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Probabilistic proposals of Language of Thoughts (LoTs) can explain learning across different
domains as statistical inference over a compositionally structured hypothesis space. While
frameworks may differ on how a LoT may be implemented computationally, they all share the
property that they are built from a set of atomic symbols and rules by which these symbols
can be combined. In this work we show how the set of productions of a LoT grammar can be
effectively selected from a broad repertoire of possible productions by an inferential process
starting from experimental data. We then test this method in the language of geometry, a
specific LoT model (Amalric et al., 2017). Finally, despite the fact of the geometrical LoT not
being a universal (i.e. Turing-complete) language, we show an empirical relation between a se-
quence’s probability and its complexity consistent with the theoretical relationship for universal
languages described by the Coding Theorem.
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It was not only difficult for him to
understand that the generic term dog
embraced so many unlike specimens
of differing sizes and different forms;
he was disturbed by the fact that a
dog at three-fourteen (seen in profile)
should have the same name as the dog
at three-fifteen (seen from the front).
(...)With no effort he had learned En-
glish, French, Portuguese and Latin. I
suspect, however, that he was not very
capable of thought. To think is to for-
get differences, generalize, make ab-
stractions. In the teeming world of
Funes, there were only details, almost
immediate in their presence. (Borges,
1944)

In his fantasy story, the writer Jorge Luis Borges
described a fictional character, Funes, capable of
remembering every detail of his life but not being
able to generalize any of that data into mental cate-
gories and hence –Borges stressed– not capable of
thinking.

As a way to solve "Funes paradox" and to for-
malize the process of thought and thinking, Fodor

(1975) presented his hypothesis of a language of
thought (LoT). The claim is that all thinking takes
form in a sort of mental language, composed of a
limited set of atomic symbols that can be combined
to form more complex structures following combi-
natorial rules, and can be thus formalized with a
grammar.

Despite criticisms and objections (Aydede,
1997; Blackburn, 1984; Knowles, 1998; Loewer &
Rey, 1991), the LoT hypothesis has gained some
renewed attention with recent results that might ex-
plain learning across different domains as statis-
tical inference over a compositionally structured
hypothesis space (Tenenbaum, Kemp, Griffiths, &
Goodman, 2011). This LoT is not necessarily
unique. In fact, the form that it takes has been mod-
eled in many different ways depending on the prob-
lem domain:numerical concept learning (Pianta-
dosi, Tenenbaum, & Goodman, 2012), sequence
learning (Amalric et al., 2017; Romano, Sigman,
& Figueira, 2013; Yildirim & Jacobs, 2015), visual
concept learning (Ellis, Solar-Lezama, & Tenen-
baum, 2015), theory learning (Ullman, Goodman,
& Tenenbaum, 2012), etc.

While frameworks may differ on how a LoT may
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be implemented computationally, they all share the
property of being built from a set of atomic sym-
bols and rules by which they can be combined to
form new and more complex expressions. Most
studies of LoTs have focused on the compositional
aspect of the language, which has either been mod-
eled within a Bayesian (Tenenbaum et al., 2011)
or a Minimum Description Length (MDL) frame-
work (Amalric et al., 2017; Goldsmith, 2001, 2002;
Romano et al., 2013). The common method is to
define a grammar with a set of productions based
on operations that are intuitive to researchers and
then study how different inference processes match
regular patterns in human learning. A recent study
by Piantadosi, Tenenbaum, and Goodman (2016)
puts the focus on the process of how to empiri-
cally choose the set of productions and how dif-
ferent LoT definitions can create different patterns
of learning. Here, we move along that direction
but use Bayesian inference to individuate the LoT
instead of comparing several of them by hand.

