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ABSTRACT The objective was to provide additional relevant information on efficiency of 17 

prediction of non-assessed single crosses. We derived the genetic model for genomic prediction. 18 

The SNP and QTL genotypic data for DH lines, the QTL genotypic data of SCs, and the phenotypic 19 

data for DH lines and SCs were simulated assuming 10,000 SNPs, 400 QTLs, two groups of 70 20 

selected DH lines, and 4,900 SCs. The heritabilities for the assessed SCs were 30, 60 and 100%. 21 

The scenarios included three sampling processes of DH lines, two sampling processes of SCs for 22 

testing, two SNP densities, DH lines from distinct and same populations, DH lines from populations 23 

with lower LD, two genetic models, three statistical models, and three statistical approaches. The 24 

efficiency of prediction of untested SCs was based on the prediction accuracy and the efficacy of 25 

identification of the best 300 (7-9%) non-assessed SCs (coincidence index), computed based on the 26 

true genotypic values. Concerning the prediction accuracy and coincidence, our results proved that 27 

prediction of untested SCs is very efficient. The accuracies and coincidences ranged from 28 

approximately 0.8 and 0.5, respectively, under low heritability, to 0.9 and 0.7, assuming high 29 

heritability. Additionally, we highlighted the relevance of the overall LD and evidenced that 30 

efficient prediction of untested SCs can be achieved for crops that show no heterotic pattern, for 31 

reduced training set size (10%), for SNP density of 1 cM, and for distinct sampling processes of DH 32 

lines, based on random choice of the SCs for testing. 33 

INTRODUCTION 34 
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Genomic selection is very commonly used in animal breeding programs, especially for dairy 35 

cattle Van Eenennaam et al. (2014). The same cannot yet be said to the same degree concerning 36 

crop breeding. The main reasons for the effective application of genomic selection in livestock 37 

breeding are: it is efficient, that is, the process has high prediction accuracy, the cost of phenotyping 38 

(mainly progeny test) is higher than the cost of genotyping, and the process significantly shortens 39 

the selection cycle (Meuwissen et al. 2013). In spite of the many field and simulation-based studies 40 

with genomic selection in plant breeding, in general the cost of phenotyping is often still much 41 

lower than the cost of genotyping, restricting its application in breeding programs. Jonas and de 42 

Koning (2013) consider that genomic selection has the potential to improve existing plant breeding 43 

schemes. However, based also on the high diversity and complexity of plant breeding methods, they 44 

stated that there are great obstacles to overcome. 45 

An important application of genomic selection in plant breeding is the prediction of untested 46 

single crosses (genotypic value prediction) and testcrosses (general combining ability effect 47 

prediction) in hybrid breeding (Zhao et al. 2015). Prediction accuracy of barley two- and three-way 48 

crosses has been investigated (Philipp et al. 2016). The prediction of untested single crosses was 49 

pioneered by Bernardo (1994), based on best linear unbiased prediction (BLUP). Many significant 50 

studies on prediction of untested single cross and testcross performance have been published in the 51 

last 23 years, focused on the assessment of the prediction accuracy. Most investigations were based 52 

on empirical data and estimated the prediction accuracy using a cross-validation procedure. Very 53 

few were based on simulated data (Li et al. 2017; Technow et al. 2012a). With no exception, the 54 

inference was that prediction of untested single crosses and testcrosses can be an efficient, 55 

depending on heritability, training set size, and number of tested inbreds in hybrid combination 56 

(both, one, and none parents tested). Remarkably, this conclusion was drawn from studies differing 57 

in the type of molecular marker, density of markers, number of inbreds, level of relatedness, 58 

diversity, and linkage disequilibrium (LD) between inbreds, heterotic pattern, training set size, 59 
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genetic model, and statistical approach (Zhao et al. 2015). Efficient prediction of barley two- and 60 

three-way crosses has been achieved when training and validation sets include the same class of 61 

hybrid (Philipp et al. 2016). 62 

Most papers on genomic prediction of maize single cross performance published since 2011 63 

have employed single nucleotide polymorphism (SNP), with the number SNPs filtered ranging from 64 

425 (Zhao et al. 2013a) to 39,627 (Technow et al. 2012a). Based on the physical length of the maize 65 

genome (approximately 2,106 megabase pairs (Mb) according to Maize genetics and genomics 66 

database), the SNP density ranged from approximately 5 to 0.05 Mb, respectively. For grain yield, 67 

the relative prediction accuracies (computed as accuracy/root square of the heritability) in these two 68 

papers ranged from 0.27 to 0.62 and from 0.65 to 0.95, respectively. The number of inbreds in each 69 

heterotic group was highly variable too, ranging from six and nine (Bernardo 1994) to 75 and 75 70 

(Technow et al. 2012a). The relative accuracy observed by Bernardo (1994) ranged between 0.72 71 

and 0.89. The number of testcrosses ranged between 255 (Windhausen et al. 2012) and 1,894 72 

(Albrecht et al. 2014). The relative accuracies ranged from 0.46 to 0.52 and from 0.33 to 0.65, 73 

respectively. The level of relatedness ranged from non-related inbreds in each group (Technow et 74 

al. 2012a) to a maximum average value of 0.58 (Bernardo 1995). The relative accuracy obtained by 75 

Bernardo (1995) ranged from 0.41 to 0.80. The common heterotic groups were Stiff Stalk and non-76 

Stiff Stalk (Kadam et al. 1916) or Dent and Flint (Technow et al. 2014). The study of Bernardo 77 

(1996a) involved nine heterotic groups and the (statistically significant from zero) relative 78 

accuracies ranged from 0.43 to 0.88. No study provided clearly greater prediction accuracy of the 79 

additive-dominance model relative to the additive model. Finally, only with testcrosses the genomic 80 

BLUP (GBLUP) approach outperformed BLUP (Albrecht et al. 2014; Albrecht et al. 2011) 81 

concerning prediction accuracy. 82 

Technow et al. (2012a) provided the most comprehensive study on prediction of untested 83 

single cross performance. Our assessment on the efficiency of prediction of non-assessed single 84 
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crosses provides additional relevant information. Our simulation-based study is the first to provide 85 

for breeders a direct measure of efficiency of identification of the best non-assessed single crosses 86 

(coincidence index), additionally to the standard prediction accuracy. What is the efficiency of 87 

identification of the best 300 untested single crosses if the prediction accuracy is, for example, 88 

approximately 0.90? Our results evidence that the efficacy range between 0.60 and 0.70, depending 89 

on the doubled haploid (DH) lines derivation process. These measures of efficiency were provided 90 

for a large data set (10,000 SNPs, 400 quantitative trait loci (QTLs), 4,900 single crosses) and for 91 

low (30%) to high heritability (100%), assuming scenarios not favorable to prediction of non-92 

assessed single cross performance, as low level of relatedness and a not high heterotic pattern. Low 93 

heritability has been observed in some CIMMYT’s global maize and wheat breeding programs 94 

(Crossa et al. 2014). Additionally, we derived the genetic model for genomic prediction, supported 95 

by quantitative genetics theory, highlighted the relevance of the overall LD (not only for linked 96 

