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Abstract 

Our objective was to assess the generalizability, across sites and cognitive contexts, of 
schizophrenia classification based on functional brain connectivity. We tested different 
training-test scenarios combining fMRI data from 191 schizophrenia patients and 191 
matched healthy controls obtained at 6 scanning sites and under different task conditions. 
Diagnosis classification accuracy generalized well to a novel site and cognitive context 
provided data from multiple sites were used for classifier training. By contrast, lower 
classification accuracy was achieved when data from a single distinct site was used for 
training. These findings indicate that it is beneficial to use multisite data to train fMRI-based 
classifiers intended for large-scale use in the clinical realm. 

  

1. Introduction 
 
Psychiatrists and other mental health professionals could benefit in the not-so-far future from 
neuroimaging-based classification tools to assist diagnosis and prognosis in mental illness 
(Huys et al., 2016). Recent developments in the neuroimaging field have led to a shift from 
group comparisons based on averaging across subjects to machine learning techniques 
making prediction at the individual level (Dubois and Adolphs, 2016). In this approach, the 
emphasis is put on the ability of an algorithm to classify individuals into clinical categories 
with good generalizability to unseen subjects. Over the last decade, hundreds of studies 
have successfully classified various psychiatric and neurological disorders based on in vivo 
brain imaging (reviewed in Arbabshirani et al., 2016; Wolfers et al., 2015). For instance, 
Arbabshirani et al. (2016) identified 30 published studies that distinguished schizophrenia 
patients from healthy controls with an average accuracy of 83% using functional magnetic 
resonance imaging (fMRI), either under task or rest states. 
         To date, however, the vast majority of classification works in mental illness were 
performed in a research context, using data from single sites of acquisition. Such findings 
may not generalize to large-scale clinical settings, with patients being scanned at widely-
spread sites and possibly under various mental states. In most cases, the performance of 
classifiers was only assessed for unseen, test subjects with the exact same characteristics 
as the sample used for training. Yet, using gender as a proof-of-concept target variable, 
there was initial evidence that classifiers only poorly generalize to data drawn from other site 
samples (Huf et al., 2014). The inclusion of data from multiple sites during training improved 
the classifier performance for data of unseen sites.  

In schizophrenia, a study pooling fMRI data from two distinct scanning sites reported 
similar prediction accuracy levels irrespective of whether test data were drawn from the 
dataset used for training or not, thus suggesting good generalizability (Ska�tun et al., 2017). 
However, this result appears at odds with a recent fMRI study in autism that showed poorer 
accuracy for inter-site than intra-site training/test configurations, depending on the ratio of 
training set used (Abraham et al. 2017). In the case of inter-site testing, data pooled from 4 
sites were used for training the classifier, which was tested on data from a fifth site. Yet, 
none of these two studies specifically evaluated whether using multisite training data could 
compensate to some extent for the deleterious effect of inter-site testing, by assuming the 
actual presence of such an effect. In the present work, we sought to address this question 
based on fMRI brain connectivity in schizophrenia. Since it is impossible to completely 
control the variations in mental states in realistic clinical situations, we further promoted the 
complexity of the classification problem by including data obtained in distinct cognitive task 
conditions across sites. Mass univariate findings have indicated that cognitive state does not 
further impact on the nature of functional brain connectivity alterations in schizophrenia 
(Kaufmann et al., 2016; Orban et al., 2016). However, the potential influence of cognitive 
context on classification performance in a multivariate analysis should not be rejected.  
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2. Methods 
 
2.1. Datasets 
Brain imaging data from 6 independent studies were obtained through either the 
SchizConnect and OpenfMRI data sharing platforms (http://schizconnect.org; 
https://openfmri.org) or local scanning (Çetin et al., 2014; Gollub et al., 2013; Kogan et al., 
2016; Orban et al., 2016; Poldrack et al., 2016; Wang et al., 2016). The 6 datasets differed in 
terms of both scanning site and cognitive context during fMRI data acquisition (resting-state, 
emotional memory, Sternberg item recognition paradigm, N-back, task-switching and oddball 
tasks). Classification analyses included fMRI data from 382 subjects, 191 patients diagnosed 
with schizophrenia and 191 healthy controls. Subjects provided informed consent to 
participate in their respective studies and ethics approval was obtained at the site of 
secondary analysis (Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, 
Montréal, Canada).  
 