Broadly, our aim is to propose a method to select
the set of atomic symbols in an inferential process
by pruning and trimming from a broad repertoire.
More precisely, we test whether Bayesian inference
can be used to decide the proper set of productions
in a LoT defined by a context free grammar. These
productions are derived from the subjects’ experi-
mental data. In order to do this,a researcher builds
a broader language with two sets of productions:
1) those for which she has a strong prior conviction
that they should be used in the cognitive task, and
2) other productions that could be used to struc-
ture the data and extract regularities even if she be-
lieves are not part of the human reasoning reper-
toire for the task. With the new broader language,
she should then turn the context free grammar that
defines it into a probabilistic context free gram-
mar (PCFG) and use Bayesian analysis to infer the
probability of each production in order to choose
the set that best explains the data.

In the next section we formalize this procedure
and then apply it on the language of geometry pre-
sented by Amalric et al. (2017) in a recent study
about geometrical sequence learning. This LoT de-
fines a language with some basic geometric instruc-
tions as the grammar productions and then mod-
els their composition within the MDL framework.
Our method, however, can be applied to any LoT
model that defines a grammar, independently of
whether its compositional aspect is modeled usinga
Bayesian framework or a MDL approach.

Finally, even with the recent surge of popularity
of Bayesian inference and MDL in cognitive sci-

ence, there are –to the best of our knowledge– no
practical attempts to close the gap between proba-
bilisticand complexity approaches to LoT models.

The theory of computation, through Levin’s
Coding Theorem (Levin, 1974), exposes a remark-
able relationship between the Kolmogorov com-
plexity of a sequence and its universal probability,
largely used in algorithmic information theory. Al-
though both metrics are actually non-computable
and defined over a universal prefix Turing Machine,
we can apply both ideas to other non-universal Tur-
ing Machines in the same way that the concept of
complexity used in MDL can be computed for spe-
cific, non-universal languages.

In this work, we examine the extent to which this
theoretical prediction for infinite sequences holds
empirically for a specific LoT, the language of ge-
ometry. Although the inverse logarithmic relation-
ship between both metrics is proved for univer-
sal languages in the Coding Theorem, testing this
same property for a particular non-universal lan-
guage shows that the language shares some inter-
esting properties of general languages. This con-
stitutes a first step towards a formal link between
probability and complexity modelling frameworks
for LoTs.

Bayesian inference for LoT’s productions

The project of Bayesian analysis of the LoT
models concept learning using Bayesian inference
in a grammatically structured hypothesis space
(Goodman, Tenenbaum, Feldman, & Griffiths,
2008). Each LoT proposal is usually formalized
by a context free grammar G that defines the valid
programs that can be generated, like in any other
programming language. A program is a derivation
tree of G that needs to be interpreted or executed
according to a given semantics in order to get an
actual description of the concept in the cognitive
task at handFinally, a Bayesian inference process
is defined in order to infer the distribution of valid
programs in G from the observed data.

As we already explained, our aim is to derive
the productions of G from the data, instead of just
conjecturing them using a priori knowledge about
the task. Prior work on LoTs has fit probabili-
ties of productions in a context free grammar us-
ing Bayesian inference with the aim of better pre-
dicting the data, but found no significant effects
on prediction results (Piantadosi et al., 2012, 2016;
Yildirim & Jacobs, 2015). Here, we introduce a
generic method that can be used on any grammar,
and, more importantly, we apply it to select and test
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the proper set of productions in that grammar. In-
stead of using a fixed grammar and adjust the prob-
abilities of the productions to predict the data, we
use Bayesian inference to rule out productions with
a probability that is significantly lower than a cer-
tain threshold. This allows the researcher to vali-
date the adequacy of the productions she has cho-
sen for the grammar or even define one that is broad
enough to express different regularities and let the
method select the best set for the observed data.

To infer the probability for each production
based on the observed data, we need to add a vec-
tor of probabilities θ associated with each produc-
tion in order to convert the context free grammar G
into a probabilistic context free grammar (PCFG)
(Manning & Schütze, 1999).