SNPs and QTLs), and evidenced that efficient prediction of untested single crosses can be achieved 97 

for crops that show no clear heterotic pattern, as rice, wheat, and barley, for reduced training set 98 

size (10%), for SNP density of 1 centiMorgan (cM), and for distinct processes of (DH) lines 99 

sampling. Finally, we showed that the choice of the single crosses for testing must be based on a 100 

random process, but never by sampling DH or inbreds lines for a diallel. By sampling 76% of the 101 

available genotyped DH lines in each group for a diallel (Technow et al. (2012a) sampled 75% of 102 

the inbreds), the prediction accuracies and coincidence indexes were 38 to 77% and 39 to 98% 103 

lower, respectively, compared with random sampling of 30% of the possible single crosses for 104 

testing. Thus, our objective was to provide to breeders additional relevant information on prediction 105 

of non-assessed single crosses. 106 

MATERIALS AND METHODS 107 

Theory 108 
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Generally, most papers on genomic selection presents only statistical aspects and the genetic 109 

models are deduced from gene to SNP effects. Importantly, when there is some quantitative 110 

genetics theory, the LD is completely ignored. The theory developed provides, based on 111 

quantitative genetics including LD, the genetic model for genomic prediction of single crosses. The 112 

model developed offers the genetic background to the models fitted in important previously papers 113 

on prediction of untested single crosses and testcrosses (Massman et al. 2013; Technow et al. 114 

2012a; Albrecht et al. 2011). Notice, however, that the derived model has distinct presuppositions.  115 

LD in a group of selected DH or inbred lines 116 

Consider a group of DH or inbred lines selected from a population or heterotic group. Assume 117 

also a QTL (alleles B/b) and a SNP (alleles C/c) where B and b are the alleles that increase and 118 

decrease the trait expression, respectively. Define the joint genotype probabilities as 119 

22f)BBCC(P  , 20f)BBcc(P  , 02f)bbCC(P  , and 00f)bbcc(P  , where the subscript 120 

indicates the number of copies of the major allele (B and C). The measure of LD between the QTL 121 

and the SNP is 02f20f00f22fbc   (Kempthorne 1954) and the haplotype frequencies are 122 

bccpbp22f)BC(P  , bccqbp20f)Bc(P  , bccpbq02f)bC(P  , and 123 

bccqbq00f)bc(P  , where p  is the frequency of the major allele (B or C) and p1q   is 124 

the frequency of the minor allele (b or c). Notice that 20f22fbp   and 02f22fcp  . It is 125 

important to highlight the fact that we are not assuming that the QTL and the SNP are linked and in 126 

LD in the population or heterotic group, because this is not necessary for genomic prediction. But 127 

we are assuming that they are in LD in the group of DH or inbred lines. Furthermore, because 128 

selection, genetic drift, and inbreeding (only for inbreds and linked QTLs and SNPs), the gene and 129 

genotypic frequencies and the LD values concerning the selected DH or inbred lines cannot be 130 

traced to the values in the population or heterotic group. 131 
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SNP genotypic values of DH or inbred lines 132 

The average genotypic value for a group of selected DH or inbred lines is 133 

babqbpbmILM 





  , where bm  is the mean of the genotypic values of the homozygotes and 134 

ba  is the deviation between the genotypic value of the homozygote of higher expression and bm . 135 

Thus, the average SNP genotypic values for the DH or inbred lines CC and cc are 136 

    CCAILMSNPcq2ILMbabm02fbabm22f
2.f

1
CCG 



   137 

    ccAILMSNPcp2ILMbabm00fbabm20f
0.f

1
ccG 



   138 

where babcba
cqcp

bc
SNP 















 
  is the average effect of a SNP substitution in the group of DH 139 

or inbred lines and A is the SNP additive value for a DH or inbred line. Notice that E(A) = 0. 140 

Assuming two QTLs (alleles B and b, and E and e) in LD with the SNP, the average effect of 141 

a SNP substitution in the selected DH or inbred lines is eacebabcSNP  , where 142 













 


cqcp
ce

ce . Thus, in general, the average effect of a SNP substitution (and the SNP additive 143 

value) is proportional to the measure of LD and to the a deviation for each QTL that is in LD with 144 

the marker. 145 

SNP genotypic values of single crosses 146 

Aiming to maximize the heterosis, maize breeders commonly assess single crosses originating 147 

from selected DH or inbred lines from distinct heterotic groups. Consider n1 DH or inbred lines 148 

from a population or heterotic group and n2 DH or inbred lines from a distinct population or 149 
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heterotic group. The average genotypic value for the single crosses derived by crossing the DH or 150 

inbred lines from group 1 with the DH or inbred lines from group 2 is 151 

bd2bp1bq2bq1bpba2bq1bq2bp1bpbmHM 





 






   152 

where bd  is the dominance deviation (the deviation between the genotypic value of the 153 

heterozygote and bm ). 154 

The average genotypic values for the single crosses derived from DH or inbred lines CC and 155 

cc of the group 1 are 156 

1CCGCAHM

1SNP1cqHM2b1bc1cqHMbd2bp2bqba1bc1cqHM1CCM














 

 157 

1ccGCAHM1SNP1cpHM2b1bc1cpHM1ccM   158 

where 2b  is the average effect of allelic substitution in the population derived by random crosses 159 

between the DH or inbred lines of group 2, 1SNP  is the SNP effect of allelic substitution in the 160 

hybrid population relative to a SNP derived from group 1, and GCA stands for the general 161 

combining ability effect for a SNP locus. Notice that 1SNP  depends on the LD in group 1 162 

( 1cq1cp/1bc1bc  ) and the average effect of allelic substitution in the population derived by 163 

random crosses between the DH or inbred lines of group 2. Further, 164 

01ccGCA1cq1CCGCA1cp)GCA(E  . Concerning the single crosses derived from DH or 165 

inbred lines CC and cc of the group 2 we have 166 

2CCGCAHM

2SNP2cqHM1b2bc2cqHMbd1bp1bqba2bc2cqHM2CCM














 

 167 
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2ccGCAHM2SNP2cpHM1b2bc2cpHM2ccM   168 

Notice that E(GCA) = 0 also. The average genotypic values for the single crosses concerning 169 

the SNP locus are 170 

2xCC1CCSCA2CCGCA1CCGCAHM

bd2bc1bc2cq1cq22SNP2cq1SNP1cqHM2xCC1CCM




 171 

2xcc1ccSCA2ccGCA1ccGCAHM

bd2bc1bc2cp1cp22SNP2cp1SNP1cpHM2xcc1ccM




 172 

2xcc1CCSCA2ccGCA1CCGCAHM

bd2bc1bc2cp1cq22SNP2cp1SNP1cqHM2xcc1CCM




 173 

2xCC1ccSCA2CCGCA1ccGCAHM

bd2bc1bc2cq1cp22SNP2cq1SNP1cpHM2xCC1ccM




 174 

where SNPdbd2bc1bc   is the SNP dominance deviation in the hybrid population and SCA 175 

stands for the specific combining ability effect for a SNP locus. Notice that )SCA(E  176 

02xcc1ccSCA2cq1cq2xCC1ccSCA2cp1cq2xcc1CCSCA2cq1cp2xCC1CCSCA2cp1cp  and177 

, for each group, E(SCA|CC) = E(SCA|cc) = 0. That is, the expectation of the SNP SCA effects 178 

given a SNP genotype for the common DH or inbred line is also zero. Notice also that the four 179 

genotypic values depends on four parameters ( HM , 1SNP , 2SNP , and SNPd ). 180 

Assuming two QTLs (alleles B and b, and E and e) in LD with the SNP, the SNP dominance 181 

deviation is ed2ce1cebd2bc1bcSNPd  . Thus, generally, the SNP dominance deviation 182 

(and the SNP SCA effect) is proportional to the product of the LD values in both groups of DH or 183 

inbred lines and to the dominance deviation for each QTL that is in LD with the marker. 184 
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The previous model expressed as a function of the GCA and SCA effects is that proposed by 185 

