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Probabilistic proposals of Language of Thoughts (LoTs) can explain learning across different
domains as statistical inference over a compositionally structured hypothesis space. While
frameworks may differ on how a LoT may be implemented computationally, they all share the
property that they are built from a set of atomic symbols and rules by which these symbols
can be combined. In this work we show how the set of productions of a LoT grammar can be
effectively selected from a broad repertoire of possible productions by an inferential process
starting from experimental data. We then test this method in the language of geometry, a
specific LoT model (Amalric et al., 2017). Finally, despite the fact of the geometrical LoT not
being a universal (i.e. Turing-complete) language, we show an empirical relation between a se-
quence’s probability and its complexity consistent with the theoretical relationship for universal
languages described by Levin’s Coding Theorem.
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It was not only difficult for him to
understand that the generic term dog
embraced so many unlike specimens
of differing sizes and different forms;
he was disturbed by the fact that a
dog at three-fourteen (seen in profile)
should have the same name as the dog
at three-fifteen (seen from the front).
(...)With no effort he had learned En-
glish, French, Portuguese and Latin. I
suspect, however, that he was not very
capable of thought. To think is to for-
get differences, generalize, make ab-
stractions. In the teeming world of
Funes, there were only details, almost
immediate in their presence. (Borges,
1944)

In his fantasy story, the writer Jorge Luis Borges
described a fictional character, Funes, capable of
remembering every detail of his life but not being
able to generalize any of that data into mental cate-
gories and hence –Borges stressed– not capable of
thinking.

Researchers have modeled these mental cate-
gories or conceptual classes with two classical ap-

proaches: in terms of similarity to a generic exam-
ple or prototype (Nosofsky, 1986; Rosch, 1999;
Rosch & Mervis, 1975; Rosch, Simpson, &
Miller, 1976) or based on a symbolic/rule-like rep-
resentation (Boole, 1854; Fodor, 1975; Gentner,
1983).

Symbolic approaches like the language of
thought (LoT) hypothesis (Fodor, 1975), claim
that thinking takes form in a sort of mental lan-
guage, composed of a limited set of atomic sym-
bols that can be combined to form more complex
structures following combinatorial rules.

Despite criticisms and objections (Aydede,
1997; Blackburn, 1984; Knowles, 1998;
Loewer & Rey, 1991), symbolic approaches
—in general— and the LoT hypothesis —in
particular— have gained some renewed attention
with recent results that might explain learning
across different domains as statistical inference
over a compositionally structured hypothesis space
(Piantadosi & Jacobs, 2016; Tenenbaum, Kemp,
Griffiths, & Goodman, 2011).

The LoT is not necessarily unique. In fact, the
form that it takes has been modeled in many dif-
ferent ways depending on the problem domain: nu-
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merical concept learning (Piantadosi, Tenenbaum,
& Goodman, 2012), sequence learning (Amalric
et al., 2017; Romano, Sigman, & Figueira, 2013;
Yildirim & Jacobs, 2015), visual concept learn-
ing (Ellis, Solar-Lezama, & Tenenbaum, 2015),
theory learning (Ullman, Goodman, & Tenenbaum,
2012), etc.

While frameworks may differ on how a LoT may
be implemented computationally, they all share the
property of being built from a set of atomic sym-
bols and rules by which they can be combined to
form new and more complex expressions.

Most studies of LoTs have focused on the com-
positional aspect of the language, which has ei-
ther been modeled within a Bayesian (Tenenbaum
et al., 2011) or a Minimum Description Length
(MDL) framework (Amalric et al., 2017; Gold-
smith, 2001, 2002; Romano et al., 2013).

The common method is to define a grammar
with a set of productions based on operations that
are intuitive to researchers and then study how dif-
ferent inference processes match regular patterns
in human learning. A recent study by Piantadosi,
Tenenbaum, and Goodman (2016) puts the focus
on the process of how to empirically choose the set
of productions and how different LoT definitions
can create different patterns of learning. Here, we
move along that direction but use Bayesian infer-
ence to individuate the LoT instead of comparing
several of them by hand.

Broadly, our aim is to propose a method to select
the set of atomic symbols in an inferential process
by pruning and trimming from a broad repertoire.
More precisely, we test whether Bayesian inference
can be used to decide the proper set of productions
in a LoT defined by a context free grammar. These
productions are derived from the subjects’ experi-
mental data. In order to do this, a researcher builds
a broader language with two sets of productions:
1) those for which she has a strong prior conviction
that they should be used in the cognitive task, and
2) other productions that could be used to struc-
ture the data and extract regularities even if she be-
lieves are not part of the human reasoning reper-
toire for the task. With the new broader language,
she should then turn the context free grammar that
defines it into a probabilistic context free gram-
mar (PCFG) and use Bayesian analysis to infer the
probability of each production in order to choose
the set that best explains the data.