Let D = (d1, d2, . . . , dn) denote the list of con-
cepts produced by the subjects in an experiment.
This means that each di is a concept produced by a
subject in each trial. Then, P(θ | D), the posterior
probability of the weights of each production after
the observed data, can be calculated by marginaliz-
ing over the possible programs that compute D:

P(θ | D) =
∑
Prog

P(Prog, θ | D),

where each Prog = (p1, p2, · · · , pn) is a possible set
of programs such that each pi computes the corre-
sponding concept di.

We can use Bayesian inference to learn the cor-
responding programs Prog and the vector θ for each
production in the grammar, applying Bayes rule in
the following way:

P(Prog, θ | D) ∝ P(D | Prog) P(Prog | θ) P(θ),

where P(θ) is a Dirichlet prior for θ and α its asso-
ciated concentration vector hyper-parameter. The
likelihood function can be calculated as follows:

P(D | Prog) P(Prog | θ) =

n∏
i=1

P(di | pi)P(pi | θ),

where P(di | pi) = 1 if the program pi computes
di, and 0 otherwise, and P(pi | θ) =

∏
r∈G

θ
fr(pi)
r is the

probability of the program pi in the grammar, and
fr(pi) is the number of occurrences of the produc-
tion r in program pi.

Calculating P(θ | D) directly is, however, not
tractable since it requires to sum over all possi-
ble combinations of programs Prog for each of the
possible values of θ. To this aim, then, we used
a Gibbs Sampling (Geman & Geman, 1984) algo-
rithm for PCFGs via Markov Chain Monte Carlo

(MCMC) similar to the one proposed by Johnson,
Griffiths, and Goldwater (2007), which alternates
in each step of the chain between the two condi-
tional distributions:

P(Prog | θ,D) =

n∏
i=1

P(pi | di, θ)

P(θ | Prog,D) = PD(θ | f (Prog) + α).

Here, PD is the Dirichlet distribution where the po-
sitions of the vector α were updated by counting
the occurrences of the corresponding productions
for all programs pi ∈ Prog.

In the next section, we apply this method to a
specific LoT. We add a new set of ad-hoc produc-
tions to the grammar that can explain regularities
but are not related to the cognitive task. If the
method is effective, it should assign a low proba-
bility to the ad-hoc productions and instead favor
the original set of productions selected by the re-
searchers for the cognitive task.

This would not only provide empirical evidence
about the adequacy of the choice of the original
productions for the selected LoT but, more impor-
tantly, about the usefulness of Bayesian inference
for selecting or testing the set of productions in-
volved in different LoTs.

The Language of Geometry: Geo

The language of geometry, Geo, is a probabilis-
tic generator of sequences of movements on a reg-
ular octagon like the one in Figure 1.
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Figure 1. Σ points around a circle to map current
position in the octagon, and the reflection axes.

The production rules of grammar Geo were se-
lected based on previous claims of the univer-
sality of certain human geometrical knowledge
(Dehaene, Izard, Pica, & Spelke, 2006; Dillon,
Huang, & Spelke, 2013; Izard, Pica, Dehaene,
Hinchey, & Spelke, 2011) such as spatial no-
tions (Landau, Gleitman, & Spelke, 1981; Lee,
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Table 1
Original Grammar

Start production
START → [INST] start symbol

Basic productions
INST → ATOMIC atomic production
INST → INST,INST concatenation
INST → REP[INST]n repeat family with n ∈ [2, 8]
REP → REP0 simple repeat
REP → REP1<ATOMIC> repeat with starting point variation using ATOMIC
REP → REP2<ATOMIC> repeat with resulting sequence variation using ATOMIC

Atomic productions
ATOMIC → -1 next element anticlockwise (ACW)
ATOMIC → -2 second element ACW
ATOMIC → -3 third element ACW
ATOMIC → +0 stays at same location
ATOMIC → +1 next element clockwise (CW)
ATOMIC → +2 second element CW
ATOMIC → +3 third element CW
ATOMIC → A symmetry around one diagonal axis
ATOMIC → B symmetry around the other diagonal axis
ATOMIC → H horizontal symmetry
ATOMIC → V vertical symmetry
ATOMIC → P rotational symmetry

Sovrano, & Spelke, 2012) and detection of sym-
metries (Machilsen, Pauwels, & Wagemans, 2009;
Westphal-Fitch, Huber, Gómez, & Fitch, 2012).