Massman et al. (2013), but these authors assumed 0ccGCACCGCA   (for each heterotic group 186 

and for each SNP) and 2xCC1ccSCA2xcc1CCSCA2xcc1ccSCA2xCC1CCSCA  . 187 

Technow et al. (2012b) have used a standard extension from QTL to SNP, defining the single cross 188 

genotypic value for a SNP as a function of the SNP a and d deviations. That is, 189 

d3u2a2u1a1uHMM  , where 1u  and 2u equal to 1/2 or 1/2 if the corresponding DH or 190 

inbred line is homozygous for distinct SNP alleles (CC or cc), and 3u  equal to 0 if the single cross 191 

is homozygous or 1 if heterozygous. 192 

SNP genotypic values of single crosses from DH or inbred lines derived from the same 193 

population or heterotic group 194 

Well defined heterotic groups are known for maize, but not for special maize as popcorn and 195 

sweet corn and for other crops as wheat (Zhao et al. 2013b), rice (Xu et al. 2014), and barley 196 

(Philipp et al. 2016). Thus, for many breeders, it is interesting to know about the efficiency of 197 

genomic prediction of singles crosses when there are no heterotic groups. Assuming n DH or inbred 198 

lines derived from the same population or heterotic group, the average genotypic values for the 199 

single crosses concerning the SNP locus are 200 

CCxCCSCACCGCA2Mbd2
bc

2
cq2SNPcq2MCCxCCM   201 

ccxccSCAccGCA2Mbd2
bc

2
cp2SNPcp2MccxccM   202 

  CCxccSCAccGCACCGCAMbd2
bccqcp2SNPcpcq2MCCxccM   203 

where   bdcqcp2bacqcpbmM   is the hybrid population mean, 204 

   bbcbdbpbqbabcSNP   is the average effect of a SNP substitution in the hybrid 205 

population, and bd2
bcSNPd   is the SNP dominance deviation. Notice that the SNP GCA effects 206 
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are equal to half the SNP additive value for the single crosses (A), the SNP SCA effects are the SNP 207 

dominance deviations for the single crosses (D), and that the three genotypic values depends on 208 

three parameters ( M , SNP , and SNPd ). Notice also that E(GCA) = E(A) = E(SCA) = 209 

E(SCA|CC) = E(SCA|cc) = E(D) = 0. 210 

Accuracy of single cross genomic prediction 211 

Assuming a QTL and a SNP in LD in the two groups of DH or inbred lines, the predictor of 212 

the single cross QTL genotypic value is the single cross SNP genotypic value (because they are 213 

proportional). Thus, the covariance between the predictor and the genotypic value is 214 

 

 

 
2

)SNP(G
2

SNPSCA
)2(2

SNPGCA
)1(2

SNPGCA

2
SNPd2cq2cp1cq1cp4

2

2SNP2cq2cp
2

1SNP1cq1cp

2

bd2bc1bc2cq2cp1cq1cp4
2

1b2bc2cq2cp
2

2b1bc1cq1cp

2
HM2xbb1bbSCA2bbGCA1bbGCAHM2xcc1ccSCA2ccGCA1ccGCAHM2

00f1
00f

...

2xBB1BBSCA2BBGCA1BBGCAHM2xcc1CCSCA2ccGCA1CCGCAHM2
20f1

22f

2xBB1BBSCA2BBGCA1BBGCAHM2xCC1CCSCA2CCGCA1CCGCAHM2
22f1

22fG,G~Cov
































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 216 

where the GCA and SCA effects for the QTL are 2b1bq1BBGCA  , 2b1bp1bbGCA  , 217 

1b2bq2BBGCA  , 1b2bp2bbGCA  , bd2bq1bq22xBB1BBSCA  , 218 

bd2bp1bq22xbb1BBSCA  , bd2bq1bp22xBB1bbSCA  , and bd2bp1bp22xbb1bbSCA  , 219 

2
GCA  and 2

SCA  are the GCA and SCA variances for the SNP locus, and 2
G  is the SNP 220 

genotypic variance. The GCA and SCA variances for the QTL are 
2

2b1bq1bp)1(2
GCA 






 , 221 
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2
1b2bq2bp)2(2

GCA 





 , and  2bd2bq2bp1bq1bp42

SCA  . The QTL genotypic variance is 222 

2
SCA

)2(2
GCA

)1(2
GCA

2
G   Thus, the single cross prediction accuracy is 223 

 2
G

2
)SNP(G

G,G~ 


  224 

Assuming s SNPs, 225 

2
G

2
G~/

s

1r
2

))r(SNP(GG,G~ 


  226 

where 2
G~  is the variance of the predicted single cross genotypic values and 2

G  is the single cross 227 

genotypic variance. Further, 228 


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

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
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1)r(SNP , where k' is the number of QTLs in LD with the SNP 229 

r) in group 1, and 230 






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 


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




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k

1i
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2rq2rp
2ir

1rq1rp
1ir

)r(SNPd  where k'' is the number of QTLs in LD with 231 

the SNP r in both groups 232 

Notice that because the accuracy of genomic prediction of single crosses depends on the 233 

squares of the average effects of SNP substitution and the SNP dominance deviations, it is not 234 

affected by the linkage phase (coupling or repulsion), as it does not depend on linkage. But it 235 

depends on the magnitude of the LD in each group of DH or inbred lines. 236 
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Assuming single crosses derived from DH or inbred lines of a single population or heterotic 237 

group we have    2SNPdcqcp22
SNPcqcp22

)SNP(G   and 238 

   2bdbqbp22
bbqbp22

G  . 239 

The statistical model for single cross genomic prediction 240 

Assume n1 and n2 (several tens) DH or inbred lines from two populations or heterotic groups 241 

genotyped for s (thousands) SNPs and the experimental assessment of h (few hundred) single-242 

crosses (h much lower than n1.n2) in e (several) environments (a combination of growing seasons, 243 

years, and locals). Defining y  as the adjusted single cross phenotypic mean, the statistical model 244 

for prediction of the average effects of SNP substitution and the SNP dominance deviations is 245 

error
s

1r rSNPd
r3z

r2SNPr2z
r1SNPr1zHMy 








   246 

where 1rq
r1z  , 2rq

r2z  , and 2rq1rq2
r3z   if the SNP genotypes for the DH or inbred lines 247 

are CC (group 1) and CC (group 2), 1rp
r1z  , 2rp

r2z  , and 2rp1rp2
r3z   if the SNP 248 

genotypes for the DH or inbred lines are cc (group 1) and cc (group 2), 1rq
r1z  , 2rp

r2z  , and 249 

2rp1rq2
r3z   if the SNP genotypes for the DH or inbred lines are CC (group 1) and cc (group 2), 250 

and 1rp
r1z  , 2rq

r2z  , and 2rq1rp
r3z   if the SNP genotypes for the DH or inbred lines are 251 

cc (group 1) and CC (group 2). 252 

Regarding the single crosses obtained from DH or inbred lines of the same population or 253 

heterotic group we have 254 

error
s

1r rSNPd
r2z

rSNPr1zMy 








   255 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 25, 2017. ; https://doi.org/10.1101/141440doi: bioRxiv preprint 

https://doi.org/10.1101/141440
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

where rq2
r1z   and 2

rq2
r2z   if the SNP genotypes for the DH or inbred lines are CC and CC, 256 

rp2
r1z   and 2

rp2
r2z   if the SNP genotypes for the DH or inbred lines are cc and cc, and 257 

 rprq2
r1z   and rqrp2

r2z   if the SNP genotypes for the DH or inbred lines are CC and cc. 258 

The statistical problem of genomic prediction when there are a very large number of 259 

molecular markers and relatively few observations have been addressed thorough several 260 

regularized whole-genome regression and prediction methods (Daetwyler et al. 2013; de Los 261 