In the next section we formalize this procedure
and then apply it on the language of geometry pre-
sented by Amalric et al. (2017) in a recent study
about geometrical sequence learning. This LoT de-

fines a language with some basic geometric instruc-
tions as the grammar productions and then mod-
els their composition within the MDL framework.
Our method, however, can be applied to any LoT
model that defines a grammar, independently of
whether its compositional aspect is modeled using
a Bayesian framework or a MDL approach.

Finally, even with the recent surge of popularity
of Bayesian inference and MDL in cognitive sci-
ence, there are –to the best of our knowledge– no
practical attempts to close the gap between proba-
bilistic and complexity approaches to LoT models.

The theory of computation, through Levin’s
Coding Theorem (Levin, 1974), exposes a remark-
able relationship between the Kolmogorov com-
plexity of a sequence and its universal probability,
largely used in algorithmic information theory. Al-
though both metrics are actually non-computable
and defined over a universal prefix Turing Machine,
we can apply both ideas to other non-universal Tur-
ing Machines in the same way that the concept of
complexity used in MDL can be computed for spe-
cific, non-universal languages.

In this work, we examine the extent to which this
theoretical prediction for infinite sequences holds
empirically for a specific LoT, the language of ge-
ometry. Although the inverse logarithmic relation-
ship between both metrics is proved for univer-
sal languages in the Coding Theorem, testing this
same property for a particular non-universal lan-
guage shows that the language shares some inter-
esting properties of general languages. This con-
stitutes a first step towards a formal link between
probability and complexity modeling frameworks
for LoTs.

Bayesian inference for LoT’s productions

The project of Bayesian analysis of the LoT
models concept learning using Bayesian inference
in a grammatically structured hypothesis space
(Goodman, Tenenbaum, Feldman, & Griffiths,
2008). Each LoT proposal is usually formalized
by a context free grammar G that defines the valid
programs that can be generated, like in any other
programming language. A program is a derivation
tree of G that needs to be interpreted or executed
according to a given semantics in order to get an
actual description of the concept in the cognitive
task at hand. Finally, a Bayesian inference process
is defined in order to infer the distribution of valid
programs in G from the observed data.

As explained above, our aim is to derive the
productions of G from the data, instead of just
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conjecturing them using a priori knowledge about
the task. Prior work on LoTs has fit probabili-
ties of productions in a context free grammar using
Bayesian inference, however, the focus has been
put in integrating out the production probabilities to
better predict the data without changing the gram-
mar definition (Piantadosi et al., 2016). Here,
we want to study if the inference process could let
us decide which productions can be safely pruned
from the grammar. We introduce a generic method
that can be used on any grammar to select and test
the proper set of productions. Instead of using a
fixed grammar and adjusting the probabilities of the
productions to predict the data, we use Bayesian
inference to rule out productions with probability
lower than a certain threshold. This allows the re-
searcher to validate the adequacy of the produc-
tions she has chosen for the grammar or even de-
fine one that is broad enough to express different
regularities and let the method select the best set
for the observed data.

To infer the probability for each production
based on the observed data, we need to add a vec-
tor of probabilities θ associated with each produc-
tion in order to convert the context free grammar G
into a probabilistic context free grammar (PCFG)
(Manning & Schütze, 1999).

Let D = (d1, d2, . . . , dn) denote the list of con-
cepts produced by the subjects in an experiment.
This means that each di is a concept produced by a
subject in each trial. Then, P(θ | D), the posterior
probability of the weights of each production after
the observed data, can be calculated by marginaliz-
ing over the possible programs that compute D:

P(θ | D) =
∑
Prog

P(Prog, θ | D),

where each Prog = (p1, p2, · · · , pn) is a possible set
of programs such that each pi computes the corre-
sponding concept di.

We can use Bayesian inference to learn the cor-
responding programs Prog and the vector θ for each
production in the grammar, applying Bayes rule in
the following way:

P(Prog, θ | D) ∝ P(D | Prog) P(Prog | θ) P(θ),

where P(θ) is a Dirichlet prior for θ and α its asso-
ciated concentration vector hyper-parameter. The
likelihood function can be calculated as follows:

P(D | Prog) P(Prog | θ) =

n∏
i=1

P(di | pi)P(pi | θ),

where P(di | pi) = 1 if the program pi computes
di, and 0 otherwise, and P(pi | θ) =

∏
r∈G

θ
fr(pi)
r is the

probability of the program pi in the grammar, and
fr(pi) is the number of occurrences of the produc-
tion r in program pi.

Calculating P(θ | D) directly is, however, not
tractable since it requires to sum over all possible
combinations of programs Prog for each of the pos-
sible values of θ. To this aim, then, we used a
Gibbs Sampling (Geman & Geman, 1984) algo-
rithm for PCFGs via Markov Chain Monte Carlo
(MCMC) similar to the one proposed by Johnson,
Griffiths, and Goldwater (2007), which alternates
in each step of the chain between the two condi-
tional distributions:

P(Prog | θ,D) =

n∏
i=1

P(pi | di, θ)

P(θ | Prog,D) = PD(θ | f (Prog) + α).