With these production rules, sequences are de-
scribed by concatenating or repeating sequence of
movements in the octagon. The original set of pro-
ductions is shown in Table 1 and –besides the con-
catenation and repetition operators– it includes the
following family of atomic geometrical transition
productions: anticlockwise movements, staying at
the same location, clockwise movements and sym-
metry movements.

The language actually supports not just a simple
n times repetition of a block of productions, but it
also supports two more complex productions in the
repetition family: repeating with a change in the
starting point after each cycle and repeating with
a change to the resulting sequence after each cycle.
More details about the formal syntax and semantics
can be found in (Amalric et al., 2017), though they
are not needed here.

Each program p generated by the grammar de-
scribes a mapping Σ → Σ+, for Σ = {0, . . . , 7}.
Here, Σ+ represents the set of all (non empty) fi-
nite sequences over the alphabet Σ, which can be
understood as a finite sequence of points in the oc-
tagon. These programs must then be executed or
interpreted from a starting point in order to get the
resulting sequence of points. Let p = [+1,+1] be a
program, then p(0) is the result of executing p start-
ing from point 0 (that is, sequence 1, 2) and p(4) is
the result of executing the same program starting
from point 4 in the octagon (sequence 5, 6)

Each sequence can be described with many
different programs: from a simple concatena-
tion of atomic productions to more compressed
forms using repetitions. For example, to move
through all the octagon clockwise one point

at a time starting from point 0, one can use
[+1,+1,+1,+1,+1,+1,+1,+1](0) or [REP[+1]8](0)
or [REP[+1]7,+1](0), etc. To alternate 8 times be-
tween points 6 and 7, one can use a reflection pro-
duction like [REP[A]8](6), or [REP[+1,-1]4](6).

Geo’s original experiment

To infer the productions from the observed data,
we used the original data from the experiment in
(Amalric et al., 2017). In the experiment, volun-
teers were exposed to a series of spatial sequences
defined on an octagon and were asked to predict
future locations. The sequences were selected ac-
cording to their MDL in the language of geome-
try so that each sequence could be easily described
with few productions.

Participants. The data used in this work
comes from Experiment 1 in which participants
were 23 French adults (12 female, mean age =

26.6, age range = 20 − 46) with college-level ed-
ucation.

Procedure. On each trial, the first two points
from the sequence were flashed sequentially in the
octagon and the user had to click on the next lo-
cation. If the subject selected the correct location,
she was asked to continue with the next point until
the eight points of the sequences were completed.
If there was an error at any point, the mistake was
corrected, the sequence flashed again from the first
point to the corrected point and the user asked to
predict the next location. Each di ∈ Σ8 from our
dataset D is thus the sequence of eight positions
clicked in each subject’s trial. The detailed proce-
dure can be found in the cited work.

Extending Geo’s grammar

We will now expand the original set of produc-
tions in Geo with a new set of productions that can
also express regularities but are not related to any
geometrical intuitions to test our Bayesian infer-
ence model.

In table 2 we show the new set of produc-
tions which includes instructions like moving to the
point whose label is the square of the current loca-
tion’s label, or using the current point location i to
select the ithdigit of a well-known number like π or
Chaitin’s number1 (digits are returned in arithmetic
module 8 to get a valid point for the next position).
For example, PI(0) returns the first digit of π, that
is PI(0) = 3 mod (8) = 3; and PI(1) = 1

1Calculated for a particular universal Turing Machine
and programs up to 84 bits long (Calude, Dinneen, Shu,
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Table 2
Ad-hoc productions