Campos et al. 2013). Then, the predicted effects of SNP substitution (~ ) and SNP dominance 262 

deviations ( d
~ ) must be used to provide genomic prediction of non-assessed single crosses. The 263 

predicted genotypic value for a non-assessed single cross of DH or inbred lines from two groups is 264 










 

s

1r rSNPd~
r3z

r2SNP
~

r2z
r1SNP

~
r1zHM̂G~  265 

For a non-assessed single cross of DH or inbred lines from the same group, the predicted 266 

genotypic value is 267 










 

s

1r rSNPd~
r2z

rSNP
~

r1zM̂G~  268 

Simulation 269 

The SNP and QTL genotypic data for DH lines, the QTL genotypic data of single crosses, and 270 

the phenotypic data for DH lines and single crosses were simulated using the software 271 

REALbreeding. The program has been developed by the first author using the software REALbasic 272 

2009 (Viana et al. 2017a; Viana et al. 2017b; Viana et al. 2016; Azevedo et al. 2015; Viana et al. 273 

2013). Based on our input, the software distributed 10,000 SNPs and 400 QTLs in ten 274 

chromosomes (1,000 SNPs and 40 QTLs by chromosome). The average SNP density was 0.1 cM. 275 

The QTLs were distributed in the regions covered by the SNPs (approximately 100 276 

cM/chromosome). Initially, REALbreeding sampled 700 DH lines from two non-inbred populations 277 
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(heterotic groups) in LD (350 from each population). The populations were composites of two 278 

populations in linkage equilibrium. In a composite, there is LD only for linked SNPs and QTLs 279 

(Viana et al. 2016). The number of DH lines from each S0 plant was one (scenario 1) or ranged 280 

from 1 to 5 (scenario 2). We also sampled 350 DH lines from each population after three 281 

generations of selfing (using the single seed descent process). The number of DH lines from each S3 282 

plant ranged from 1 to 5 (scenario 3). For each scenario, the software then crossed 70 selected DH 283 

lines from each population, using a diallel design. The heritability for the DH lines was 30%. 284 

The genotypic values of the DH lines and of the single crosses were generated assuming a 285 

single set of 400 QTLs and two degrees of dominance. To simulate grain yield and expansion 286 

volume, a measure of popcorn quality, we defined positive dominance (0 < (d/a)i ≤ 1.2, i = 1, ..., 287 

400) and bidirectional dominance (1.2 ≤ (d/a)i ≤ 1.2), respectively, where d/a is the degree of 288 

dominance. To compute the genotypic values, REALbreeding used our input relative to the 289 

maximum and minimum genotypic values for homozygotes. For grain yield and expansion volume, 290 

we defined 140 and 30 g/plant and 55 and 15 mL/g, respectively. The phenotypic values were 291 

obtained from the sum of the population mean, genotypic value, and experimental error. The error 292 

variance was computed from the broad sense heritability. To avoid outliers, we defined the 293 

maximum and minimum phenotypic values as 160 and 10 g/plant and 65 and 5 mL/g. 294 

The heritabilities for the assessed single crosses were 30, 60, and 100%. Thus, the genotypic 295 

value prediction accuracies of the assessed single crosses were 0.55, 0.77, and 1.00, respectively. 296 

For each scenario were processed 50 resamplings of 30 and 10% of the single crosses (1,470 and 297 

490 assessed single crosses). That is, we predicted 70 and 90% of the single crosses (3,430 and 298 

4,410 non-assessed single crosses). Additionally, to assess the relevance of the number of DH lines 299 

sampled, we fixed the number of DH lines to achieve the same number of assessed single crosses, 300 

using a diallel. That is, we sampled 50 times 38 and 22 DH lines in each group for a diallel 301 

(scenario 4), generating 1,444 and 484 single crosses for assessment, respectively. We called these 302 
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processes as sampling of single crosses (scenarios 1 to 3) and sampling of DH lines (scenario 4). 303 

Other additional scenarios were: genomic prediction of single crosses from selected DH lines from 304 

same heterotic group (interestingly for wheat, rice, and barley breeders, for example) (scenario 5) 305 

and from selected DH lines from populations with lower LD (scenario 6), to emphasize that the 306 

prediction accuracy depends on the LD in the groups of DH or inbred lines. A last scenario 307 

(seventh) was genomic prediction of single crosses under an average density of one SNP each cM. 308 

This lower density was obtained by random sampling of 100 SNPs per chromosome using a 309 

REALbreeding tool (sampler). To investigate the single cross prediction efficiency based on our 310 

model and on the models proposed by Massman et al. (2013) and Technow et al. (2012b), we used 311 

another REALbreeding tool (Incidence matrix) to generate the incidence matrices for the three 312 

models and for the two DH lines sampling processes. To assess the relevance of the SCA effects 313 

prediction on genomic prediction of single cross performance, we also fitted the additive model 314 

(including only the GCA effects). For comparison purpose, we also processed single cross 315 

prediction based on GBLUP (with the observed additive and dominance relationship matrices) and 316 

BLUP (with the expected additive and dominance relationship matrices). 317 

Statistical analysis 318 

The methods used for prediction were ridge regression BLUP (RR-BLUP), GBLUP and 319 

BLUP. For the analyses we used the rrBLUP package (Endelman 2011). The accuracies of single 320 

cross genotypic value prediction were obtained by the correlation between the true values of the 321 

non-assessed single crosses computed by REALbreeding and the values predicted by RR-BLUP, 322 

GBLUP, and BLUP. We also computed the efficiency of identification of the 300 non-assessed 323 

single crosses of higher genotypic value (coincidence index). The parametric average coincidence 324 

index was computed by ordering the average phenotypic values of the 4,900 single crosses for each 325 

heritability and for each DH lines derivation process. Regarding grain yield, for heritability of 30% 326 

the coincidence index was 0.2533, 0.2833, and 0.2433 assuming one DH line per S0 plant, one to 327 
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five DH lines per S0 plant, and one to five DH lines per S3 plant, respectively. The corresponding 328 

values for heritability of 60% were, respectively, 0.4800, 0.4900, and 0.4567. Concerning 329 

expansion volume, the corresponding values for heritabilities of 30 and 60% were, respectively, 330 

0.2600, 0.2833, and 0.2700, and 0.4733, 0.5100, and 0.4533. The assumed average parametric 331 

coefficient index was 0.26 and 0.48 for heritabilities of 30 and 60%, respectively, for both traits. 332 

For the population structure analysis we employed Structure (Falush et al. 2003) and fitted the no 333 

admixture model with independent allelic frequencies. The number of SNPs, sample size, burn-in 334 

period, and number of MCMC (Markov chain Monte Carlo) replications were 1,000 (sampled at 335 

random), 140 (70 DH lines from each population), 10,000, and 40,000, respectively. The number of 336 

populations assumed (K) ranged from 1 to 4, and the most probable K value was determined based 337 

on the inferred plateau method (Viana et al. 2013). The LD analyses were performed with 338 

Haploview (Barrett et al. 2005). 339 

Data availability 340 

REALbreeding is available upon request. The data set is available at 341 

https://doi.org/10.6084/m9.figshare.5035130.v1. Data citation: 342 

Viana, José Marcelo Soriano; Pereira, Helcio Duarte; Mundim, Gabriel Borges; Piepho, Hans-Peter; 343 

