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Abstract

Motivation: Advances in the sequencing of uncultured environmental samples, dubbed metage-
nomics, raise a growing need for accurate taxonomic assignment. Accurate identification of organ-
isms present within a community is essential to understanding even the most elementary ecosys-
tems. However, current high-throughput sequencing technologies generate short reads which par-
tially cover full-length marker genes and this poses difficult bioinformatic challenges for taxonomy
identification at high resolution
Results: We designed MATAM, a software dedicated to the fast and accurate targeted assembly
of short reads sequenced from a genomic marker of interest. The method implements a stepwise
process based on construction and analysis of a read overlap graph. It is applied to the assembly
of 16S rRNA markers and is validated on simulated, synthetic and genuine metagenomes. We
show that MATAM outperforms other available methods in terms of low error rates and recovered
genome fractions and is suitable to provide improved assemblies for precise taxonomic assign-
ments.
Availability: https://github.com/bonsai-team/matam
Contact: pierre.pericard@gmail.com, helene.touzet@univ-lille1.fr

1 Introduction

Shotgun metagenomic sequencing provides an unprecedented opportunity to study uncultured mi-
crobial samples, with multiple applications ranging from the human microbiome to soil or marine
samples, for which the vast majority of microorganisms diversity remains unknown [13].

A major goal of metagenomic studies is to characterize the microbial diversity and ecological
structure. This is often achieved by focusing on one of several phylogenetic marker genes [12, 28],
that are ubiquitous in the taxonomic range of interest and exhibit variable discriminative regions. For
bacterial communities, the gold standard marker is the 16S ribosomal RNA (rRNA, ∼1500bp avg.
length), for which millions of sequences are available in curated reference databases, such as Silva [24],
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RDP [2] or GreenGenes [3]. Traditionnal approaches such as amplicon sequencing are limited to the
analysis of small portions of the marker sequences. This leads to strong technological limitations for
organisms identification at sufficiently precise taxonomic levels, typically beyond genus [23]. To assign
marker sequences to species, or even strains, we need to be able to recover full length rRNA with
less than a few errors per kilobase. Metagenomic assemblers are not suitable for this task, because
they are optimized to deal with whole genomes, and struggle to differentiate between very similar
sequences [27]. To this respect, marker-oriented methods such as EMIRGE [19] and REAGO [33] were
recently developed in order to assemble metagenomic read subsets into full length 16S rRNA contigs,
thus aiming to improve the taxonomic assignment accuracy of environmental samples. EMIRGE uses
a Bayesian approach to iteratively reconstruct 16S rRNA full length sequences. REAGO identifies
rRNA reads using Infernal [20], and then constructs an overlap graph by searching for exact overlaps
between reads using a suffix/prefix array. However, such tools still show some limitations in terms
of recovery error rates as well as dealing with low abundance species.

In this work, we present MATAM, a new approach based on the construction and exploitation of
an overlap graph, carefully designed to minimize the error rate and the risk of chimera formation.
MATAM was validated on both simulated and actual sequencing data. It is able to reconstruct nearly
full length 16S rRNAs and is robust to variations in the sequencing depth as well as community
complexity.

2 Methods

2.1 Overview of MATAM

The MATAM (Mapping-Assisted Targeted-Assembly for Metagenomics) pipeline takes as input a set
of shotgun metagenomics short reads and a reference database containing the largest possible set of
sequences from a given target marker gene. MATAM identifies reads originating from that marker,
and assembles nearly full length sequences of it. It is composed of four major steps illustrated in
Figure 1. Although this method should work for any conserved and widely surveyed gene, we will
focus on the 16S rRNA for the remainder of the article. Additional technical details and parameters
are available in the Supplementary Methods.

2.2 Reference database construction

The availability of a reference database for the marker gene is an essential feature of the method,
because it allows us to model the target sequences. For applications to 16S rRNA assembly, MATAM
utilizes Silva 128 SSU Ref NR database [24]. From this reference database that we denote as complete,
we also build a clustered reference database, that provides a coarse-grained representation of the
taxonomic space. For that task, we use Sumaclust [17, 8] using a 95% identity threshold.

