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Abstract

In this article we use gene expression measurements from blood sam-

ples to predict breast cancer metastasis. We compare several predictive

models and propose a biologically motivated variable selection scheme.

Curve selection is based on the assumption that gene expression intensity

as a function of time should diverge between cases and controls: there

should be a larger difference between case and control closer to diagnosis

than years before. We obtain better predictions and more stable pre-

dictive signatures by using curve selection and show some evidence that

metastasis can be detected in blood samples.

1 Introduction

About one in ten women will at some point develop breast cancer. About

25% have an aggressive cancer at the time of diagnosis, with spread to axillary

lymph nodes.1 The tool to detect this spread is a surgical procedure known

1http://oncolex.org/Breast-cancer/
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as a sentinel node biopsy. According to the Norwegian Cancer Registry, out of

1000 women who attend all ten screenings they’re normally invited to, 200 will

experience at least one false positive. Out of these 200, 40 will have to do a

biopsy. This biopsy is an invasive procedure. If we could use blood samples to

predict metastasis, we could reduce the number of unnecessary biopsies. Several

recent articles develop this idea of liquid biopsies [3]. Different relevant signals

appear in blood for already-diagnosed breast cancer. For instance: circulating

tumor cells [10], serum microRNA [22], or tumor-educated platelets [1]. A recent

review in Cancer and Metastasis Reviews [16] lists liquid biopsies and large data

analysis tools as important challenges in metastatic breast cancer research.

Norwegian Women and Cancer (NOWAC) [4] is a prospective study contain-

ing blood samples. Prospective blood samples provide gene expression trajec-

tories over time. The hope is that such trajectories diverge between cases and

controls as the tumor grows. Lund et al. [18] show a significant difference in

trajectories for groups of genes. In this paper we aim to show that we can go

one step further and find information even about sentinel node status.

The main difficulty here is high dimensionality. There are about ten to fif-

teen thousand potential predictor genes. It’s very easy to over-fit such data. The

number of observations needed to fill some region of p-dimensional space grows

more than exponentially fast with p. But there are often lower-dimensional

structures in the data. For instance, we expect genes to work together in path-

ways. We don’t expect all genes to be relevant in all processes. The analysis

of high-dimensional data is an active research area of statistics and machine

learning [8]. Usually we try to discover these low-dimensional structures by

projection approaches like PLS-methods [17], or by variable selection.

Variable selection approaches highlight the most discriminative variables,

which has a straight-forward interpretation. There is a variety of variable se-

lection schemes, for a review of which see [7]. If we are working with gene

expression, we can rank genes for example based on genewise t-tests for differ-

ential expression. The top k of these provide a lower-dimensional space where

we can apply any classifier. Haury et al [14] show that such a ranking coupled

with a simple classification method compares favorably to more sophisticated

methods. There are also integrated methods that do simultaneous selection and
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statistical learning. A popular choice is the penalized maximum likelihood fam-

ily of generalized linear models. They optimize the likelihood plus a penalty

term that encourages sparse solutions. These include the popular lasso and

elastic net methods [13].

Regardless of variable selection method, the chosen predictor set can be

unstable. Ein-Dor et al [6] examined the effect of using different subsets of the

same data to choose a predictive gene set. They show that predictor gene sets

depend strongly on the subset of patients used for analysis. So stability criteria

is a complimentary feature to predictive power. These can be integrated in the

model selection, as the stability selection for penalized regression [19]. Or they

can be used as an a posteriori evaluation criterion [14].

In this paper we compare several learning methods to predict metastasis

in breast cancer. We use blood gene expression data from NOWAC taken no

more than one year before diagnosis. If we take all genes into account in a

desultory manner, we do no better than random guess. In fact, we tend to do

worse than random if we don’t account for stratification in the data. Hence we

propose variable selection based on a gene’s prediagnostic trajectory. We call

this biologically motivated approach curve selection. Curve selection improves

both predictive power and signature stability. We see some evidence that there

is a signal of sentinel node status already present before diagnosis. This gives

some hope for the pursuit of liquid sentinel node biopsies as a cheaper and less

invasive option to surgery.

2 Material and methods

2.1 Data

Our dataset is 88 pairs of breast cancer cases and age-matched controls from

the NOWAC Post-genome cohort. The cohort profile by Dumeaux et al. de-

scribes the details [4]. In brief, women were recruited by random draw from

the Central Person Register by Statistics Norway. They were invited to fill out

a questionnaire and provide a blood sample. The Cancer Registry of Norway

provided followup information on cancer diagnoses and lymph node status. The

women received a diagnosis at most one year after providing a blood sample.
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The NTNU genomics core facility processed the blood samples on Illumina

microarray chips of either the HumanWG-6 v. 3 or the HumanHT-12 v. 4 type.