Fonseca e Silva, Fabyano (2017): Efficiency of genomic prediction of non-assessed single crosses. 344 

figshare. https://doi.org/10.6084/m9.figshare.5035130.v1 345 

RESULTS 346 

The parametric mean and genotypic variance in the populations 1 and 2 were 108.5 and 87.3 347 

(g/plant) and 4.7680 and 6.2580 (g/plant)2. The DH lines derivation processes (one and one to five 348 

per S0 plant and one to five per S3 plant) provided, for each population, selected DH lines with 349 

similar mean (approximately 97 and 76 g/plant for populations 1 and 2), inbreeding depression 350 

(approximately 10 and 13% for populations 1 and 2), and genotypic variance (approximately 6 351 

and 7 (g/plant)2 for populations 1 and 2) and groups of single crosses also similar for mean 352 
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(approximately 103 g/plant), heterosis (approximately 19%), and genotypic variance 353 

(approximately 4 (g/plant)2). Because we derived one to few DH lines from unrelated S0 and S3 354 

plants, the average level of relatedness between the selected DH lines was very low (zero and zero, 355 

0.0041 and 0.0041, and 0.0054 and 0.0074 assuming one DH line per S0, one to five DH lines per 356 

S0, and one to five DH lines per S3, for populations 1 and 2, respectively). Concerning SNP data, 357 

the frequency distribution of the minor allele frequency (MAF) and the absolute value of the 358 

difference between a SNP allele frequency were also similar for both groups of selected DH lines, 359 

regardless of the DH line derivation process (Figure 1a, b, c). The average MAF was 0.33, 360 

regardless of the population and DH line derivation process. However, the evidence obtained by the 361 

population structure analysis was that the DH lines belong to two distinct subpopulations (suggested 362 

K equal to 2.4 by the inferred plateau method). The percentages of non-polymorphic SNPs were 363 

very low (0.1 to 0.4%). No differences between allelic frequencies were observed for only 1.7 to 364 

2.1% of the SNPs. For approximately 70% of the SNPs, the absolute difference between allelic 365 

frequencies ranged from 0.1 to 0.6. Regarding LD, for the groups of selected DH lines the evidence 366 

based on the analysis of chromosome 1 (no difference between chromosomes is expected) is that 367 

LD extents for up to 35 cM, regardless of the DH lines derivation process (Figure 1c, d). Ignoring 368 

the non-significant LD values (LOD score lower than 3), for 17 to 20% of the SNP pairs the r2 369 

values ranged from 0.2 to 0.5 (average of 0.16, regardless of the DH lines group and derivation 370 

process). 371 

Assuming our model, average SNP density of 0.1 cM, training set size of 30%, positive 372 

dominance (grain yield), additive-dominance model, and sampling of single crosses, the prediction 373 

accuracies of the non-assessed single crosses were greater than the accuracies of the assessed single 374 

crosses for low (up to 46% higher) and intermediate (up to 16% higher) heritabilities (Table 1; 375 

Figure 2a). As the prediction accuracy of assessed single crosses approaches 1.0, the accuracy of the 376 

non-assessed single crosses approaches approximately 0.9 (up to 11% lower). Sampling one to five 377 
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DH lines per S3 plant was only slightly superior to the other DH lines derivation processes, 378 

regardless of the prediction accuracy of the assessed single crosses (up to 5% higher). Fitting the 379 

additive model provided essentially the same prediction accuracies since the maximum decrease 380 

was approximately 1%. No significant differences between the prediction accuracies of non-381 

assessed single crosses were also observed assuming bidirectional dominance (expansion volume). 382 

The differences compared to positive dominance ranged from approximately 5 to 2%. However, a 383 

striking difference was observed between the sampling processes of single crosses for testing. 384 

Random sampling of single crosses provided much greater prediction accuracies of non-assessed 385 

single crosses, compared to sampling DH lines for a diallel. The increases in the accuracies by 386 

sampling single crosses ranged from approximately 38 to 77%, proportional to the heritability. 387 

Decreasing the average SNP density to 1 cM led to a slight decrease in the prediction accuracy of 388 

non-assessed single crosses of approximately 4%). Decreasing the training set size to 10% 389 

decreased the prediction accuracy of non-assessed single crosses in approximately 5 to 15%, 390 

inversely proportional to the heritability. To evidence that the prediction accuracy of non-assessed 391 

single crosses depends on the level of (overall) LD in the groups of selected DH or inbred lines, we 392 

derived DH lines from the same base populations after 10 generations of random crosses (to 393 

decrease the LD). The accuracies were also high, ranging from 0.83 to 0.95, proportional to the 394 

heritability. The prediction accuracies of non-assessed single crosses from DH lines of the same 395 

population were equivalent to the accuracies for single crosses derived from DH lines belonging to 396 

distinct heterotic groups, ranging from 0.83 to 0.91, also proportional to the heritability. Comparing 397 

our statistical model with the models proposed by Massman et al. (2013) and Technow et al. 398 

(2012a), we observed no differences for the prediction accuracies of non-assessed single crosses 399 

(maximum difference of 1%). Finally, no significant differences between the prediction accuracies 400 

for RR-BLUP, GBLUP, and BLUP occurred (maximum of 2%), excepting for one to five DH lines 401 

per S3 plant, where BLUP was 9 to 10% inferior, regardless of the heritability. 402 
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Concerning the coincidence index, in general the inferences are the same established from the 403 

prediction accuracy analysis (Table 2; Figure 2b). There were no differences between the 404 

coincidence indexes regarding our model and the models proposed by Massman et al. (2013) and 405 

Technow et al. (2012a) (maximum difference of 3%), and between the RR-BLUP, GBLUP, and 406 

BLUP approaches, except for one to five DH lines per S3 plant, where BLUP was 19 to 27% 407 

inferior, proportional to the heritability. The coincidence indexes were also high for single crosses 408 

derived from selected DH lines obtained from the base populations with lower LD (ranging from 409 

0.55 to 0.76, proportional to the heritability) and from selected DH lines of the same population 410 

(ranging from 0.61 to 0.76, also proportional to the heritability). Sampling single crosses for 411 

assessment also provided much greater coincidence index compared to sampling DH lines for a 412 

diallel (39 to 98% higher, proportional to the heritability). Decreasing the SNP density and the 413 

training set size decreased the coincidence index from 5 to 10% (proportional to the heritability) 414 

and from 17 to 26% (inversely proportional to the heritability), respectively. The maximum 415 

difference in the coincidence index by fitting the additive-dominant and the additive models was 416 

3%. Only for one DH line per S0 plant the coincidence indexes assuming bidirectional dominance 417 

were slightly greater than the values assuming positive dominance (9 to 14% greater). This 418 

sampling process of DH lines provided the higher values of coincidence index, compared to the 419 

other sampling processes (7 to 26% higher, inversely proportional to the heritability). Finally, the 420 

coincidence index of the non-assessed single crosses are greater than the parametric values for all 421 

assessed single crosses assuming low (up to 117% higher) and intermediate (up to 39% higher) 422 

heritabilities (Table 1). However, as the parametric coincidence of assessed single crosses 423 

approaches 1.0, the coincidence values of the non-assessed single crosses approach approximately 424 

0.60 to 0.74 (up to 26 to 40% lower), depending on the DH line sampling process. 425 