2.3 rRNA reads identification and mapping

In the first step, reads are mapped against the clustered reference database using SortMeRNA [10, 9].
This step allows to quickly sort out 16S rRNA reads from the whole set of reads, providing high
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Figure 1: MATAM overview. On the left, we describe the main steps of the pipeline. On the right, we illustrate
those steps when the sample contains two species (the first one in blue, the latter one in green). Starting from shotgun
metagenomic reads, (1) we first identify SSU rRNA reads and align them on up to 10 sequences from a clustered
reference database. (2a) Reads alignments are compared between them to compute reads pairwise alignments. (2b)
An overlap with 100% identity between two reads corresponds to an edge in the (3) read overlap graph. (4) Using a
breadth-first search, the overlap graph is then simplified into a compressed graph and subgraphs (hubs, specific paths,
singletons) are identified. (5) Reads from each subgraph are assembled into contigs with SGA. (6) Contigs are aligned
on the complete reference database and alignments are selected using a greedy algorithm. (7) Contigs aligned on the
same reference are then scaffolded into full-length sequences.

quality alignments. For each read, we keep up to ten best alignments against the reference database.
Moreover, this mapping step yields a broad classification of the 16S rRNA reads. Indeed, reads
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coming from distantly related species are aligned against their respective closest known references,
which nest in distant lineages of the taxonomy, while reads from closely related species are aligned
against closely related references.

2.4 Construction of the overlap graph

The identified 16S rRNA reads are then organized into an overlap graph defined as follows: graph
nodes are reads, and an undirected edge connects two nodes if the two reads overlap with a sufficient
length and with a sufficient identity to assert that they originated from a common sampled taxon.
The standard approach to build such an overlap graph requires comparison of each read with each
other, which is time-consuming. Here, we use alignment information to sort through candidate read
pairs in a very efficient manner. For each pairing, we consider only reads that share alignments with
at least one common reference sequence and for which the alignments are overlapping on more than
50 nucleotides with 100% identity. This strict criterion allows us to reduce the risk of connecting
reads from unrelated taxa, which would in turn produce chimeras. By doing so, we discard reads
containing sequencing errors in their overlap, which is bearable considering the nowadays very low
sequencing error rates of short reads.

2.5 Extracting contigs from the overlap graph

Although the overlap graph appears very bushy, it also reveals some general trends. While it exhibits
highly connected subgraphs, it also displays disjoint paths (see Figure 1 for an example). We simplify
the graph by performing a breadth first traversal starting from a random node to annotate the nodes
with their depth. All nodes with equal depth that are connected in a single connected component
are collapsed into a single compressed node and outgoing edges are merged into a compressed edge.
Low support compressed nodes containing a single read, and compressed edges representing a single
overlap are removed. The resulting graph, called the compressed graph, is several order of magnitude
smaller than the initial overlap graph. We partition this graph in three categories of subgraphs: hubs,
that are nodes with an degree strictly greater than two, specific paths that are sequences of nodes of
degree two or one, and singletons that are non-connected nodes. Intuitively, hubs correspond to the
highly connected subgraphs in the overlap graph, and are likely to contain mainly reads coming from
conserved regions shared in many species, thus overlaping without error even for distantly related
taxa. Specific paths tend to contain reads originating from variable regions of the 16S gene, that
are specific to one or few closely related species. For each subgraph in the compressed graph (hubs,
specific paths, singletons), we extract the underlying sets of reads and build an individual assembly
using the genomic assembler SGA [30]. Note that any other state-of-the art genomic assembler could
be used here. As a result, we obtain one or more contigs for each subgraph.