A case and its matching control are together for the entire processing pipeline.

Eg. they lie next to one another on chip, and so on. Afterwards we checked the

data for technical outliers. These are observations that get distorted in the lab.

We have removed low-signal probes, ie probes that lie below a certain detection

threshold. We quantile-normalize the data before analysis. The preprocessing

for these particular data is described in detail in Lund et al. [18]. Günther,

Holden, and Holden’s report from the Norwegian Computing Centre [11] pro-

vides more technical details.

In practice we have a 88 × 12404 gene expression fold change matrix X on

the log2 scale. For each gene, g, and each case–control pair, i, we have the

measurement log2 xig − log2 x
′
ig. Here xig is the g expression level for the ith

case, and x′ig is the corresponding control. For each case we have the number of

days between the blood sample and the cancer diagnosis. Call this the followup

time. Note that although there is a time component to this, we don’t have time

series data. Each observation is a different woman. We also have a detection

stratum variable. This takes one of the following values:

• Screening denotes a cancer that was detected in the regular screening

program.

• Interval denotes a cancer that was detected between two screening ses-

sions. The interval between screenings is two years.

• Clinical denotes a cancer that was detected outside of the screening pro-

gram. These women either never took part in the screening program, or

did not attended a screening in at least two years.

Finally, our response variable, metastasis (∈ {0, 1}), indicates whether a sentinel

node biopsy showed evidence of metastasis.

Table 1 shows the incidence of metastasis in the different strata. We see a

certain heterogeneity between strata.
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Screening Interval Clinical

No spread 43 10 13

Spread 6 6 10

Table 1: Incidence of metastasis across detection strata. The incidence seems

to vary across strata. Nearly half of the cancers in the clinical stratum show

metastasis.

2.2 Predictive models

2.2.1 Penalized regression

We fit penalized logistic regression models. These models take the form

logit(p) = β0 + β1x1,+ . . .+ βpxp + ε,

subject to c(β̂) ≤ t,

where ε is iid mean-zero noise, and c(·) < t is a constraint on the magnitude c(·)

of the coefficients βi. The parameter t controls how severe this constraint is.

We investigate ridge penalty, cr(β̂) =
∑
β̂2
i , lasso penalty, cl(β̂) =

∑
|β̂i|,

and the elastic net [23] penalty, which is a linear combination of ridge and lasso,

αcl(β̂)+(1−α)cr(β̂), with α ∈ [0, 1]. Ridge and lasso penalties are special cases

of the elastic net. Lasso is well-known to encourage sparse solutions, where many

coefficients are set to exactly zero. It’s expected to be the better model if there

are few relevant predictors. Ridge on the other hand, never shrinks coefficients

to exactly zero and as such lets all predictors contribute to some extent. Hence

ridge can be expected to do better of most predictors are relevant.

Logistic regression allows us to correct for strata by adding interactions

between gene expression and stratum. In the case of genome-wide association

studies, it’s been shown to be one of the best methods to take stratification into

account [2].

2.2.2 Stability selection

The set of predictors picked by regularization are often unstable with correlated

predictors. It is also hard to choose the correct amount of regularization, the

result is often over-regularized models. Stability selection [19] is a method to
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deal with this. Basically: i) make a bootstrap estimate of the probability of a

sample’s being chosen by your regularized method, ii) define some probability

threshold above which you you use all predictors, iii) fit your favorite model

using these predictors.

We examine stability selection for both the lasso and the elastic net. Instead

of setting a threshold, we simply pick the top 50 predictors in each case (this

because we actually don’t see much stability for the lasso). We then use Bayesian

logistic regression with a weakly informative prior as described by Gelman et

al. [9].

2.2.3 Nearest centroids

We also consider the purely geometrical algorithm of nearest centroids (NC).

A class Ci is represented by it’s centroid point ci in p-dimensional space, eg.

the class mean ci = µ(x|x ∈ Ci). Then p(Ci|x) ∝ d(x, ci), which is to say the

probability x belonging to Ci is proportional to the distance between x and the

centroid ci. We normalize all features for this model. Being a distance-based

classification algorithm, NC shouldn’t be expected to do very well in thousands

of dimensions. Hence we use the top 50 genes ranked by simple genewise t-tests.