DISCUSSION 426 
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It was twenty-three years ago today, Bernardo (1994) taught the breeders to use BLUP (more 427 

precisely, GBLUP) for predicting untested maize single cross performance. BLUP, as well known, 428 

is the Henderson's (1974) approach for genetic assessment. Based on the prediction accuracies 429 

obtained by Bernardo (1994, 1995, 1996a, 1996b, 1996c), for grain yield and other traits (distinct 430 

genetic controls), a breeder should realize that the performance of untested single crosses can be 431 

effectively predicted using relationship information from molecular or pedigree data, unbalanced 432 

and large data set, and diverse heterotic patterns. This general inference has been confirmed with 433 

maize (Zhao et al. 2015) and other important crops, as rice (Xu et al. 2014), wheat (Zhao et al. 434 

2013b) and barley (Philipp et al. 2016), along the last 20 years. Why, then, there is no published 435 

evidence that prediction of untested single crosses is of general use by breeders of worldwide seed 436 

companies? What should be additionally proved to make prediction of untested single crosses as 437 

successful as the Jenkins' (1934) method for predicting double crosses performance was? We 438 

believe that this paper offers a significant contribution. 439 

Our assessment on efficiency of prediction of untested single cross performance keeps some 440 

similarities with few earlier studies but sharp differences for most previous investigations. This 441 

study is based on simulated data set, as the study of Technow et al. (2012a), assuming 400 QTLs 442 

distributed along ten chromosomes. Thus, the prediction accuracies and coincidence indexes (a 443 

measure of untested single crosses selection efficiency) are for really non-assessed single crosses 444 

since the values were computed based on the true genotypic values of the non-assessed single 445 

crosses and not on a cross-validation procedure involving assessed single crosses. This does not 446 

mean that we consider simulated data better than field data or have any criticism on the cross-447 

validation procedure. We know that simulated data, because the presuppositions, cannot integrally 448 

describe the complexity of populations and genetic determination of traits (Daetwyler et al. 2013). 449 

To highlight the relevance of (overall) LD, our study is based on scenarios not favorable to 450 

prediction of untested single cross performance: very low level of relationship between the DH 451 
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lines, low and intermediate heritabilities for the assessed single crosses, and not higher heterotic 452 

pattern. In the studies of Massman et al. (2013) and Bernardo (1994, 1995, 1996a) the relationship 453 

among inbreds from the same heterotic group ranged from 0.11 to 0.58. Riedelsheimer et al. (2012) 454 

observed high relationship only between the non-Stiff Stalk inbreds. Technow et al. (2012a) 455 

assumed non-related inbreds. For most of the investigations on prediction of untested single crosses 456 

and testcrosses, the grain yield heritability ranged from 0.72 to 0.88. The common heterotic patterns 457 

in these previous studies are Stiff Stalk and non-Stiff Stalk, and Dent and Flint. The MAF in the 458 

groups of Dent and Flint inbreds were approximately 0.10 and 0.20, respectively, and 459 

approximately 20% of the SNPs showed a difference of allelic frequency of at least 0.6. 460 

Concerning the prediction accuracy and the efficiency of identification of the superior 300 461 

non-assessed single crosses, our results prove that prediction of untested single crosses is a very 462 

efficient procedure (note that we are not saying genomic prediction), specially for low and 463 

intermediate heritabilities of the assessed single crosses. The prediction accuracy of the non-464 

assessed single crosses under low (0.55 to 0.71) and intermediate (0.74 to 0.87) accuracies of 465 

assessed single crosses achieved 0.85 and 0.89, respectively. It is important to highlight that these 466 

are not relative accuracies. Most important, the coincidence of the non-assessed single crosses 467 

under low (0.26 to 0.39) and intermediate (0.44 to 0.66) parametric coincidences of assessed single 468 

crosses achieved 0.59 and 0.64, respectively. For high heritability (80 to 95%; accuracies from 0.89 469 

to 0.97), as observed in most of the studies on prediction of untested single cross performance, we 470 

can state (based on values predicted by fitting a quadratic regression model) that the prediction 471 

accuracy of non-assessed single crosses is up to only 10% lower (0.87 to 0.92) and, most 472 

impressive, the coincidence index can range from 0.61 to 0.71 (parametric coincidences between 473 

0.72 to 0.93). Under maximum accuracy of assessed single crosses (1.0), the prediction accuracy 474 

and coincidence of non-assessed single crosses achieved 0.93 and 0.76. Thus, assuming high 475 

heritability, high density, and training set size of 30%, the accuracy can achieve 0.92 and the 476 
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efficiency of identification of the best 9% of the non-assessed single crosses can achieve 0.71. It is 477 

important to highlight that this efficacy can be higher by using more related DH or inbred lines, 478 

under high LD. Thus, we strong recommend that maize breeders, as well as rice, wheat, and barley 479 

breeders, make widespread use of prediction of non-assessed single crosses, at least for preliminary 480 

screening or prior to field testing. 481 

To take advantage of genomic prediction, Kadam et al. (2016) recommend redesigning hybrid 482 

breeding programs. However, because breeders are unlikely to rely solely on genomic predictions 483 

when selecting superior untested hybrids, Technow et al. (2014) believe that genomic prediction 484 

will be combined with field testing of the most promising experimental hybrids. For grain yield, the 485 

prediction accuracies observed by Bernardo (1994, 1995, 1996a) ranged from 0.14 to 0.80, 486 

proportional to the heritability (in the range 35-74%) and training set size. The non-relative 487 

accuracies (relative accuracy x root square of heritability) observed in the studies of Kadam et al. 488 

(2016), Technow et al. (2014), Massman et al. (2013), Technow et al. (2012a), and Riedelsheimer et 489 

al. (2012) ranged between 0.20 and 0.86, also proportional to the heritability (in the range 53-98%) 490 

and training set size. 491 

We hope that readers of this paper have realized the importance of (overall) LD for effective 492 

prediction of non-assessed single crosses, as well as genetic variability (see the parametric accuracy 493 

of genomic prediction). Breeders have no control over LD and relatedness between the DH or 494 

inbred lines. However, selection should always provide high level of overall LD in the groups of 495 

selected DH or inbred lines. Comparison of our LD assessment with the LD analyses from other 496 

studies is inadequate because we have distances in cM and not in base-pairs. But in general the level 497 

of LD was high (r2 of approximately 0.3) only for SNPs separated by up to 0.5 Mb (Technow et al. 498 

2014; Massman et al. 2013; Technow et al. 2012a; Riedelsheimer et al. 2012). To maximize the 499 

prediction accuracy and the efficiency of identification of the best non-assessed single crosses it is 500 

necessary to adopt the random sampling of single crosses for testing instead of the random sampling 501 
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of DH or inbred lines for a diallel. This is because sampling 30 or even 10% of the single crosses 502 

leads to single crosses for testing derived from all DH or inbred lines from each group. In our case, 503 

in every resampling assuming training set size of 30 and 10% we always get groups of assessed 504 

single crosses (1,470 and 490 single crosses, respectively) derived from the 70 DH lines of each 505 

group. However, sampling DH lines for a diallel provided 1,440 and 484 single crosses for testing 506 

derived from 38 and 22 DH lines, respectively. Thus, the sampling of single crosses provides best 507 

prediction of the SNP average effects of substitution. Riedelsheimer et al. (2012) emphasized the 508 

need for large genetic variability to obtain high prediction accuracies. Further, their results indicated 509 

that pairs of closely related lines and population structuring only weakly contributed to the high 510 

prediction accuracies. Regarding dominance, because it can be a relevant genetic effect, breeders 511 

should always fit the additive-dominance model to maximize the prediction accuracy and the 512 

efficiency of identification of the best non-assessed single crosses. Interestingly, in most of the 513 

studies on prediction of non-assessed single crosses the prediction accuracy did not significantly 514 

increase when modeling SCA in addition to GCA effects (Zhao et al. 2015). 515 

Concerning SNP density and training set size, factors related with the costs of genotyping and 516 

phenotyping, breeders should find a balance between efficiency and expenses, since maximizing 517 