2.6 Contigs scaffolding

We use a greedy algorithm to scaffold the contigs obtained in the previous step. For that task,
contigs are first mapped against the complete reference database, and all alignments within the 1%
range of suboptimal scores are kept. We then select contigs by increasing number of matches and
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decreasing lengths. By doing so, a long contig with a unique alignment will be selected for scaffolding
before a short contig exhibiting a large number of alignments. Such long contig can be assigned non-
ambiguously to a single species, while the short contig with multiple matches rather corresponds to a
conserved region of the marker and is used to fill in the blanks between the specific contigs. Contigs
matching against the same reference sequence are then merged into a single consensus scaffold.
Redundant scaffolds included in larger ones are removed. Finally, only scaffolds larger than 500bp
are retained. This yields the final MATAM output which could be used for the purpose of taxonomic
assignment.

3 Implementation

MATAM was implemented in Python 3, except for the overlap graph building and compression steps
that were written in C++11 using the SeqAn library [4], and is available via Docker and Conda.
MATAM is distributed under the GNU Affero GPL v3.0 licence and the source code is freely available
at the following URL: https://github.com/bonsai-team/matam. All MATAM runs presented in this
article were performed using MATAM v0.9.9.

4 Results

MATAM performance was compared with those of two general-purpose metagenomic assemblers,
SPAdes [1, 21] and MEGAHIT [11], as well as with two methods specialized in 16S rRNA assembly,
EMIRGE [19] and REAGO [33]. The five tools were run on three different datasets, chosen for their
complementarity and the possibility to validate the reconstructed candidate 16S rRNA sequences: a
simulated dataset [15], a synthetic microbial community [29], and two environmental samples from
human gut and mouth providing amplicon based taxonomic assignments [31]. SortMeRNA was used
to extract 16S rRNA reads from these datasets before assembling them with SPAdes and MEGAHIT.
Complete command-lines and parameters are available in the Supplementary Results.

In order to compare the five methods on a common ground, the same validation procedure
was applied for all experiments. Only reconstructed sequences with lengths exceeding 500bp were
considered, and chimeric sequences were filtered out by the UCHIME algorithm [5] implemented
in VSEARCH [25] and querying the Silva 128 SSU Ref Nr99 database. For each experiment, we
indicate the proportion of chimeric contigs (% chimeras, which is the total size of all chimeric contigs
divided by the assembly total size). All the following measures were then computed on the remaining
assemblies. When the sequences present in the sample are actually known (see Sections 4.1 and
4.2), the assembly quality assessment was performed with MetaQuast [18] by aligning the contigs
against the original sample sequences, and considering the following metrics: the number of contigs
(#contigs), which is the total number of contigs of lengths greater than 500bp; the total length
(TL), which is the total number of bases in the contigs; the total aligned length (TAL), which is the
total number of aligned nucleotides in the contigs; the genome fraction (GF), which stands for the
total number of nucleotides from the original sample sequences covered with contigs divided by the
total size of the sample sequences; the error rate (ER), which consists in the percentage of observed
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mismatches and indels with respect to the closest matched sequence in the original sample. Finaly,
taxonomic assignments were carried out with the RDP Classifier [32]. The assemblies evaluation
protocol, command-lines and parameters can be found in the Supplementary Results.

4.1 Simulated metagenomic datasets with varying sequencing depth

In the first experiment, we evaluated the ability of methods to correctly reconstruct the 16S rRNA
sequences in the context of low sequencing depth. For that, we used a selection of 122 genomes
providing a realistic taxomical diversity [15, 22], that contains 287 distinct 16S rRNA copies. We
generated five datasets with varying sequencing depths: 50x, 20x, 10x, 5x and 2x per genome. Il-
lumina reads were simulated with the ART simulator [7], using the HiSeq2500 built-in error profile,
101bp read length, and 250bp fragment length with a 30bp standard-deviation (SD). In this sim-
ulation, all species are equally distributed, which corresponds to the high complexity community
introduced in [15]. Simulation command-line and parameters can be found in the Supplementary
Material (section 4.3.1).