2.2. Subjects matching 

Sample size differed between sites (N = 84, 82, 70, 62, 50 and 34). Site samples 
were obtained after subjects were selected in order to ensure even proportions of 
schizophrenia patients and controls within each site (N = 42, 41, 35, 31, 25 and 17 subjects 
per group) and to reduce between-group differences with regards to gender ratio (75% vs 
73% males in controls vs. schizophrenia patients), age distribution (32.3 ± 9.8 vs. 33.4 ± 9.5 
years old) and motion levels (average frame displacement = 0.15 ± 0.05 vs 0.17 ± 0.06, see 
Data preprocessing). Matching of schizophrenia and control subjects was achieved based 
on propensity scores, using the Optmatch R library version 0.9-7 (https://cran.r-
project.org/web/packages/optmatch/index.html). The propensity score associated with each 
participant was defined by the conditional probability of being in the clinical or control group 
given the confounding covariates (gender, age and motion). Propensity scores were then 
used to balance those covariates in the two groups. Although we took great care in matching 
participants with respect to these factors of no interest, it is very likely that other confounds 
such as medication in schizophrenia patients impacted the reported findings.    
 
2.3. Data preprocessing  
Brain imaging data preprocessing and extraction of functional brain connectomes were 
performed with the NeuroImaging Analysis Kit version 0.12.17 (NIAK, http://niak.simexp-
lab.org). Briefly, preprocessing included slice timing correction, estimation of rigid-body 
motion within the functional runs, nonlinear coregistration of the structural scan in stereotaxic 
space, individual coregistration between structural and functional scans, resampling of the 
functional scans at 3mm isotropic resolution in stereotaxic space, scrubbing of volumes with 
excessive motion (frame displacement greater > 0.5 mm), regression of confounds (slow 
time drifts, average of conservative white matter and cerebrospinal fluid masks and motion 
parameters), and smoothing of functional volumes with a 6 mm isotropic Gaussian blurring 
kernel. A detailed description of the preprocessing pipeline can be found at 
http://niak.simexp-lab.org/pipe_preprocessing.html. 

Individual functional connectomes included 2016 functional connections between 64 
brain parcels. The functional brain parcellation was previously obtained by conducting a 
bootstrap analysis of stable clusters (BASC, Bellec et al. 2010) on an independent fMRI 
dataset of 200 healthy young subjects (https://doi.org/10.6084/m9.figshare.1285615.v1). In 
each schizophrenia or control participant, the time series of a brain parcel consisted in the 
average of the voxel signals in the parcel. Connectivity measures between pairs of parcels 
were defined by Pearson product-moment correlation coefficients. Individual connectomes 
were parcel by parcel (64 x 64) symmetrical matrices that summarized connectivity levels in 
the whole brain. Lower triangular matrices were then vectorized for all subjects in order to 
form a subject by connections (382 x 2016) matrix. 
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2.4. Data analysis 
Classification analyses were performed with a linear support vector machine (SVM) 

algorithm, as implemented in the SciKit-Learn python library version 0.18.1 (Abraham et al., 
2014). The SVM classifier, a supervised classification algorithm, represented subjects as 
points in space, mapped so that the subjects of the separate clinical labels were divided by a 
clear gap (called a margin) that was as wide as possible. The hyperparameter C of the SVM 
was optimized using nested cross-validation. Each model used the residuals from a 
regression of confounding variables (gender, age and motion parameters) across 
connections estimated from the subjects selected for training the model. The evaluation 
metrics were computed using four main values, namely the number of true and false positive 
(TP, FP) as well as true and false negatives (TN, FN). Sensitivity was defined as 
TP/(TP+FN), specificity as TN/(TN+FP) and accuracy as (TP+TN)/(TP+FP+TP+FN). The 
main analyses evaluated the impact on classification accuracy of the number of site(s) (1, 2, 
3, 4 or 5) included in the training set. We evaluated this impact in situations where the test 
set included only subjects from the same site(s) used during training (intra-site test with 10-
fold cross validation) or, alternatively, situations where the test set included only subjects 
from sites not used during training (inter-site test with “leave-site-out” cross validation). 
Cross validation ensured that the subjects used for training were never used in the test 
phase. 

The statistical significance of changes in accuracy levels as a function of the number 
of sites used for training and whether data used for testing were drawn from the same 
dataset(s) used for training (intra-site vs inter-site) was assessed with binary logistic 
regressions using the GLM function in R version 3.2.5. These analyses relied on the 
prediction of categorical outcomes (hit/miss data) based on predictor variables (number of 
sites used for training, intra-site vs inter-site). Significance threshold in the different contrasts 
was set at p < 0.05. 