SNP density and training set size maximizes the efficiency of untested single cross prediction. 518 

Based on our results, because the decreases in the prediction accuracy (approximately 4%) and 519 

coincidence index (5 to 10%) by decreasing the average SNP density from 0.1 to 1 cM are of 520 

reduced magnitude, we consider sufficient to employ custom genotyping to provide an average SNP 521 

density of 1 cM. Decreasing the training set size from 30 to 10% of the single crosses does not 522 

significantly affect the prediction accuracy under intermediate to high heritability (decrease of up to 523 

9%), but the coincidence index can be reduced in up to 21%. However, considering that the 524 

coincidence index will be kept in the range 0.48 to 0.61, proportional to the heritability, and that the 525 

maximum values are in the range 0.48 to 0.61, we also consider sufficient to assess at least 10% of 526 
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the possible single crosses. As highlighted by Zhao et al. (2015), marker density only marginally 527 

affects the prediction accuracy of untested single crosses. For biparental populations, a plateau for 528 

the accuracy is reached with a few hundred markers. Technow et al. (2014) did not find an 529 

improvement of prediction accuracies by using higher SNP density. Additionally, the increase in the 530 

training set size led to a relative small increase in the prediction accuracy. However, the prediction 531 

accuracies obtained by Riedelsheimer et al. (2012) under high density (38,019 SNPs) were 532 

substantially greater than those reached with a low-density marker panel (1,152 SNPs). In the study 533 

of Technow et al. (2012a), the prediction accuracies increased with SNP density and number of 534 

parents tested in hybrid combination. 535 

The DH lines sampling process, the heterotic pattern, and the statistical approach should not 536 

be worries for breeders. However, under high heritability notice that sampling more than one DH 537 

line per S0 or S3 plant provided the higher coincidence values and high prediction accuracy in our 538 

study. For rice, wheat, and barley breeders our message is: high prediction accuracy and high 539 

efficiency of identification of superior non-assessed single crosses does not depend on heterotic 540 

groups but on the (overall) LD in the group or in each group of DH or inbred lines. In other words, 541 

the efficiency of prediction of non-assessed single crosses derived from DH or inbred lines from the 542 

same population can be as high as the efficiency of prediction of untested single crosses derived 543 

from DH or inbred lines from distinct heterotic groups. This is not confirmed comparing the relative 544 

prediction accuracies for grain yield of maize untested single crosses (from approximately 0.50 to 545 

0.95, for most studies) with those obtained with rice, wheat, and barley untested hybrids (0.50 to 546 

0.60, approximately) (Philipp et al. 2016; Xu et al. 2014; Zhao et al. 2013b). However, the lower 547 

relative prediction accuracies for untested rice, wheat, and barley hybrids should be due to 548 

prediction of two- and three-way crosses. Regarding the statistical approach, our model did not 549 

provide an increase in the efficiency of non-assessed single cross prediction, compared to the 550 

models proposed by Massman et al. (2013) and Technow et al. (2012a). It is important to highlight 551 
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that our results showed that these two models are really identical (data no shown). Thus, because 552 

the simplified definition of the incidence matrices for these two previous models, it is quite safe to 553 

use any of them. Finally, the choice between the statistical approaches RR-BLUP (prediction of 554 

genotypic values of non-assessed single crosses based on prediction of SNP average effects of 555 

substitution), GBLUP (prediction of genotypic values of non-assessed single crosses based on 556 

additive and dominance genomic matrices), and BLUP (prediction of genotypic values of non-557 

assessed single crosses based on additive and dominance matrices from pedigree records) is not a 558 

serious worry for breeders too. Our evidence is that there is no significant difference between RR-559 

BLUP and GBLUP regarding prediction accuracy and efficiency of identification of the best 560 

untested single crosses. Further, even when the level of relatedness between the DH or inbred lines 561 

in each group is low, in general BLUP is as efficient as genomic prediction, excepting when the DH 562 

lines are derived from inbred population. Thus, DNA polymorphism is not essential for an efficient 563 

prediction of non-assessed single cross performance. In his review on genomic selection in hybrid 564 

breeding, Zhao et al. (2015) state that the choice of the biometrical model has no substantial impact 565 

on the prediction accuracy of untested single crosses. Technow et al. (2014) observed that 566 

prediction methods GBLUP and BayesB resulted in very similar prediction accuracies. In the study 567 

of Massman et al. (2013), BLUP and RR-BLUP models did not lead to prediction accuracies that 568 

differed significantly. Comparing GBLUP and BayesB, Technow et al. (2012a) concluded that the 569 

latter method produced significantly higher accuracies for the additive-dominance model. 570 

Our main contributions on the prediction efficiency of non-assessed single cross performance 571 

are: 1) the prediction accuracy of untested single crosses ranged from approximately 0.80 to 0.90 as 572 

the heritability of tested single crosses ranged from low (30%) to high (100%); however, the 573 

efficacy of identification of the best 9% of the untested single crosses ranged from approximately 574 

0.50 to 0.70, depending on the DH lines sampling process; 2) the prediction accuracy for crops 575 

showing no defined heterotic pattern can be as efficient as with maize, for which there is well 576 
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defined heterotic groups; this is because the most important factor affecting the prediction 577 

efficiency is the overall LD; 3) to maximize prediction accuracy and coincidence the choice of 578 

single crosses for testing should be based on a random process; this procedure maximizes the 579 

number of DH lines in hybrid combination and provides better predictions of the SNP average 580 

effects of substitution and dominance deviations; 4) because non significant decreases in the 581 

prediction accuracy and coincidence, the prediction of untested single crosses can be efficient 582 

assuming reduced training set size (10%) and SNP density of 1 cM; 5) RR-BLUP and GBLUP 583 

provides equivalent prediction efficiencies of untested single crosses; 6) excepting for DH lines 584 

derived from inbred populations, BLUP is as efficient as genomic prediction of untested single 585 

crosses; and 7) the theoretical accuracy shows that the prediction accuracy is not affected by the 586 

linkage phase. 587 
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Table 1 Average prediction accuracies of non-assessed single crosses and its standard deviation, 666 

assuming single crosses from selected DH lines, 30 and 10% of assessed single crosses, two traits 667 