Table 1: Results for the simulated dataset with varying sequencing depth. We provide averaged
metrics for the five sequencing depths. ACL is the average contig length.

Chimera (%) TAL/TL (%) ER (%) Ns (%) ACL
mean SD mean SD mean SD mean SD mean SD

MATAM 1.28 0.55 99.3 0.2 0.03 0.02 0.00 0.00 1252 116.9
EMIRGE 36.89 9.42 79.9 11.6 0.62 0.16 0.55 0.36 1436 15.4
REAGO 42.11 10.36 91.5 0.8 0.31 0.13 0.00 0.00 1333 298.9
SPAdes 21.23 9.05 73.5 15.9 0.60 0.49 0.02 0.04 966 47.4
MEGAHIT 23.81 2.85 80.3 4.9 0.36 0.18 0.00 0.00 962 87.6

Table 1 shows the results averaged over the five datasets (mean metrics and their respective
standard deviation, SD). More than 99% of the MATAM sequences were aligned by MetaQuast to
one of the 287 16S rRNA sequences from the initial sample (mean TAL/TL), while among other
methods, this proportion reached at best 91%, with REAGO. Congruently, MATAM sequences ob-
tained the lowest average error rate (ER=0.03%), which represents more than a ten-fold accuracy
gain compared to the other assemblers, and a twenty-fold improvement over EMIRGE. Furthermore,
EMIRGE sequences contained 0.5% of unknown nucleotides (Ns), bringing its effective ER above
1%. Additionally, MATAM recovered about thirty times less chimeras than REAGO and EMIRGE
did.

For each of the five tools, we reported the recovered genome fraction (GF) with respect to increas-
ing sequencing depth (Figure 2). MATAM recovered from 76% to 85% of the reference sequences
for sequencing depths greater than 10x, while EMIRGE recovered less than 55% of the reference
sequence, and the GF for other methods is lower than 22%. MATAM also achieved the best perfor-
mance facing a low sequencing depth of 2x, reaching a GF of 33%, while GFs ranged between 5%
and 10% with all other assemblers.
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Figure 2: Effect of sequencing depth on the assemblies genome fractions.

4.2 Synthetic archaeal and bacterial community

Inching toward more realistic applications, a second dataset provides Illumina reads extracted from
a synthetic microbial community composed of 16 archaeal species from 12 genera, as well as 48
bacterial species from 36 genera (accession SRR606249; [29]). As emphasized by the authors, the
selected organisms cover a wide range of environmental conditions and adaptation strategies. In
contrast to the previous simulated dataset (Section 4.1), the proportion of each species in the sample
is not uniform, which results in individual genome average sequencing depth varying from 9x to 318x.
The number of 16S rRNA paralogs per genome appears also highly diverse, ranging from 1 to 10
copies per genome. Altogether, this dataset represents a total amount of 106 distinct 16S rRNA
sequences with pairwise sequence identities ranging from 59.64% to 99.93%.

The organisms were sequenced on Illumina HighSeq2000, providing 109 million 101bp paired-end
reads with an average fragment size of 250bp. We quality cleaned the reads using Prinseq Lite [26],
removed adapter sequences using Cutadapt [14], filtered out short reads (< 50bp), and obtained a
total number of 67.6 million reads, which were analyzed with MATAM and EMIRGE. The uncleaned
raw dataset was provided to REAGO, considering that the method could not handle reads with
varying lengths. Finally, for SPAdes and MEGAHIT, the 16S rRNA reads were extracted from the
cleaned dataset using SortMeRNA, which provided 108,560 16S rRNA reads to assemble. Cleaning
and pre-processing command-lines and parameters for the synthetic community can be found in
Supplementary Material (section 4.3.2)