Here, PD is the Dirichlet distribution where the po-
sitions of the vector α were updated by counting
the occurrences of the corresponding productions
for all programs pi ∈ Prog.

In the next section, we apply this method to a
specific LoT. We add a new set of ad-hoc produc-
tions to the grammar that can explain regularities
but are not related to the cognitive task. If the
method is effective, it should assign a low proba-
bility to the ad-hoc productions and instead favor
the original set of productions selected by the re-
searchers for the cognitive task.

This would not only provide empirical evidence
about the adequacy of the choice of the original
productions for the selected LoT but, more impor-
tantly, about the usefulness of Bayesian inference
for selecting or testing the set of productions in-
volved in different LoTs.

The Language of Geometry: Geo

The language of geometry, Geo, is a probabilis-
tic generator of sequences of movements on a reg-
ular octagon like the one in Figure 1.

The production rules of grammar Geo were se-
lected based on previous claims of the universal-
ity of certain human geometrical knowledge (De-
haene, Izard, Pica, & Spelke, 2006; Dillon,
Huang, & Spelke, 2013; Izard, Pica, Dehaene,
Hinchey, & Spelke, 2011) such as spatial no-
tions (Landau, Gleitman, & Spelke, 1981; Lee,
Sovrano, & Spelke, 2012) and detection of sym-
metries (Machilsen, Pauwels, & Wagemans, 2009;
Westphal-Fitch, Huber, Gómez, & Fitch, 2012).
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Figure 1. Σ points around a circle to map current
position in the octagon, and the reflection axes.

Table 1
Original Grammar

Start production
START → [INST] start symbol

Basic productions
INST → ATOMIC atomic production
INST → INST,INST concatenation
INST → REP[INST]n repeat family with n ∈ [2, 8]
REP → REP0 simple repeat
REP → REP1<ATOMIC> repeat with starting point variation using ATOMIC
REP → REP2<ATOMIC> repeat with resulting sequence variation using ATOMIC

Atomic productions
ATOMIC → -1 next element anticlockwise (ACW)
ATOMIC → -2 second element ACW
ATOMIC → -3 third element ACW
ATOMIC → +0 stays at same location
ATOMIC → +1 next element clockwise (CW)
ATOMIC → +2 second element CW
ATOMIC → +3 third element CW
ATOMIC → A symmetry around one diagonal axis
ATOMIC → B symmetry around the other diagonal axis
ATOMIC → H horizontal symmetry
ATOMIC → V vertical symmetry
ATOMIC → P rotational symmetry

With these production rules, sequences are de-
scribed by concatenating or repeating sequence of
movements in the octagon. The original set of pro-
ductions is shown in Table 1 and –besides the con-
catenation and repetition operators– it includes the
following family of atomic geometrical transition
productions: anticlockwise movements, staying at
the same location, clockwise movements and sym-
metry movements.

The language actually supports not just a simple
n times repetition of a block of productions, but it
also supports two more complex productions in the
repetition family: repeating with a change in the
starting point after each cycle and repeating with
a change to the resulting sequence after each cycle.
More details about the formal syntax and semantics
can be found in (Amalric et al., 2017), though they
are not needed here.

Each program p generated by the grammar de-
scribes a mapping Σ → Σ+, for Σ = {0, . . . , 7}.
Here, Σ+ represents the set of all (non empty) fi-
nite sequences over the alphabet Σ, which can be
understood as a finite sequence of points in the oc-
tagon. These programs must then be executed or

interpreted from a starting point in order to get the
resulting sequence of points. Let p = [+1,+1] be a
program, then p(0) is the result of executing p start-
ing from point 0 (that is, sequence 1, 2) and p(4) is
the result of executing the same program starting
from point 4 in the octagon (sequence 5, 6)

Each sequence can be described with many
different programs: from a simple concatena-
tion of atomic productions to more compressed
forms using repetitions. For example, to move
through all the octagon clockwise one point
at a time starting from point 0, one can use
[+1,+1,+1,+1,+1,+1,+1,+1](0) or [REP[+1]8](0)
or [REP[+1]7,+1](0), etc. To alternate 8 times be-
tween points 6 and 7, one can use a reflection pro-
duction like [REP[A]8](6), or [REP[+1,-1]4](6).

Geo’s original experiment

To infer the productions from the observed data,
we used the original data from the experiment in
(Amalric et al., 2017). In the experiment, volun-
teers were exposed to a series of spatial sequences
defined on an octagon and were asked to predict
future locations. The sequences were selected ac-
cording to their MDL in the language of geome-
try so that each sequence could be easily described
with few productions.

Participants. The data used in this work
comes, except otherwise stated, from Experiment
1 in which participants were 23 French adults (12
female, mean age = 26.6, age range = 20 − 46)
with college-level education. Data from Experi-
ment 2 is later used when comparing adults and
children results. In the later, participants where
24 preschoolers (minimal age = 5.33, max = 6.29,
mean = 5.83 ± 0.05).