ATOMIC → DOUBLE (location ∗ 2) mod 8
ATOMIC → -DOUBLE (location ∗ − 2) mod 8
ATOMIC → SQUARE (location2) mod 8
ATOMIC → GAMMA Γ(location+1) mod 8
ATOMIC → PI location-th digit of π
ATOMIC → EULER location-th digit of e
ATOMIC → GOLD location-th digit of φ
ATOMIC → PYTH location-th digit of

√
2

ATOMIC → KHINCHIN location-th digit of Khinchin’s constant
ATOMIC → GLAISHER location-th digit of Glaisher’s constant
ATOMIC → CHAITIN location-th digit of Chaitin Omega’s constant

Inference results for Geo

To let the MCMC converge faster (and to later
compare the concept’s probability with their cor-
responding MDL), we generated all the programs
that explain each of the observed sequences from
the experiment. In this way, we are able to sample
from the exact distribution P(pi | di, θ) by sampling
from a multinomial distribution of all the possible
programs pi that compute di, where each pi has
probability of occurrence equal to P(pi | θ).

To get an idea of the expressiveness of the gram-
mar to generate different programs for a sequence
and the cost of computing them, it is worth men-
tioning that there are more than 159 million pro-
grams that compute the 292 unique sequences gen-
erated by the subjects in the experiment, and that
for each sequence there is an average of 546,713
programs (min = 10, 749, max = 5, 500, 026, σ =

693, 618).
Figure 2 shows the inferred θ for the observed

sequences from subjects, with a unit concentration
parameter for the Dirichlet prior, α = (1, . . . , 1).
Each bar shows the mean probability and the stan-
dard error of each of the atomic productions after
50 steps of the MCMC, leaving the first 10 steps
out as burn-in.

Figure 2. Inferred θi probability for each
production in the grammar

Although 50 steps might seem low for a MCMC
algorithm to converge, our method calculated P(pi |

di, θ) exactly in order to speed up convergence and
to be able to later compare the probability with the
complexity from the original MDL model. In Fig-
ure 3, we show an example trace for an MCMC run
for θ+1, which corresponds to the atomic produc-
tion +1, but is representative of the behavior of all
θi. (Figures for the full set of productions can be
found in the Appendix).

Figure 3. Inferred θ+1 at each step of the MCMC
for +1 production

Figure 2 shows a remarkable difference between
the probability of the productions that were origi-
nally used based on geometricalintuitions and the
ad-hoc productions. The plot also shows that each
clockwise production has almost the same proba-
bility than its corresponding anticlockwise produc-
tion, and a similar relation appears between hori-
zontal and vertical symmetry (H and V) and sym-
metries around diagonal axes (A and B). This is
important because the original experiment was de-
signed to balance such behavior; the inferred gram-
mar reflects this.

Figure 4 shows the same inferred θ but grouped
according to production family. Grouping stresses
the low probability of all the ad-hoc productions,
but also shows an important difference between
REP and the rest of the productions, particularly
the simple concatenation of productions (CON-
CAT). This indicates that the language of geometry
is capable of reusing simpler structures that capture
geometrical meaning to explain the observed data,
a key aspect of a successful model of LoT.

We then ran the same inference method using
observed sequences from other experiments but
only with the original grammar productions (i.e.

et al., 2002)
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Figure 4. Inferred θi probability for each
production in the grammar grouped by family

setting aside the ad-hoc productions). We com-
pared the result of inferring over our previously
analyzed sequences generated by adults with se-
quences generated by children (experiment 2 from
Amalric et al. (2017)) and the actual expected se-
quences for an ideal player.

Figure 5 shows the probabilities for each atomic
production that is inferred after each population.
The figure denotes that different populations can
converge to different probabilities and thus dif-
ferent LoTs. Specifically, it is worth mention-
ing that the ideal learner indeed uses more repeti-
tion productions than simple concatenations when
compared to adults. In the same way, adults
use more repetitions than children. This could
mean that the ideal learner is capable of reproduc-
ing the sequences by recursively embedding other
smaller programs, whereas adults and children
more so have problems understanding or learning
the smaller concept that can explain all the se-
quences from the experiments, which is consistent
with the results from the MDL model in (Amalric
et al., 2017).