Results are shown in Table 2. Confirming the trends observed on the simulated dataset, MATAM
is able to recover the highest number of sequences together with the highest GF (83%). Most
importantly, with lower ER than achieved by the other tested methods, the MATAM assembly
appears highly accurate. While EMIRGE is the second best approach in terms of recovered GF,
it also yields the greatest ER and Ns over all the compared tools. Moreover, a RDP classification
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Table 2: Results for the synthetic community.
Chimera (%) #contigs TL TAL GF (%) ER (%) Ns (%)

MATAM 3.2 101 139220 130654 83.1 0.05 0
EMIRGE 17.4 82 117138 102856 50.7 0.17 1.12
REAGO 15.5 59 90269 81297 42.8 0.06 0
SPAdes 5.5 59 70229 59988 39.9 0.11 0.05
MEGAHIT 3.0 61 77251 68904 44.3 0.18 0

of MATAM and EMIRGE sequences indicates that while MATAM missed one expected genus only,
EMIRGE missed 4 genera out of 48.

Inspection of the MetaQuast alignments of the assemblies against the original 16S rRNAs revealed
that all methods accurately assembled the genes sharing less than 90% sequence identity with their
closest relatives within the sample. However, performances significantly dropped when attempting to
assemble the closely related genes in the dataset. This especially concerned the paralogous 16S rRNA
copies sharing around 99% sequence identity. Supplementary Table 1 (Supplementary Material, sec-
tion 4.3.2) provides pairwise distances between sequences from a representative subset of four related
species possessing one to three such paralogous copies. Those 16S rRNAs and their corresponding
assembled candidate sequences were selected for a phylogenetic tree reconstruction. The obtained
tree (Figure 3) demonstrates that MATAM correctly assembled all the different paralogs with nearly
no error, while EMIRGE and REAGO only managed to recover one candidate sequence per species.
Thus, EMIRGE and REAGO merged into a single candidate sequence the reads issued from distinct
paralogs, resulting in erroneous assemblies with high ER and underestimated GF. Indeed, each of
the sequences assembled with REAGO, as well as one EMIRGE sequence over four, appear to cluster
at a slight distance from their respective targeted paralogs. Those distances simply account for the
methods reconstruction errors. Consistently, in two cases, the candidates assembled by EMIRGE
and REAGO were identified as chimeras by VSEARCH.

4.3 Human Microbiome Project

Finally, we used two metagenomic samples from the Human Microbiome Project (gut: SRS011405,
and mouth: SRS016002, [31]) in order to validate MATAM on real metagenomic datasets sequenced
from genuine environments. The reads were already quality cleaned and trimmed, and no additional
filtering was performed. Hence, reads having different lengths, we were not able to run REAGO on
these datasets. Results obtained with SPAdes and MEGAHIT using the following protocol appeared
highly inaccurate and therefore, they are not further commented in this work. Thus, we only present
the results obtained with EMIRGE and MATAM. Datasets availability, and additional details on the
evaluation protocol can be found in Supplementary Material (section 4.3.3).

For these two datasets, the exact ground truth is unknown. Thus we could not perform the same
validation procedure as in the two previous examples and we had to resort to alternative strategies.
First, we took advantage of the availability of OTU sequences inferred through a QIIME analysis of
the V1-V3 hypervariable regions for the same biological samples (available from the SRS accession
numbers). We compared the assignments obtained from assemblies, calculated with RDP, with these
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Figure 3: Alignment of the reference sequences with the assembled contigs shows MATAM ability
to differentiate between very close sequences. MATAM, EMIRGE and REAGO contigs are shown
respectively in blue, red and green. In a ideal setting, each software should produce contigs that
cluster closely to each reference (black) sequence. Contigs followed by a star, and drawn in a darker
color, were considered as chimeric by VSEARCH.

of amplicon OTUs (Table 3). For both samples, MATAM identified more classes and genera than
EMIRGE did, and most of these taxa were validated by the amplicon OTUs. Interestingly, we
observed that in the two samples, three genera were recovered both by MATAM and EMIRGE, but
not by the amplicon approach: Odoribacter, Peptococcus, and Bergeyella. Since some species from
these genera are known to be adapted to the human gut and mouth environments, it is plausible
that they were missed by the amplicon approach while being accurately recovered by MATAM and
EMIRGE from the metagenomic samples.