Procedure. On each trial, the first two points
from the sequence were flashed sequentially in the
octagon and the user had to click on the next lo-
cation. If the subject selected the correct location,
she was asked to continue with the next point until
the eight points of the sequences were completed.
If there was an error at any point, the mistake was
corrected, the sequence flashed again from the first
point to the corrected point and the user asked to
predict the next location. Each di ∈ Σ8 from our
dataset D is thus the sequence of eight positions
clicked in each subject’s trial. The detailed proce-
dure can be found in the cited work.

Extending Geo’s grammar

We will now expand the original set of produc-
tions in Geo with a new set of productions that can
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Table 2
Ad-hoc productions

ATOMIC → DOUBLE (location ∗ 2) mod 8
ATOMIC → -DOUBLE (location ∗ − 2) mod 8
ATOMIC → SQUARE (location2) mod 8
ATOMIC → GAMMA Γ(location+1) mod 8
ATOMIC → PI location-th digit of π
ATOMIC → EULER location-th digit of e
ATOMIC → GOLD location-th digit of φ
ATOMIC → PYTH location-th digit of

√
2

ATOMIC → KHINCHIN location-th digit of Khinchin’s constant
ATOMIC → GLAISHER location-th digit of Glaisher’s constant
ATOMIC → CHAITIN location-th digit of Chaitin Omega’s constant

also express regularities but are not related to any
geometrical intuitions to test our Bayesian infer-
ence model.

In table 2 we show the new set of produc-
tions which includes instructions like moving to the
point whose label is the square of the current loca-
tion’s label, or using the current point location i to
select the ithdigit of a well-known number like π or
Chaitin’s number1 (digits are returned in arithmetic
module 8 to get a valid point for the next position).
For example, PI(0) returns the first digit of π, that
is PI(0) = 3 mod (8) = 3; and PI(1) = 1

Inference results for Geo

To let the MCMC converge faster (and to later
compare the concept’s probability with their cor-
responding MDL), we generated all the programs
that explain each of the observed sequences from
the experiment. In this way, we are able to sample
from the exact distribution P(pi | di, θ) by sampling
from a multinomial distribution of all the possible
programs pi that compute di, where each pi has
probability of occurrence equal to P(pi | θ).

To get an idea of the expressiveness of the gram-
mar to generate different programs for a sequence
and the cost of computing them, it is worth men-
tioning that there are more than 159 million pro-
grams that compute the 292 unique sequences gen-
erated by the subjects in the experiment, and that
for each sequence there is an average of 546,713
programs (min = 10, 749, max = 5, 500, 026, σ =

693, 618).
Figure 2 shows the inferred θ for the observed

sequences from subjects, with a unit concentration
parameter for the Dirichlet prior, α = (1, . . . , 1).
Each bar shows the mean probability and the stan-
dard error of each of the atomic productions after
50 steps of the MCMC, leaving the first 10 steps
out as burn-in.

Although 50 steps might seem low for a MCMC
algorithm to converge, our method calculated P(pi |

di, θ) exactly in order to speed up convergence and

Figure 2. Inferred θi probability for each
production in the grammar

to be able to later compare the probability with the
complexity from the original MDL model. In Fig-
ure 3, we show an example trace for four MCMC
runs for θ+0, which corresponds to the atomic pro-
duction +0, but is representative of the behavior of
all θi. (Figures for the full set of productions can be
found in the Appendix).

Figure 3. Inferred θ+0 at each step in four MCMC
chains for +0 production

Figure 2 shows a remarkable difference between
the probability of the productions that were origi-
nally used based on geometricalintuitions and the
ad-hoc productions. The plot also shows that each
clockwise production has almost the same proba-
bility than its corresponding anticlockwise produc-
tion, and a similar relation appears between hori-
zontal and vertical symmetry (H and V) and sym-
metries around diagonal axes (A and B). This is
important because the original experiment was de-
signed to balance such behavior; the inferred gram-
mar reflects this.

Figure 4 shows the same inferred θ but grouped
according to production family. Grouping stresses

1Calculated for a particular universal Turing Machine
and programs up to 84 bits long (Calude, Dinneen, Shu,
et al., 2002)
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the low probability of all the ad-hoc productions,
but also shows an important difference between
REP and the rest of the productions, particularly
the simple concatenation of productions (CON-
CAT). This indicates that the language of geometry
is capable of reusing simpler structures that capture
geometrical meaning to explain the observed data,
a key aspect of a successful model of LoT.

Figure 4. Inferred θi probability for each
production in the grammar grouped by family

We then ran the same inference method using
observed sequences from other experiments but
only with the original grammar productions (i.e.
setting aside the ad-hoc productions). We com-
pared the result of inferring over our previously
analyzed sequences generated by adults with se-
quences generated by children (experiment 2 from
Amalric et al. (2017)) and the actual expected se-
quences for an ideal player.