Complementary analyses were conducted. First, we explored differences in whole 
brain connectivity between schizophrenia patients and controls using mass univariate 
statistics for the various training site combinations. Similarly for multivariate classification 
analyses, we extracted feature weights separately for all site combinations. We then 
examined the level of correspondence across site combinations for both univariate and 
multivariate analyses. Second, we aimed at demonstrating the presence of multivariate site 
effects on functional brain connectivity. To this end, we determined accuracy levels for the 
classification of scanning sites by performing separate SVM analyses for all pairs of sites, 
using 10-fold cross validation as in the main analyses.  
  
3. Results 
 
3.1. Correspondence across site combinations 
We first report patterns of functional brain dysconnectivity in schizophrenia patients based 
on mass univariate statistics. For the sake of interpretability, the 64 brain parcels were 
sorted in relation to 7 large-scale brain networks from the same multiscale functional brain 
atlas (Figure 1a,b). When pooling data from all subjects and sites, a connectome-wide 
association analysis revealed widespread decreased connectivity in schizophrenia patients 
(Figure 1c), with 769 out of 2016 connections exhibiting a significant effect after false 
discovery rate correction (qFDR < 0.05). Differences between schizophrenia patients and 
controls were further examined separately for each unique combination of 1 to 5 training 
sites (61 possibilities: 1, 2, 3, 4, 5, 6, 1-2, 1-3, 1-4, …, 1-2-4-5-6, 1-3-4-5-6, 2-3-4-5-6). 
Results revealed high variability in the nature of mass univariate effects across training site 
combinations, with small correlation between them when there was no overlap between site 
combinations (Figure 1c). By contrast, large correlations were observed when site 
combinations overlapped. Weight matrices, which indicate for each connection the 
importance of that connection in the decision process, were also extracted for the whole 
sample as well as each site combination in multivariate classification analyses (Figure 1d). 
The correspondence between site combinations mimicked the patterns of correlations seen 
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for univariate analyses, with a large correlation between weights for site combinations that 
overlapped but a small correlation otherwise.  
 
3.2. Classification findings 

Classification of sites was performed with high accuracy (84%), indicating a 
significant multivariate impact of scanning site on functional brain connectivity. Training on 
data from a single site led to a poor generalization of diagnosis classification to subjects 
drawn from another site, i.e. classification accuracy was much lower in the inter-site than 
intra-site configuration when only one site was used for training (p<0.005). However, 
increasing the heterogeneity of the training set by including data from different sites 
improved accuracy of the classifier applied to another unknown scanning site and cognitive 
context (p< 5x10-8) (Figure 2a). This compensatory effect was such that inter-site 
classification reached similar accuracy performance to intra-site classification when 5 
different sites were used for classifier training (p = 0.56), thus suggesting excellent 
generalization in this context. The benefit of using heterogeneous training data when 
classifying subjects drawn from the same sites as the training set was much more moderate 
than for the inter-site training-test configuration, yet was significant (p <0.05). Formal testing 
of an interaction effect revealed a significant effect (p < 0.05), thus demonstrating that 
improved generalization on novel sites following multisite training was not merely a 
consequence of increasing sample size.   
 
4. Discussion 
 
The present findings highlight a prerequisite for an optimal translation of classification tools 
from the research to clinical realm. Namely, classifier training should be performed on data 
that are sufficiently representative of sites and/or mental state variations in order to 
generalize well for large-scale clinical use. In particular, the accuracy scores reported in 
most of the existing literature should be interpreted with caution, as they only reflect within-
site generalizability and may therefore overestimate the accuracy. 
 Mass univariate analyses evidenced brain dysconnectivity across the entire brain, 
with significant effects in over a third of brain connections distributed in various large-scale 
brain networks, from cognitive to primary sensory networks. Abnormally decreased rather 
than increased functional connectivity in schizophrenia is largely consistent with previous 
reports in the literature (Pettersson-Yeo et al., 2011). With close to 200 schizophrenia 
patients and 200 controls, our fMRI connectome-wide association analysis is one of the 
largest to be reported to date. The present work and previous similar studies conducted in 
schizophrenia (Cheng et al., 2015; Schilbach et al., 2016; Skatun et al., 2017) underscore 
the utility of pooling data across multiple sites of acquisition in order to achieve higher 
sample size and more reliable findings. The marked variability in dysconnectivity patterns 
detected in each site separately could induce a deleterious effect of multisite data pooling on 
statistical power as compared to data obtained at a single site. However, there is support to 
claim that the initial deleterious effect of multisite data pooling can be mitigated by the 
increase in sample size and number of sites in the context of intra-site mass univariate as 
well as multivariate analysis (Dansereau et al., 2017). This is in line with our findings 
suggesting that a similar compensating effect can be obtained using multisite data 
aggregation in inter-site multivariate prediction, a configuration that is most likely to be found 
in clinical settings. 