2.2.4 Stratification

We account for stratification in the regression models by adding an interaction

between all genes and the stratum variable. In simplified notation this is the

model logit(spread) = β(expression + expression × stratum). In practice this

leads to a three times as large design matrix of roughly 88 by 36 000 entries. In

the nearest centroids model we include the stratum indicators as extra dimen-

sions.

2.3 Curve selection

We would like bring some biology into this model and to take a cancer’s potential

evolution over time into account in our modeling. Our idea is that, for the

relevant genes, cases and controls either have constant differential expression

over time, or that they diverge in expression levels over time as a cancer grows

and spreads. To detect this we propose to do genewise regression of fold change,
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e, on time, t, and metastasis, M ∈ {0, 1}, in the following model:

e = β0 + β1t+ β2M + β3tM + ε, (1)

where ε is iid noise. For models with stratification we add the stratum variable

as another interaction:

e = β0 + . . .+ β4S + β5tS + β6SM + β7tSM + ε, (2)

with S the stratum variable. For a ranking score on the genes use the largest

Wald statistic β̂i/ŝ.e(β̂i) of any coefficient corresponding to a term with the

metastasis variable M as a factor. Ie in equation 1, this is β2 or β3. In equation

2 it’s one of β2, β3, β6, or β7. This ranking restricts the predictive models to a

smaller predictor space. The ranking should favor genes for which metastasized

cases diverge from their controls as time progresses. We call this filtering method

curve selection.

Figure 1 shows the curve selection model. The top row contains the top

three genes in our data as ranked by curve selection, the bottom row contains

three random genes for comparison.

2.3.1 Application to models

We use curve selection to filter out uninformative genes with all the models

above. In all cases but one we do curve selection as a preselection step to narrow

down our predictor space to the 200 best genes. We then apply the models in

the usual way. The exception is nearest centroids, where we replace the t-test

ranking with curve selection to obtain the 50 genes to compute centroids for.

When we account for stratification in the predictive models, we also account

for it in the curve selection as in equation 2.

2.4 Cross-validation

We estimate performance generalization by repeated cross-validation. We have

found that simple cross-validation in our setting produces point estimates and

confidence bands variable enough to not be of any use. A possible fix to this is

to use the bootstrap [5], but there are situations where the bootstrap estimates

are biased [15, 20]. Repeated cross-validation puts cross-validation on an equal
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Figure 1: Examples of ranking by curve selection. The light points are non-

metastasized cases, while the dark ones are metastasized cases. The slopes in

metastasized cases in the top three suggest that gene expression levels between

case and control diverge as we get closer to the time of diagnosis. The common

y-axis is log2(fold change). The common x-axis is followup in days; the x-axis

ticks are located at samples with metastasis. The top row shows the top three

genes ranked by this model. The bottom row shows three randomly chosen

genes for comparison.

footing with bootstrapping in terms of computation. It also has comparatively

low bias and variance in the 2009 study of Kim [15]. The process is simply to

do regular cross-validation, compute the average error statistic, err, and repeat

as many times as feasible to get a set of error estimates {erri}. We can use

these to construct quantile intervals in the same way that we would have with

the bootstrap. We do 1500 cross-validations for each experiment.

We do any parameter tuning by cross-validation nested in the repeated pro-

cedure. This is not repeated, but simply done once per model fitting.

2.5 Metrics: AUC and stability

We’re doing two-class prediction: metastasis vs. no metastasis. We measure

the predictive performance of our models with the area under the receiver op-

erating characteristic curve (AUC) [13]. AUC measures the probability that
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two randomly chosen samples are ranked correctly, ie a positive sample has

higher predicted probability of being positive than a negative sample. It is an

equivalent statistic to the Mann-Whitney-Wilcoxon U [12]. Hence a simpler

interpretation of AUC is that it’s the probability of ranking a randomly chosen

metastatic sample higher than a randomly chosen non-metastatic sample.

All the models we evaluate do some sort of feature selection to find the set

of genes that best predict the outcome. The question is whether the predictors

selected by each model change substantially on different data sets. We measure

gene set stability as Haury et al. [14]. We use the Jaccard index, |S1∩S2|
|S1∪S2| to

measure stability.

In cross-validation, the degree of overlap of observations in two of k folds

is |k−2||k−1| . We use k = 5, which leads to 0.75 overlap. To get as many stability

measures AUC measures, ie one statistic per fold, we calculate stability between

fold one and fold two, fold two and fold three, and so on, wrapping around when

we come to the kth fold.