Figure 5 shows the probabilities for each atomic
production that is inferred after each population.
The figure denotes that different populations can
converge to different probabilities and thus dif-
ferent LoTs. Specifically, it is worth mention-
ing that the ideal learner indeed uses more repeti-
tion productions than simple concatenations when
compared to adults. In the same way, adults
use more repetitions than children. This could
mean that the ideal learner is capable of reproduc-
ing the sequences by recursively embedding other
smaller programs, whereas adults and children
more so have problems understanding or learning
the smaller concept that can explain all the se-
quences from the experiments, which is consistent
with the results from the MDL model in (Amalric

et al., 2017).
It is worth mentioning that in (Amalric et al.,

2017) the complete grammar for the language of
geometry could explain adults’ behavior but had
problems to reproduce the children’s patterns for
some sequences. However, they also showed that a
reduced set of productions that penalizes the rota-
tional symmetry (P) could adequately explain chil-
dren’s behavior.In Figure 5 we do not see any sig-
nificant difference for this production between chil-
dren and adults. This might not necessarily be con-
tradictory, as the model for children in (Amalric et
al., 2017) used a MDL approach for composing
productions that took into account the occurrences
of the rotational symmetry in the minimal program
of each sequence. On the other hand, the Bayesian
model in this work tries to explain the observed se-
quences considering the probability of a sequence
summing over all the possible programs that can
generate it. Thus, a production that is not part of the
minimal program for a sequence might not neces-
sarily be less probable when considering the entire
distribution of programs for that same sequence.

Figure 5. Inferred θi for Ideal learner, Adults and
Children

Coding Theorem

For each phenomenon there can always be an
extremely large, possible infinite, number of expla-
nations. In a LoT model, this space is constrained
by the grammar G that defines the valid hypothe-
ses in the language. Still, one has to define how a
hypothesis is chosen among all possibilities. Oc-
cam’s razor says that amongst all possible hypoth-
esis that explain a phenomenon, one should choose
the simplest. In cognitive science, the MDL frame-
work has been widely used to model such bias in
human cognition, and in the language of geome-
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try in particular Amalric et al. (2017). The MDL
framework is based on the ideas of information
theory (Shannon, 1948), Kolmogorov complex-
ity (Kolmogorov, 1968) and Solomonoff induction
(Solomonoff, 1964).

Occam’s razor was formalized by Solomonoff

(1964) in his theory of universal inductive in-
ference, which proposes a universal prediction
method that successfully approximates any distri-
bution µ based on previous observations, with the
only assumption of µ being computable. In short,
Solomonoff’s theory uses all programs (in the form
of prefix Turing machines) that can describe pre-
vious observations of a sequence to calculate the
probability of the next symbols in an optimal fash-
ion, giving more weight to shorter programs. Intu-
itively, simpler theories with low complexity have
higher probability than theories with higher com-
plexity. Formally, this relationship is described by
the Coding Theorem (Levin, 1974), which closes
the gap between the concepts of Kolmogorov com-
plexity and probability theory. However, LoT mod-
els that define a probabilistic distribution for their
hypotheses do not attempt to compare it with a
complexity measure of the hypotheses like the ones
used in MDL, nor the other way around.

In what follows we formalize the Coding The-
orem (for more information, see (Li & Vitányi,
2013)) and test it experimentally. To the best our
knowledge, this is the first attempt to validate these
ideas for a particular (non universal) language. The
reader should note that we are not validating the
theorem itself as it has already been proved for
universal Turing Machines. Here, we are testing
whether the inverse logarithmic relationship be-
tween the probability and complexity holds true
when defined for a specific non universal language.

The formal statement

Let M be a prefix Turing machine –by prefix
we mean that if M(x) is defined, then M is unde-
fined for every proper extension of x. Let PM(x) be
the probability that the machine M computes out-
put x when the input is filled-up with the results of
fair coin tosses, and let KM(x) be the Kolmogorov
complexity of x relative to M, which is defined as
the length of the shortest program which outputs x,
when executed on M. The Coding Theorem states
that for every string x we have

log
1

PU(x)
= KU(x)

up to an additive constant, whenever U is a univer-
sal prefix Turing machine –by universal we mean a

machine which is capable of simulating every other
Turing machine; it can be understood as the un-
derlying (Turing-complete) chosen programming
language. It is important to remark that neither
PU , nor KU are computable, which means that
such mappings cannot be obtained through effec-
tive means. However, for specific (non-universal)
machines M, one can, indeed, compute both PM

and KM .