It is worth mentioning that in (Amalric et al.,
2017) the complete grammar for the language of
geometry could explain adults’ behavior but had
problems to reproduce the children’s patterns for
some sequences. However, they also showed that a
reduced set of productions that penalizes the rota-
tional symmetry (P) could adequately explain chil-
dren’s behavior.In Figure 5 we do not see any sig-
nificant difference for this production between chil-
dren and adults. This might not necessarily be con-
tradictory, as the model for children in (Amalric
et al., 2017) used a MDL approach for composing

productions that took into account the occurrences
of the rotational symmetry in the minimal program
of each sequence. On the other hand, the Bayesian
model in this work tries to explain the observed se-
quences considering the probability of a sequence
summing over all the possible programs that can
generate it. Thus, a production that is not part of the
minimal program for a sequence might not neces-
sarily be less probable when considering the entire
distribution of programs for that same sequence.

Figure 5. Inferred θi for Ideal learner, Adults and
Children

Coding Theorem

For each phenomenon there can always be an
extremely large, possible infinite, number of ex-
planations. In a LoT model, this space is con-
strained by the grammar G that defines the valid
hypotheses in the language. Still, one has to de-
fine how a hypothesis is chosen among all possibil-
ities. Occam’s razor says that amongst all possible
hypothesis that explain a phenomenon, one should
choose the simplest. In cognitive science, the MDL
framework has been widely used to model such
bias in human cognition, and in the language of
geometry in particular Amalric et al. (2017). The
MDL framework is based on the ideas of infor-
mation theory (Shannon, 1948), Kolmogorov com-
plexity (Kolmogorov, 1968) and Solomonoff in-
duction (Solomonoff, 1964).

Occam’s razor was formalized by Solomonoff

(1964) in his theory of universal inductive in-
ference, which proposes a universal prediction
method that successfully approximates any distri-
bution µ based on previous observations, with the
only assumption of µ being computable. In short,
Solomonoff’s theory uses all programs (in the form
of prefix Turing machines) that can describe pre-
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vious observations of a sequence to calculate the
probability of the next symbols in an optimal fash-
ion, giving more weight to shorter programs. Intu-
itively, simpler theories with low complexity have
higher probability than theories with higher com-
plexity. Formally, this relationship is described by
the Coding Theorem (Levin, 1974), which closes
the gap between the concepts of Kolmogorov com-
plexity and probability theory. However, LoT mod-
els that define a probabilistic distribution for their
hypotheses do not attempt to compare it with a
complexity measure of the hypotheses like the ones
used in MDL, nor the other way around.

In what follows we formalize the Coding The-
orem (for more information, see (Li & Vitányi,
2013)) and test it experimentally. To the best our
knowledge, this is the first attempt to validate these
ideas for a particular (non universal) language. The
reader should note that we are not validating the
theorem itself as it has already been proved for
universal Turing Machines. Here, we are testing
whether the inverse logarithmic relationship be-
tween the probability and complexity holds true
when defined for a specific non universal language.

The formal statement

Let M be a prefix Turing machine –by prefix
we mean that if M(x) is defined, then M is unde-
fined for every proper extension of x. Let PM(x) be
the probability that the machine M computes out-
put x when the input is filled-up with the results of
fair coin tosses, and let KM(x) be the Kolmogorov
complexity of x relative to M, which is defined as
the length of the shortest program which outputs x,
when executed on M. The Coding Theorem states
that for every string x we have

log
1

PU(x)
= KU(x)

up to an additive constant, whenever U is a univer-
sal prefix Turing machine –by universal we mean a
machine which is capable of simulating every other
Turing machine; it can be understood as the un-
derlying (Turing-complete) chosen programming
language. It is important to remark that neither
PU , nor KU are computable, which means that
such mappings cannot be obtained through effec-
tive means. However, for specific (non-universal)
machines M, one can, indeed, compute both PM

and KM .