Moreover, we evaluated assembly quality by aligning MATAM and EMIRGE sequences against
the complete Silva 128 SSU Ref NR database, using BLAST. The rationale for this experiment is
that most of the species in these human gut and mouth samples are possibly already known, and
therefore should be found in Silva. We observed that nearly all MATAM sequences matched with
a known 16S rRNA in Silva with more than 99% identity, among which a majority matched with
100% identity (Figures 4 and 5), which suggests that MATAM sequences could possibly be assigned
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Table 3: Results for the gut and mouth HMP datasets. The column #classes indicates the total
number of taxonomic classes found with RDP from the assemblies, with the number of these classes
validated with the QIIME OTUs (in parentheses). The column #genera gives the same information
at the genus level.

Chimera (%) #contigs TL #classes #genera
SRS011405 MATAM 3.37% 218 187710 5 (4) 21 (17)

EMIRGE 43.04% 273 393152 2 (2) 12 (8)
SRS016002 MATAM 4.92% 353 320748 13 (13) 31 (28)

EMIRGE 46.01% 282 394087 12 (12) 25 (23)

Figure 4: Human gut sample SRS011405. %
identity distribution of best matches against
Silva 128 SSU Ref NR

Figure 5: Human mouth sample SRS016002.
% identity distribution of best matches against
Silva 128 SSU Ref NR

at the species or even the strain level. On the other hand, EMIRGE sequences provided a discordant
picture. In the case of the human mouth sample, most of the EMIRGE sequences obtained a match
above 97% identity, but only a slight proportion of them matched with 100% identity against a
known 16S rRNA (Figure 5). The observation is even more pronounced with the human gut sample,
where only 43% of the EMIRGE sequences obtained a match above 97% identity against a Silva 16S
rRNA sequence (Figure 4). Thus, conversely to MATAM, EMIRGE sequences would suggest that
only a slight proportion of the human gut and mouth diversity has a known isolate registered in
Silva. However, considering our previous conclusions on controlled datasets, we assume that part of
this diversity inferred with EMIRGE might in fact corresponds to reconstruction artifacts.

5 Discussion

Taxonomic assignments of environmental samples is a strikingly difficult task which suffers from in-
herent limitations of high-throughput sequencing technologies. In this respect, we designed MATAM
as an alternative to existing software helping to better understand the taxonomic structures of shot-
gun metagenomic samples. Our experimental results show that MATAM outperforms other available
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tools providing phylogenetic marker assemblies. Reconstructing full length 16S rRNAs allows to reach
a higher precision of taxonomic assignments than individual read analysis or amplicon sequencing
do, because the reconstructed sequences effectively contain stronger phylogenetic signal. Moreover,
metagenomic shotgun sequencing is naturally immune against the primer and amplification biases
attached to the amplicon sequencing technology, and therefore is more adequate to sequence unknown
species.

Our approach opens up several new perspectives. Although we have focused this work on the
assembly of 16S rRNA genes, MATAM was designed to deal with any marker of taxonomic interest.
Indeed, there is currently an emerging trend to consider a combination of universal (single-copy)
marker families, such as provided in the recently published database proGenomes [16]. Sequences
from this database, or from any other customized one, could be used with MATAM to target a
variety of markers, and thus provide improving taxonomic assignments. MATAM could also be
used in combination with other types of sequencing data. Long read sequencing is able to produce
fragments that cover large regions of the DNA molecules, up to several thousands of bases. When long
reads are available, they could serve as a guide in the scaffolding step of MATAM and concomitantly,
MATAM low-error contigs could be used to correct them. Finally, targeted gene capture, that allows
to sequence at high depth captured DNA regions of interest from an environmental sample [6], could
also prove to be an exciting application field for MATAM.
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