(grain yield - GY, g/plant, and expansion volume - EV, mL/g), two sampling processes of single 668 

crosses, four statistical models, three DH lines sampling processes, two genetic models, and three 669 

accuracies of assessed single crosses 670 

Trait Samp. Statistical DH Gen.  Accuracy of assessed single crosses 
 proc. model lines mod.  0.55 0.77 1.00 
GY SCs Viana et al. 1/S0 AD  0.7790 ± 0.0124 0.8447 ± 0.0066 0.8859 ± 0.0018 
    A  0.7688 ± 0.0132 0.8380 ± 0.0067 0.8821 ± 0.0019 
   1-5/S0 AD  0.7947 ± 0.0125 0.8525 ± 0.0072 0.8896 ± 0.0025 
    A  0.7895 ± 0.0126 0.8465 ± 0.0077 0.8858 ± 0.0027 
   1-5/S3 AD  0.8010 ± 0.0145 0.8678 ± 0.0054 0.9276 ± 0.0025 
    A  0.7954 ± 0.0145 0.8627 ± 0.0056 0.9238 ± 0.0026 
   1-5/S3 ADa  0.7718 ± 0.0161 0.8371 ± 0.0079 0.8888 ± 0.0043 
   1-5/S3 ADb  0.6836 ± 0.0277 0.7885 ± 0.0139 0.8817 ± 0.0049 
   1/S0 ADc  0.8293 ± 0.0131 0.8944 ± 0.0049 0.9479 ± 0.0017 
   1-5/S3 ADd  0.8267 ± 0.0082 0.8928 ± 0.0043 0.9083 ± 0.0023 
  Massman et. al.e 1/S0 AD  0.7874 ± 0.0118 0.8519 ± 0.0053 0.8924 ± 0.0026 
   1-5/S0 AD  0.7982 ± 0.0140 0.8622 ± 0.0055 0.8973 ± 0.0025 
   1-5/S3 AD  0.8074 ± 0.0112 0.8753 ± 0.0056 0.9314 ± 0.0026 
  GBLUP 1/S0 AD  0.7841 ± 0.0122 0.8477 ± 0.0064 0.8906 ± 0.0019 
   1-5/S0 AD  0.7973 ± 0.0124 0.8574 ± 0.0070 0.8978 ± 0.0019 
   1-5/S3 AD  0.7911 ± 0.0146 0.8639 ± 0.0056 0.9319 ± 0.0023 
  BLUP 1/S0 AD  0.7855 ± 0.0129 0.8541 ± 0.0059 0.8899 ± 0.0019 
   1-5/S0 AD  0.7803 ± 0.0143 0.8435 ± 0.0074 0.8830 ± 0.0024 
   1-5/S3 AD  0.7227 ± 0.0203 0.7915 ± 0.0077 0.8373 ± 0.0048 
 DHs Viana et al. 1/S0 AD  0.5012 ± 0.0416 0.5117 ± 0.0467 0.5343 ± 0.0467 
   1-5/S0 AD  0.4827 ± 0.0423 0.5000 ± 0.0420 0.5036 ± 0.0465 
   1-5/S3 AD  0.5799 ± 0.0437 0.6106 ± 0.0413 0.6357 ± 0.0429 
EV SCs Viana et al. 1/S0 AD  0.7779 ± 0.0157 0.8458 ± 0.0069 0.8820 ± 0.0024 
   1-5/S0 AD  0.8019 ± 0.0155 0.8656 ± 0.0050 0.9055 ± 0.0020 
   1-5/S3 AD  0.7589 ± 0.0143 0.8424 ± 0.0058 0.9165 ± 0.0027 
adensity of 1 cM; btraining set of 490 single crosses (10%); cafter 10 generations of random crosses;dsingle 
crosses from DH lines of the same population; eand Technow et al.. 
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Table 2 Average coincidence of the best 300 predicted single crosses and its standard deviation, 671 

assuming single crosses from selected DH lines, 30 and 10% of assessed single crosses, two traits 672 

(grain yield - GY, g/plant, and expansion volume - EV, mL/g), two sampling processes of single 673 

crosses, four statistical models, three DH lines sampling processes, two genetic models, and three 674 

parametric coincidence of assessed single crosses 675 

Trait Samp. Statistical DH Gen.  Coincidence of assessed single crosses 
 proc. model lines mod.  0.26 0.48 1.00 
GY SCs Viana et al. 1/S0 AD  0.4523 ± 0.0334 0.5525 ± 0.0190 0.6037 ± 0.0170 
    A  0.4396 ± 0.0346 0.5449 ± 0.0176 0.5976 ± 0.0172 
   1-5/S0 AD  0.5686 ± 0.0273 0.6369 ± 0.0221 0.6842 ± 0.0140 
    A  0.5640 ± 0.0283 0.6299 ± 0.0221 0.6816 ± 0.0152 
   1-5/S3 AD  0.5129 ± 0.0235 0.6044 ± 0.0200 0.7363 ± 0.0183 
    A  0.5063 ± 0.0225 0.5993 ± 0.0193 0.7305 ± 0.0190 
   1-5/S3 ADa  0.4881 ± 0.0278 0.5691 ± 0.0229 0.6620 ± 0.0215 
   1-5/S3 ADb  0.3805 ± 0.0511 0.4797 ± 0.0354 0.6087 ± 0.0233 
   1/S0 ADc  0.5528 ± 0.0298 0.6489 ± 0.0203 0.7571 ± 0.0162 
   1-5/S3 ADd  0.6116 ± 0.0214 0.7156 ± 0.0150 0.7581 ± 0.0166 
  Massman et. al.e 1/S0 AD  0.4670 ± 0.0346 0.5663 ± 0.0174 0.6157 ± 0.0157 
   1-5/S0 AD  0.5651 ± 0.0310 0.6431 ± 0.0164 0.6955 ± 0.0144 
   1-5/S3 AD  0.5279 ± 0.0291 0.6139 ± 0.0204 0.7423 ± 0.0172 
  GBLUP 1/S0 AD  0.4622 ± 0.0308 0.5660 ± 0.0190 0.6092 ± 0.0163 
   1-5/S0 AD  0.5650 ± 0.0280 0.6384 ± 0.0204 0.6849 ± 0.0137 
   1-5/S3 AD  0.5010 ± 0.0245 0.5937 ± 0.0216 0.7294 ± 0.0168 
  BLUP 1/S0 AD  0.4641 ± 0.0331 0.5709 ± 0.0176 0.6081 ± 0.0127 
   1-5/S0 AD  0.5531 ± 0.0323 0.6272 ± 0.0194 0.6699 ± 0.0130 
   1-5/S3 AD  0.4172 ± 0.0258 0.4731 ± 0.0211 0.5377 ± 0.0196 
 DHs Viana et al. 1/S0 AD  0.2753 ± 0.0374 0.3056 ± 0.0445 0.3169 ± 0.0401 
   1-5/S0 AD  0.3268 ± 0.0642 0.3400 ± 0.0691 0.3461 ± 0.0728 
   1-5/S3 AD  0.3699 ± 0.0583 0.3931 ± 0.0579 0.4300 ± 0.0633 
EV SCs Viana et al. 1/S0 AD  0.5156 ± 0.0331 0.6081 ± 0.0159 0.6599 ± 0.0146 
   1-5/S0 AD  0.5506 ± 0.0285 0.6337 ± 0.0203 0.6944 ± 0.0141 
   1-5/S3 AD  0.4746 ± 0.0294 0.5843 ± 0.0174 0.7141 ± 0.0171 
adensity of 1 cM; btraining set of 490 single crosses (10%); cafter 10 generations of random crosses;dsingle 
crosses from DH lines of the same population; eand Technow et al.. 
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Figure 1 Frequency distribution of the MAF in the groups of selected DH lines (a and b) and the absolute value of the difference between a SNP allele 676 

frequency (c), and LD (r2) in relation to distance (cM) in the two groups of selected DH lines (d and e), regarding SNPs in chromosome 1 separated by 677 

zero to 35 cM, assuming one DH line per S0 plant. 678 
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(b) 

Figure 2 Predicted accuracies (a) and coincidence indexes (b) for untested single crosses (square: 1/S0; triangle: 1-5/S0; circle: 1-5/S3), and parametric 679 

accuracies and coincidence indexes for tested single crosses (continuous line), assuming our model, average SNP density of 0.1 cM, training set size of 680 

30%, positive dominance (grain yield), additive-dominance model, and sampling of single crosses. 681 
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