Testing the Coding Theorem for Geo

Despite the fact that PM and KM are defined
over a Turing Machine M, the reader should note
that a LoT is not usually formalized with a Tur-
ing Machine, but instead as a programming lan-
guage with its own syntax of valid programs and
semantics of execution, which stipulates how to
compute a concept from a program. However, one
can understand programming languages as defin-
ing an equivalent (not necessarily universal) Turing
Machine model, and a LoT as defining its equiva-
lent (not necessarily universal) Turing Machine G.
In short, machines and languages are interchange-
able in this context: they both specify the pro-
grams/terms, which are symbolic objects that, in
turn, describe semantic objects, namely, strings.

The Kolmogorov complexity relative to Geo.
In (Amalric et al., 2017), the Minimal Description
Length was used to model the combination of pro-
ductions from the language of geometry into con-
cepts by defining a Kolmogorov complexity rela-
tive to the language of geometry, which we denote
KGeo. KGeo(x) is the minimal size of an expression
in the grammar of Geo which describes x. The for-
mal definition of ‘size’ can be found in the cited
work but in short: each of the atomic productions
adds a fixed cost of 2 units; using any of the rep-
etition productions to iterate n times a list of other
productions adds the cost of the list, plus blog(n)c;
and joining two lists with a concatenation costs the
same as the sum of the costs of both lists.

The probability relative to Geo. On the other
hand, with the Bayesian model specified in this
work, we can define P(x | Geo, θ) which is the
probability of a string x relative to Geo and its vec-
tor of probabilities for each of the productions.

For the sake of simplicity, we will use PGeo(x) to
denote P(x | Geo, θ) when θ is the inferred proba-
bility from the observed adult sequences from the
experiment.

PGeo(x) = P(x | Geo, θ)

=
∑
prog

P(x | prog, θ)

∝
∑
prog

P(x | prog)P(prog | θ).

Here, we calculate both PGeo(x) and KGeo(x) in
an exact way (note that Geo, seen as a program-
ming language, is not Turing-complete). In this
section, we show an experimental equivalence be-
tween such measures which is consistent with the
Coding Theorem. We should stress, once more,
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that the theorem does not predict that this relation-
ship should hold for a specific non-universal Turing
Machine.

To calculate PGeo(x) we are not interested in the
normalization factor of P(x | prog)P(prog | θ)
because we are just trying to measure the rela-
tionship between PGeo and KGeo in terms of the
Coding Theorem. Note, however, that calculating
PGeo(x) involves calculating all programs that com-
pute each of the sequences as in our previous exper-
iment. To make this tractable we calculated PGeo(x)
for 10,000 unique random sequences for each of
the possible sequence lengths from the experiment
(i.e., up to eight). When the length of the sequence
did not allow 10,000 unique combinations, we used
all the possible sequences of that length.

Coding Theorem Results

Figure 6 shows the mean probability PGeo(x) for
all sequences x with the same value of KGeo(x) and
length between 4 and 8 (|x| ∈ [4, 8]) for all gen-
erated sequences x. The data is plotted with a
logarithmic scale for the x-axis, illustrating the in-
verse logarithmic relationship between KGeo(x) and
PGeo(x). The fit is very good, with R2 = .99,
R2 = .94, R2 = .97, R2 = .99 and R2 = .98 for
Figure 6a, Figure 6b, Figure 6c, Figure 6d and Fig-
ure 6e, respectively.

This relationship between the complexity KGeo

and the probability PGeo defined for finite se-

quences in the language of geometry, matches the
theoretical prediction for infinite sequences in uni-
versal languages described in the Coding Theorem.
At the same time, it captures the Occam’s razor
intuition that the simpler sequences one can pro-
duce or explain with this language are also the more
probable.

