issues involved in improving the
sensitivity of both approaches to clustering, using, as an exam-
ple, 999 5◦ wedges from lysozyme in four iso-forms:

• NAG: native with N-acetylglucosamine (NAG) soaked in,
• Benz.: native with benzamadine soaked in, and
• Benz.+NAG: native with both NAG and benzamadine

soaked in.
• Native: no ligands

As we will see, although the cell parameters are changed suf-
ficiently to allow recognition of the NAG soak, it is difficult to
filter the benzamadine soak simply on the basis of cell parame-
ter changes, suggesting the desirability of switching from cell-
based clustering to reflection-based clustering as early in the
process as possible.

2. Limits of conventional clustering

Since our goal is to expand the capabilities of existing cluster-
ing techniques, we began by applying a conventional cluster-
ing strategy to diffraction data from lysozyme mirco-crystals
containing various combinations of known small molecule
binders. Lysozyme micro-crystals suitable for acoustic harvest-
ing (Soareset al., 2011) were grown using batch crystallization
by dissolving 120 mg/ml lysozme in 0.2M sodium acetate pH
4.6 (Hampton Research HR7-110) and combining with equal
parts precipitant (10% ethylene glycol + 12% sodium chloride)
(Roessleret al., 2016). The resulting slurry of 5-10 um crys-
tals was divided into four aliquots. Three of the four aliquots
were then equilibrated overnight with an equal volume of 0.5
M solutions of, respectively, benzamadine, NAG, and benza-
madine plus NAG. These two small molecules are known to
bind tetragonal lysozyme crystals (Yinet al., 2014). The fourth
aliquot was diluted with an equal volume of mother liquor but
contained no ligands.

The diffusion rate for benzamadine and NAG within
lysozyme crystals is approximately 1µm/s (Cole et al., 2014).
To prevent cross-contamination of crystals with neighboring
iso-forms, crystals could not be mixed with different iso-forms
for more than 1s before diffusion was halted by plunge cryo-
cooling in LN2. To accomplish this, we deposited 5µL of
crystal slurry from each aliquot onto a separate agarose sup-
port (Cuttitta et al., 2015). We used acoustic sound pulses
to harvest 2.5nL of crystal slurry from each of the four
lysozyme aliquots, and separately position them on a micro-
mesh (MiTeGen M3-L18SP-10) such that none of the droplets
was in contact with any other (Figure 1A). Crystal contain-
ing droplets were threaded through small apertures to prevent
cross-contamination (Foleyet al., 2016). We then swept the
non-crystal containing side of the micro-mesh against a sponge
moistened with cryo-protectant (mother liquor + 20% glycerol)
and, in one smooth motion, immediately cryo-cooled the micro-
mesh inLN2. In addition to cryo-protection, this also mixed the
crystals together into one contiguous field. The same procedure
was repeated for a micro-mesh containing only two lysozyme

iso-forms, Benz. + NAG and native. Serial diffraction data were
then obtained in 5 degree wedges from 100 crystals on each
micro-mesh.

The software package KAMO was then used in default
configuration to partition the diffraction data from micro-
meshes containing four lysozyme iso-forms into four clusters,
and the diffraction data from micro-meshes containing two
lysozyme iso-forms into two clusters. Each cluster of data was
then merged, and then phased using the known structure of
lysozyme. The atomic model was then refined using refmac
(Winn et al., 2003), and an omit difference map was exam-
ined using coot in the region where the ligands are expected
to bind to the protein surface (Emsley & Cowtan, 2004). The
omit difference map was contoured at 1.5 sigma and displayed
using pymol (DeLano, 2002). The omit maps calculated from
the four-way clustering data was not observed to closely match
any of the four lysozyme iso-forms known to have been acous-
tically harvested onto the micro-meshes (data not shown). We
concluded from this result that the clustering algorithm was not
sufficiently sensitive to differentiate these four classes of very
similar crystals using only variations in the observed unit cell
parameters. However, the omit maps calculated from the two-
way clustering data were a good fit to the expected lysozyme
iso-forms (Fig.1). We concluded from this result that the two-
ligand iso-form was sufficiently different from the native iso-
form that unit cell based clustering could be successful. To do
the four-way split, intensity-based clustering was added to the
process.