Multivariate classification analyses indicate that increasing sample size through 
multisite data pooling increased diagnosis prediction in schizophrenia, although this effect 
was of small amplitude. More critically, an additional benefit of including heterogeneous data 
was that the classifier generalized better to data that were not represented during training, 
neither in terms of scanning site nor mental content. This demonstration is concordant with a 
previous report that classified gender as a proof-of-concept application (Huf et al., 2014), 
and underscores the benefit of pooling multisite data for the purpose of generalizability and 
clinical use. The observed gain of almost 10% in classification accuracy is appreciable. It is 
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nonetheless noteworthy that the highest accuracy of schizophrenia diagnosis classification 
was below 70%, which precludes the immediate translation of such machine learning tools in 
the clinical realm. Beyond the fact that most classification work has to date investigated 
within-site generalizability, it is notable that most studies relied on small samples. This is 
likely to be accompanied by a publication bias by which only the most significant findings 
were published. While the average classification of schizophrenia diagnosis over 30 
published studies is above 80%, it was accordingly shown that studies with a large sample 
size in fact reported lower classification accuracy (Arbabshirani et al., 2016). Besides, low 
classification accuracy is very likely dependent on the ill-definition of clinical labels, as 
schizophrenia is a highly heterogeneous psychiatric disorder (Kapur et al., 2012). The 
stratification of patients into more homogeneous neurobiological subtypes, beyond clinical 
symptoms, will likely define more precise labels that will lead to improved classification of 
their diagnosis. The characterization of mental illness heterogeneity through the identification 
of such different biotypes, in particular based on fMRI brain connectivity, is a topic of 
burgeoning research in various psychiatric disorders (Costa Dias et al., 2015; Drysdale et 
al., 2016; Gates et al., 2015). 

It is anticipated that neuroimaging-based classification will ultimately assist 
psychiatrists in not only diagnosis but also prognosis and theragnosis in mental illness, 
including schizophrenia. The future integration of classifiers into mental health care will 
require studies with dramatically increased sample size (Dubois and Adolphs, 2016). Most 
studies indeed suffer from insufficient data, possibly resulting in biased accuracy estimation, 
under-representation of mental illness heterogeneity and unstable findings (Arbabshirani et 
al., 2016). Future work will also need to develop novel algorithms with improved capabilities 
and to better define clinical labels. The present work identifies one specific parameter that 
will facilitate an optimal translation of supervised machine learning into clinical practice, 
namely the need to train classifiers on data that are sufficiently representative of 
heterogeneity with regards to scanning sites and mental contents. 
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Figure 1. Correspondence between connectomes 
Sorting the 64 brain parcels in relation to 7 large-scale brain networks (a) allowed to best 
reveal the structure of whole-brain connectivity in both schizophrenia patients and controls, 
here shown when combining data from all sites (b). Results for univariate analyses (c). The 
left panel reports mean differences in connectivity between schizophrenia patients and 
controls pooled across all sites. The middle panel shows variations (standard deviation) of 
between-groups differences across the various site combinations. The right panel reports 
correlations of univariates effects of schizophrenia between single sites of reference (sites 1 
to 6) and various site combinations as a function of whether site combinations included the 
sites of reference and the number of sites included in the combination (mean and standard 
deviation across the 6 reference sites).  Results for multivariate classification analyses are 
similarly organized (d). The left panel provides the normalized weights obtained when 
pooling all subjects from all sites. The middle panel indicates how these weights vary across 
site combinations (standard deviation). The right panel provides correlations of weight 
matrices between single sites of reference and various site combinations. Abbreviations for 
networks are as follows: CER, cerebellum; VIS, visual; LIM, limbic, MOT, motor; SAL, 
salience; FPN, fronto-parietal; DMN, default-mode. 
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Figure 2. Classification findings 
Histograms show the percentages of classification accuracy (a) as well as sensitivity and 
specificity (b) as a function of the number of sites (1, 2, 3, 4 or 5) from which individual 
connectomes were drawn for training, and whether testing was performed on subjects drawn 
from the same site(s) as during training (intra-site test) or not (inter-site test).  
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