Figures 7 and 8 show the histogram of PGeo(x)
and KGeo(x), respectively, for sequences with
length = 8 to get a better insight about both mea-
sures. The histogram of the rest of the sequence’s
lengths are included in Figures B1 and B2 for com-
pleteness, and they all show the same behavior.

Discussion

We have presented a Bayesian inference method
to select the set of productions for a LoT and test its
effectiveness in the domain of a geometrical cogni-
tion task. We have shown that this method is use-
ful to distinguish between arbitrary ad-hoc produc-
tions and productions that were intuitively selected
to mimic human abilities in such domain.

The proposal to use Bayesian models tied to
PCFG grammars in a LoT is not new. However,
inferring production probabilities as opposed to
keeping them fixed has been generally found to
not make a difference at all. (Piantadosi et al.,
2012; Yildirim & Jacobs, 2015). Although infer-
ring production probabilities might not make a dif-
ference in adjusting the model’s prediction results

(a) Sequences with |x| = 4 (b) Sequences with |x| = 5 (c) Sequences with |x| = 6

(d) Sequences with |x| = 7 (e) Sequences with |x| = 8

Figure 6. Mean probability PGeo(x) for all sequences x with the same complexity
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Figure 7. Histogram of complexity KGeo(x) for
sequences x with |x| = 8

Figure 8. Histogram of probability PGeo(x) for
sequences x with |x| = 8

when the chosen set of productions is suitable for
the domain, we believe that it can help prove the
adequacy of a grammar, and can further lead to a
formal mechanism for selecting the correct set of
productions when it is not clear what a proper set
should be. Researchers could use a much broader
set of productions than what might seem intuitive
or relevant for the domain and let the hierarchi-
cal Bayesian inference framework select the best
subset. Selecting a broader set of productions still
leaves some arbitrary decisions to be made. How-

ever, it can help to build a more robust methodol-
ogy that –combined with other ideas like testing
grammars with different productions for the same
task (Piantadosi et al., 2016)– could provide more
evidence of the adequacy of the proposed LoT.
Having a principled method for defining grammars
in LoTs is a crucial aspect for their success because
slightly different grammars can lead to different re-
sults, as has been shown in (Piantadosi et al., 2016).

The experimental data used in this work was de-
signed by Amalric et al. (2017) to understand how
humans encode visuo-spatial sequences as struc-
tured expressions. As future research, we plan to
perform a specific experiment to test these ideas
in a broader range of domains. Additionally, data
from more domains is needed to demonstrate if
this method could also be used to effectively prove
whether different people use different LoT produc-
tions as outlined in Figure 5.

Finally, we showed an empirical equivalence be-
tween the complexity of a sequence in a minimal
description length (MDL) model and the probabil-
ity of the same sequence in a Bayesian inference
model which is consistent with the theoretical rela-
tionship described in the Coding Theorem. This
opens an opportunity to bridge the gap between
these two approaches that had been described ad
complementary by some authors MacKay (2003,
chapter 28.3).
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Appendix A
MCMC steps for the entire grammar

Figure A1. Inferred θi at each step of the MCMC
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Appendix B
Histograms of PGeo(x) and KGeo(x)

(a) Sequences with |x| = 4 (b) Sequences with |x| = 5

(c) Sequences with |x| = 6 (d) Sequences with |x| = 7

(e) Sequences with |x| = 8

Figure B1. Histogram of complexity KGeo(x) for sequences x

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2017. ; https://doi.org/10.1101/141358doi: bioRxiv preprint 

https://doi.org/10.1101/141358


BAYESIAN SELECTION OF GRAMMAR PRODUCTIONS FOR THE LOT 13

(a) Sequences with |x| = 4 (b) Sequences with |x| = 5

(c) Sequences with |x| = 6 (d) Sequences with |x| = 7

(e) Sequences with |x| = 8

Figure B2. Histogram of probability PGeo(x) for sequences x
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