Testing the Coding Theorem for Geo

Despite the fact that PM and KM are defined
over a Turing Machine M, the reader should note
that a LoT is not usually formalized with a Tur-
ing Machine, but instead as a programming lan-
guage with its own syntax of valid programs and
semantics of execution, which stipulates how to
compute a concept from a program. However, one
can understand programming languages as defin-
ing an equivalent (not necessarily universal) Turing
Machine model, and a LoT as defining its equiva-
lent (not necessarily universal) Turing Machine G.
In short, machines and languages are interchange-
able in this context: they both specify the pro-
grams/terms, which are symbolic objects that, in
turn, describe semantic objects, namely, strings.

The Kolmogorov complexity relative to Geo.
In (Amalric et al., 2017), the Minimal Description
Length was used to model the combination of pro-
ductions from the language of geometry into con-
cepts by defining a Kolmogorov complexity rela-
tive to the language of geometry, which we denote
KGeo. KGeo(x) is the minimal size of an expression
in the grammar of Geo which describes x. The for-
mal definition of ‘size’ can be found in the cited
work but in short: each of the atomic productions
adds a fixed cost of 2 units; using any of the rep-
etition productions to iterate n times a list of other
productions adds the cost of the list, plus blog(n)c;
and joining two lists with a concatenation costs the
same as the sum of the costs of both lists.

The probability relative to Geo. On the other
hand, with the Bayesian model specified in this
work, we can define P(x | Geo, θ) which is the
probability of a string x relative to Geo and its vec-
tor of probabilities for each of the productions.

For the sake of simplicity, we will use PGeo(x) to
denote P(x | Geo, θ) when θ is the inferred proba-
bility from the observed adult sequences from the

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/141358doi: bioRxiv preprint 

https://doi.org/10.1101/141358


8 ROMANO, S., SALLES A., AMALRIC, M., DEHAENE, S., SIGMAN, M. AND FIGUEIRA, S.

experiment.

PGeo(x) = P(x | Geo, θ)

=
∑
prog

P(x | prog, θ)

∝
∑
prog

P(x | prog)P(prog | θ).

Here, we calculate both PGeo(x) and KGeo(x) in
an exact way (note that Geo, seen as a program-
ming language, is not Turing-complete). In this
section, we show an experimental equivalence be-
tween such measures which is consistent with the
Coding Theorem. We should stress, once more,
that the theorem does not predict that this relation-
ship should hold for a specific non-universal Turing
Machine.

To calculate PGeo(x) we are not interested in the
normalization factor of P(x | prog)P(prog | θ)
because we are just trying to measure the rela-
tionship between PGeo and KGeo in terms of the
Coding Theorem. Note, however, that calculating
PGeo(x) involves calculating all programs that com-
pute each of the sequences as in our previous exper-
iment. To make this tractable we calculated PGeo(x)
for 10,000 unique random sequences for each of
the possible sequence lengths from the experiment
(i.e., up to eight). When the length of the sequence
did not allow 10,000 unique combinations, we used
all the possible sequences of that length.

Coding Theorem Results

Figure 6 shows the mean probability PGeo(x) for
all sequences x with the same value of KGeo(x) and
length between 4 and 8 (|x| ∈ [4, 8]) for all gen-
erated sequences x. The data is plotted with a
logarithmic scale for the x-axis, illustrating the in-
verse logarithmic relationship between KGeo(x) and
PGeo(x). The fit is very good, with R2 = .99,
R2 = .94, R2 = .97, R2 = .99 and R2 = .98 for
Figure 6a, Figure 6b, Figure 6c, Figure 6d and Fig-
ure 6e, respectively.

This relationship between the complexity KGeo

and the probability PGeo defined for finite se-
quences in the language of geometry, matches the
theoretical prediction for infinite sequences in uni-
versal languages described in the Coding Theorem.
At the same time, it captures the Occam’s razor
intuition that the simpler sequences one can pro-
duce or explain with this language are also the more
probable.

Figures 7 and 8 show the histogram of PGeo(x)
and KGeo(x), respectively, for sequences with
length = 8 to get a better insight about both mea-
sures. The histogram of the rest of the sequence’s
lengths are included in Figures B1 and B2 for com-
pleteness, and they all show the same behavior.

Discussion

We have presented a Bayesian inference method
to select the set of productions for a LoT and test its

(a) Sequences with |x| = 4 (b) Sequences with |x| = 5 (c) Sequences with |x| = 6

(d) Sequences with |x| = 7 (e) Sequences with |x| = 8

Figure 6. Mean probability PGeo(x) for all sequences x with the same complexity
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Figure 7. Histogram of complexity KGeo(x) for
sequences x with |x| = 8

Figure 8. Histogram of probability PGeo(x) for
sequences x with |x| = 8

effectiveness in the domain of a geometrical cogni-
tion task. We have shown that this method is use-
ful to distinguish between arbitrary ad-hoc produc-
tions and productions that were intuitively selected
to mimic human abilities in such domain.

The proposal to use Bayesian models tied to
PCFG grammars in a LoT is not new. However,
previous work has not used the inferred probabil-
ities to gain more insight about the grammar defi-
nition in order to modify it. Instead, it had usually
integrated out the production probabilities to better

predict the data, and even found that hierarchical
priors for grammar productions show no significant
differences in prediction results over uniform pri-
ors (Piantadosi et al., 2012; Yildirim & Jacobs,
2015).