3. Clustering on Cell Parameters

Stills and wedges of very low completeness are more appro-
priate for cell parameter clustering, rather than reflection clus-
tering, because pairs of images with very few commensurate
reflections may still provide reasonable estimates of unit cells
but not provide enough data to compute a meaningful distance
between sets of reflections.

The default Blend approach to clustering on cell param-
eters is to use[a, b, c, α, β, γ] as a six vector, drop the
columns without significant variance, and use the Euclidean dis-
tance calculated from the remaining columns. This approach
does not deal as effectively with the discontinuities pro-
duced by experimental error and ambiguities in reduction (e.g.
between Type I and Type II cells and near the cubics) as
the Andrews-Bernstein NCDist algorithm (Andrews & Bern-
stein, 2014), which allows slightly larger clusters of truly sim-
ilar datasets to be formed, working in the spaceG6 formed
using Niggli reduction in the six-dimensional space formed
by the metric tensor with the last three components doubled,
[a2, b2, c2, 2bc cos(α), 2ac cos(β), 2ab cos(γ)].

In our test case of 999 datasets of lysozyme with NAG and
benzamadine soaks 998 clusters are found with completeness
ranging from 40% to 100%. The top levels of the two dendro-
grams are shown in Figs. 2 3.

The dendrograms are qualitatively similar but, for this test
data, the discrimination of the clustering changes. For the orig-
inal Blend algorithm, the largest clusters that are 100% native,
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100% NAG, 100% benzamadine and 100% NAG+benzamadine
contain 4, 15, 5, and 10 datasets, respectively. For the NCDist
clustering, the largest clusters that are 100% native, 100% NAG,
100% benzamadine and 100% NAG+benzamadine contain 9,
15, 8, and 7 datasets, respectively. This provides a better base
for switching over from cell clustering to reflection clustering.

4. Clustering on Reflections

In a regime of high completeness (say, 90%) different datasets
can have enough reflections at common hkl’s to generate a satis-
factory similarity or distance for clustering. If the data has been
scaled, a R-value can be used as a distance, but, for unscaled
data, the preferred approach is to use a Pearson Correlation
Coefficient (CC) as a measure of similarity, i.e. having a larger
value for sets of reflections that are similar and a smaller value
for sets of reflections that are dissimilar. The Pearson Correla-
tion Coefficient is essentially the cosine of the angle between
vectors of data. The lack of common scaling is dealt with by
subtracting the mean (µ) of each vector from each component
and dividing by the norm of each to get two unit length vectors:

data set1 = [F1,hkl1, F1,hkl2, ...]

data set2 = [F2,hkl1, F2,hkl2, ...]

vec1 = [F1,hkl1 − µ1, F1,hkl2 − µ1, ...]

vec2 = [F2,hkl1 − µ2, F2,hkl2 − µ2, ...];

CC(data set1, data set2) =
vec1.vec2

||vec1||||vec2||

In order to extend the range of applicability ofCC, we convert
it to a distance,

SFdist(data set1, data set2) = ||
vec1

||vec1||
−

vec2

||vec2||
||

which is related toCC by

SFdist(data set1, data set2)
2 = 2− 2CC

Having this as a distance allows a simple adaptation to cases
of completeness lower than 90% by adding a penalty to the dis-
tance for each unmatched reflection.

5. Impact of choices in clustering

unambiguous benzamadine-only, NAG-only, and benzama-
dine+NAG clusters are shown in the omit difference maps of the
NAG site in clusters 28, 43 and 62 in Figs. 4, 5 and 6, respec-
tively, and then omit difference maps of the Benzamidine site
in clusters 28, 43 and 62 are in Figs. 7, 8 and 9, respectively.
These are the results of two-stage KAMO clustering of the test
data using NCDist cell-parameter based clustering to get to at
least 10% completeness and then SFDist reflection-based clus-
tering on the resulting 107 non-overlapping clusters.

The impact of using clustering on reflections for larger clus-
ters can be seen by looking at how well-represented reasonably

pure clusters are. In Figs. 10 and 11, we have represented the
purity of native, NAG, benzamadine and benzamadine+NAG
species NCDist and SFDist.

The extreme variations in the SFDist results suggest two
important lessons.

• It is best to use a reflection-based clustering starting from
datasets that are small enough to still be likely to be pure
species,i.e. use cell-based clustering only just far enough
to get to completeness that the reflection-based clustering
can handle.