3 Results

3.1 Danger of missing stratum

In figure 2 we see that fitting the models without regard for stratification can

lead to worse-than-random predictive performance. Stratifying ameliorates this,

and predictions from the stratified elastic net stability selection look promising.

We see that detection method is an important factor in predicting node

status, or at the very least calibrating predictions so that they aren’t outright

wrong. It makes sense for the stratification to be important. The cancers

are likely to have different character in different strata. You can expect the

clinical cancers to be older, as they are large enough that the women suspected

something on their own. Hence they have had a lot of time to metastasize. The

screening and interval cancers haven’t had much time to grow. The interval

cancers are likely to be more aggressive as they were not detectable at the last

screening, which was at most two years ago.

The AUC < .5 problem looks a lot like a Simpson’s paradox [21], we suspect

that there is some contradictory information between strata. A toy example of

9
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Figure 2: The effect of leaving out an important stratification variable across

models. The strange behavior of getting AUC mostly < .5 (random guess)

vanishes when we take stratum into account.

such an effect:

• Let xi = µi + ei, where ei is iid, mean-zero noise.

• Draw an outcome yi and a stratum, si, both ∈ {0, 1}

• Let µi = 1 if si = yi, 0 otherwise

In this example, ignoring strata there is basically no information. Whether

the outcome is 0 or 1 the predictor is distributed as a mixture two normals

with modes at 0 and 1. Taking strata into account, you have in stratum 1:

E[X|y = 0] < E[X|y = 1] In stratum 0, the opposite: E[X|y = 0] > E[X|y = 1]

If the proportions of stratum 0 and stratum 1 in training and test data are

sufficiently different and the stratum variable is missing, the estimated effect is

opposite of what’s happening in test data.

3.2 Stratification vs. curve filtering

Accounting for stratification fixes the AUC < .5 problem, and for the stratified

elastic net model yields better-than-random predictions. But it does require
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Curve selection bypasses need for stratification,
using both is better

Figure 3: Effect of curve filtering and stratification. We see that preselect-

ing genes by curve filtering also fixes the AUC < .5 issue, bypassing the need

to consider the detection method stratification. Using both preselection and

stratification is better for each model, but the nearest centroids model with

preselection only does as well as the best models and with less variance.

us to actually know the detection method of a cancer at the time of modeling.

Such a model would not work in for eg a screening setting.

In figure 3 we see that the use of curve selection avoids the need for explicitly

modeling detection method. This suggests that the followup variable contains

some compensating information and that metastatic cancers behave differently

to non-metastatic ones over time. This is not something that simple gene-wise

t-tests pick up, as we can see by comparing the performance of nearest cen-

troids between figure 2 and figure 3. To confirm that it’s not simple differential

expression that’s picked up by curve selection, we have investigated how often

a gene gets selected based on the time interaction. If it’s always the constant

terms that contribute to selection, t-tests are good enough. By choosing gene

sets of size 50 for 1500 bootstrap samples of our data, we get a distribution

over selection frequency for the two candidate coefficients in the non-stratified

model:

Curve selection improves predictions for all models, which is not the case
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First quartile Median Third Quartile

Spread 0.08 0.16 0.32

Spread × Time 0.68 0.84 0.92

Table 2: The frequency at which spread or spread×time is the term contributing

to selection

for stratification alone. Using both together is in most cases better. But the

nearest centroids with curve selection alone does as well as the best combined

model, and does so with less variance.

3.3 Stability
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Figure 4: Signature stability. It’s low across the board, with the nearest cen-

troids models coming out clearly ahead. Stability selection doesn’t improve

stability much in these data.

Figure 4 shows that the selected gene sets are quite unstable. In the best

case a 75% overlap in data yields a stability of about .2. This means that when

we pick a 50 gene signature for the centroids model twice on mostly overlap-

ping data, we can expect an overlap of ten genes between the two signatures.

Interestingly stability selection doesn’t seem to improve neither predictions nor
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stability for the lasso penalized models in our data.

4 Conclusion

Curve selection is biologically motivated. We see that using the biology to

select likely predictor genes and then fitting a very simple predictive model can

outperform very clever, mathematically motivated models.

By doing curve selection we improve predictions and obtain more stable

predictive signatures. As it is the dataset is quite small, so there remains a

question of statistical power. There also seems to be very low signal to noise,

something that is probably made worse by the fact that we don’t have repeated

measurements for any of the women.

However, there is some promise to these data. Further work is needed, but

it does look as there is some predictive signal of breast cancer metastasis in

prospective blood samples. It is a small step toward liquid biopsies for lymph

node metastasis.
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