We believe that inferring production probabili-
ties can help prove the adequacy of the grammar,
and can further lead to a formal mechanism for
selecting the correct set of productions when it is
not clear what a proper set should be. Researchers
could use a much broader set of productions than
what might seem intuitive or relevant for the do-
main and let the hierarchical Bayesian inference
framework select the best subset.

Selecting a broader set of productions still leaves
some arbitrary decisions to be made. However, it
can help to build a more robust methodology that –
combined with other ideas like testing grammars
with different productions for the same task (Pi-
antadosi et al., 2016)– could provide more evi-
dence of the adequacy of the proposed LoT.

Having a principled method for defining gram-
mars in LoTs is a crucial aspect for their success
because slightly different grammars can lead to dif-
ferent results, as has been shown in (Piantadosi et
al., 2016).

The experimental data used in this work was de-
signed by Amalric et al. (2017) to understand how
humans encode visuo-spatial sequences as struc-
tured expressions. As future research, we plan to
perform a specific experiment to test these ideas
in a broader range of domains. Additionally, data
from more domains is needed to demonstrate if
this method could also be used to effectively prove
whether different people use different LoT produc-
tions as outlined in Figure 5.

Finally, we showed an empirical equivalence be-
tween the complexity of a sequence in a minimal
description length (MDL) model and the probabil-
ity of the same sequence in a Bayesian inference
model which is consistent with the theoretical rela-
tionship described in the Coding Theorem. This
opens an opportunity to bridge the gap between
these two approaches that had been described ad
complementary by some authors MacKay (2003,
chapter 28.3).

References

Amalric, M., Wang, L., Pica, P., Figueira, S., Sig-
man, M., & Dehaene, S. (2017). The lan-
guage of geometry: Fast comprehension of
geometrical primitives and rules in human

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/141358doi: bioRxiv preprint 

https://doi.org/10.1101/141358


10 ROMANO, S., SALLES A., AMALRIC, M., DEHAENE, S., SIGMAN, M. AND FIGUEIRA, S.

adults and preschoolers. PLOS Computa-
tional Biology, 13(1), e1005273.

Aydede, M. (1997). Language of thought: The
connectionist contribution. Minds and Ma-
chines, 7(1), 57–101.

Blackburn, S. (1984). Spreading the word:
Grounding in the philosophy of language.
Clarendon Press.

Boole, G. (1854). An investigation of the laws of
thought: on which are founded the mathe-
matical theories of logic and probabilities.
Dover Publications.

Borges, J. L. (1944). Ficciones, 1935-1944.
Buenos Aires: Sur.

Calude, C. S., Dinneen, M. J., Shu, C.-K., et
al. (2002). Computing a glimpse of ran-
domness. Experimental Mathematics, 11(3),
361–370.

Dehaene, S., Izard, V., Pica, P., & Spelke, E.
(2006). Core knowledge of geometry in
an amazonian indigene group. Science,
311(5759), 381–384.

Dillon, M. R., Huang, Y., & Spelke, E. S. (2013).
Core foundations of abstract geometry. Pro-
ceedings of the National Academy of Sci-
ences, 110(35), 14191–14195.

Ellis, K., Solar-Lezama, A., & Tenenbaum, J.
(2015). Unsupervised learning by program
synthesis. In Advances in neural information
processing systems (pp. 973–981).

Fodor, J. (1975). The language of thought. Harvard
University Press.

Geman, S., & Geman, D. (1984). Stochas-
tic relaxation, gibbs distributions, and the
bayesian restoration of images. Pattern Anal-
ysis and Machine Intelligence, IEEE Trans-
actions on(6), 721–741.

Gentner, D. (1983). Structure-mapping: A theoret-
ical framework for analogy. Cognitive sci-
ence, 7(2), 155–170.

Goldsmith, J. (2001). Unsupervised learning of the
morphology of a natural language. Compu-
tational linguistics, 27(2), 153–198.

Goldsmith, J. (2002). Probabilistic models of
grammar: Phonology as information mini-
mization. Phonological Studies, 5, 21–46.

Goodman, N. D., Tenenbaum, J. B., Feldman, J.,
& Griffiths, T. L. (2008). A rational analy-
sis of rule-based concept learning. Cognitive
Science, 32(1), 108–154.

Izard, V., Pica, P., Dehaene, S., Hinchey, D., &
Spelke, E. (2011). Geometry as a universal
mental construction. Space, Time and Num-
ber in the Brain, 19, 319–332.

Johnson, M., Griffiths, T. L., & Goldwater, S.
(2007). Bayesian inference for pcfgs via
markov chain monte carlo. In Hlt-naacl (pp.
139–146).