• It is not necessarily desirable to continue clustering to the
largest of the “best” possible clusters. Smaller clusters of
sufficient quality for processing are more likely to be pure
species.

6. Discussion

Because micro-crystals are expected to react quickly and uni-
formly to changes in their environment, serial crystallography
is a desirable tool for examining the plasticity with which pro-
tein crystals respond to external perturbations. In some cases the
external perturbation can be physical, such as conformational
changes induced by light (Young et al., 2016). In other cases
proteins are perturbed by chemical means (Fromme, 2015). It is
often not possible to to draw a sharp boundary between diffrac-
tion images from different protein iso-forms without the assis-
tance of some type of clustering software. In response to this,
many groups have developed effective clustering algorithms
that use a measurable parameter from each diffraction still or
wedge to cluster the data into categories which can then be
merged to, hopefully, yield the electron density from a sin-
gle protein iso-form. Examples of measurable parameters that
have been used for this purpose include unit cell dimensions
(Foadiet al., 2013) (Zeldinet al., 2015), and diffraction intensi-
ties (Assmannet al., 2016) (Diederichs, 2017). What is striking
about many of these physical parameters is that they are largely
independent from one another. Consequently, it should be possi-
ble to greatly improve the efficacy of data clustering software by
using a multi-stage partitioning strategy. Here, we have demon-
strated one possible approach to multi-stage data clustering. Our
strategy was to use unit-cell clustering until merged data was of
sufficient completeness to then use intensity based clustering.
We have demonstrated that, using this strategy, we were able to
accurately cluster data sets from crystals that had subtle differ-
ences.
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Figure 1
Electron density maps calculated after two-way clustering of diffraction data obtained from micro-meshes that contained a mixture of native crystals (no ligands;
figure 1B) and double bound crystals (benzamadine + NAG; figure 1A). The omit difference maps are contoured at 1.5 sigma in the region expected to contain
benzamadine (top) and NAG (bottom). The historgram cluster on the left represents the unit cell dimensions of the cluster of crystal data sets that yielded the omit
difference map shown in A. Similarly, the histogram cluster on the right represents the unit cell dimensions of the cluster of crystal data shown in B. Clearly the
clustering algorithm was able to accurately partition the data for this simple two-way split.
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Figure 2
This dendrogram on presents the top levels of Blend clustering using the original Blend cell-parameters Euclidean distance function.
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Figure 3
This dendrogram presents the top levels of Blend clustering using the more sensitive Andrews-Bernstein Niggli-Cone-Distance (NCDist) algorithm.
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Figure 4
Omit difference maps of the NAG site in cluster 28 of a two-stage clustering
with KAMO using cell parameters and NCDist to get to at least 10% complete-
ness and then CC clustering with SFDist.

Figure 5
Omit difference maps of the NAG site in cluster 43 of a two-stage clustering
with KAMO using cell parameters and NCDist to get to at least 10% complete-
ness and then CC clustering with SFDist.

Figure 6
Omit difference maps of the NAG site in cluster 62 of a two-stage clustering
with KAMO using cell parameters and NCDist to get to at least 10% complete-
ness and then CC clustering with SFDist.

Figure 7
Omit difference map of the Benzamidine site in cluster 28 of a two-stage clus-
tering with KAMO using cell parameters and NCDist to get to at least 10%
completeness and then CC clustering with SFDist.

Figure 8
Omit difference map of the Benzamidine site in cluster 43 of a two-stage clus-
tering with KAMO using cell parameters and NCDist to get to at least 10%
completeness and then CC clustering with SFDist.

Figure 9
Omit difference map of the Benzamidine site in cluster 62 of a two-stage clus-
tering with KAMO using cell parameters and NCDist to get to at least 10%
completeness and then CC clustering with SFDist.
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Figure 10
Color charts of the 35 largest dataset clusters for the NCDist clustering. From
top to bottom the color blocks are the native soak, the NAG+benzamadine soak,
the benzamadine soak and the NAG soak. If one color reaches nearly from the
bottom to the top at a given position, that cluster is a nearly pure species.

Figure 11
Color charts of the 35 largest dataset clusters for the SFDist clustering. From
top to bottom the color blocks are the native soak, the NAG+benzamadine soak,
the benzamadine soak and the NAG soak. If one color reaches nearly from the
bottom to the top at a given position, that cluster is a nearly pure species. That
is the case for each soak on the left end of this SFDist chart.
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