Knowles, J. (1998). The language of thought and
natural language understanding. Analysis,
58(4), 264–272.

Kolmogorov, A. N. (1968). Three approaches to
the quantitative definition of information*.
International Journal of Computer Mathe-
matics, 2(1-4), 157–168.

Landau, B., Gleitman, H., & Spelke, E. (1981).
Spatial knowledge and geometric represen-
tation in a child blind from birth. Science,
213(4513), 1275–1278.

Lee, S. A., Sovrano, V. A., & Spelke, E. S. (2012).
Navigation as a source of geometric knowl-
edge: Young children’s use of length, an-
gle, distance, and direction in a reorientation
task. Cognition, 123(1), 144–161.

Levin, L. A. (1974). Laws of information con-
servation (nongrowth) and aspects of the
foundation of probability theory. Problemy
Peredachi Informatsii, 10(3), 30–35.

Li, M., & Vitányi, P. (2013). An introduction to
kolmogorov complexity and its applications.
Springer Science & Business Media.

Loewer, B., & Rey, G. (1991). Meaning in mind.
Fodor and his Critics.

Machilsen, B., Pauwels, M., & Wagemans, J.
(2009). The role of vertical mirror symmetry
in visual shape detection. Journal of Vision,
9(12), 11–11.

MacKay, D. J. (2003). Information theory, infer-
ence and learning algorithms. Cambridge
university press.

Manning, C., & Schütze, H. (1999). Foundations of
statistical natural language processing. MIT
Press.

Nosofsky, R. M. (1986). Attention, similar-
ity, and the identification–categorization re-
lationship. Journal of experimental psychol-
ogy: General, 115(1), 39.

Piantadosi, S. T., & Jacobs, R. A. (2016). Four
problems solved by the probabilistic lan-
guage of thought. Current Directions in Psy-
chological Science, 25(1), 54–59.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman,
N. D. (2012). Bootstrapping in a language of
thought: A formal model of numerical con-
cept learning. Cognition, 123(2), 199–217.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman,
N. D. (2016). The logical primitives of
thought: Empirical foundations for compo-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/141358doi: bioRxiv preprint 

https://doi.org/10.1101/141358


BAYESIAN SELECTION OF GRAMMAR PRODUCTIONS FOR THE LOT 11

sitional cognitive models.
Romano, S., Sigman, M., & Figueira, S. (2013).

: A language of thought with turing-
computable kolmogorov complexity. Papers
in Physics, 5, 050001.

Rosch, E. (1999). Principles of categorization.
Concepts: core readings, 189.

Rosch, E., & Mervis, C. B. (1975). Family resem-
blances: Studies in the internal structure of
categories. Cognitive psychology, 7(4), 573–
605.

Rosch, E., Simpson, C., & Miller, R. S. (1976).
Structural bases of typicality effects. Journal
of Experimental Psychology: Human per-
ception and performance, 2(4), 491.

Shannon, C. (1948). A mathematical theory of
communication. Bell System Technical Jour-
nal, 27, 379–423, 623–656.

Solomonoff, R. J. (1964). A formal theory of in-
ductive inference. part i. Information and
control, 7(1), 1–22.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., &
Goodman, N. D. (2011). How to grow a
mind: Statistics, structure, and abstraction.
science, 331(6022), 1279–1285.

Ullman, T. D., Goodman, N. D., & Tenenbaum,
J. B. (2012). Theory learning as stochastic
search in the language of thought. Cognitive
Development, 27(4), 455–480.

Westphal-Fitch, G., Huber, L., Gómez, J. C., &
Fitch, W. T. (2012). Production and percep-
tion rules underlying visual patterns: effects
of symmetry and hierarchy. Philosophical
Transactions of the Royal Society of London
B: Biological Sciences, 367(1598), 2007–
2022.

Yildirim, I., & Jacobs, R. A. (2015). Learning mul-
tisensory representations for auditory-visual
transfer of sequence category knowledge: a
probabilistic language of thought approach.
Psychonomic bulletin & review, 22(3), 673–
686.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/141358doi: bioRxiv preprint 

https://doi.org/10.1101/141358


12 ROMANO, S., SALLES A., AMALRIC, M., DEHAENE, S., SIGMAN, M. AND FIGUEIRA, S.

Appendix A
MCMC steps for the rest of Geo’s grammar productions

Figure A1. Inferred θi at each step in four MCMC chains
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Appendix B
Histograms of PGeo(x) and KGeo(x)

(a) Sequences with |x| = 4 (b) Sequences with |x| = 5

(c) Sequences with |x| = 6 (d) Sequences with |x| = 7

(e) Sequences with |x| = 8

Figure B1. Histogram of complexity KGeo(x) for sequences x
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(a) Sequences with |x| = 4 (b) Sequences with |x| = 5

(c) Sequences with |x| = 6 (d) Sequences with |x| = 7

(e) Sequences with |x| = 8

Figure B2. Histogram of probability PGeo(x) for sequences x
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