
Revealing the Distribution of Transmembrane Currents
along the Dendritic Tree of a Neuron with Known
Morphology from Extracellular Recordings
Dorottya Cserpán1, Domokos Meszéna2,3, Lucia Wittner2,4, Kinga Tóth2, István
Ulbert2,3,4, Zoltán Somogyvári1,4, Daniel K. Wójcik5,*

1 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest,
Hungary
2 Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural
Sciences, Hungarian Academy of Sciences, Budapest, Hungary
3 Faculty of Information Technology and Bionics, Pázmány Péter Catholic University,
Budapest, Hungary
4 National Institute of Clinical Neurosciences, Budapest, Hungary
5 Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish
Academy of Sciences, Warsaw, Poland

∗ d.wojcik@nencki.gov.pl

Abstract
Revealing the membrane current source distribution of neurons is a key step on the way
to understanding neural computations, however, the experimental and theoretical tools to
achieve sufficient spatiotemporal resolution for the estimation remain to be established.
Here we address this problem using extracellularly recorded potentials with arbitrarily
distributed electrodes in a neuron of known morphology. We use simulations of models
with varying complexity to validate the proposed method and to give recommendations for
experimental applications. The method is applied to in vitro data from rat hippocampus.

1 Introduction 1

Several approaches to study neurons are used in electrophysiology. Today, to monitor 2

membrane potential, we most commonly use patch-clamp techniques [1]. Despite their 3

unquestionable utility it is very challenging to monitor activity of a cell in more than one 4

or two points. Extracellular recordings, on the other hand, deliver a more global picture 5

of neural activity [2, 3]. With modern multielectrodes and microelectrode arrays one has 6

thousands of channels at one’s disposal to monitor the brain [4–6]. However, we can no 7

longer follow membrane potential directly but rather see spiking activity of individual cells 8

(single-unit activity, SUA), multiple cells (multiunit activity or MUA, which is the mean 9

firing rate of cell populations), or the mainly postsynaptic activity visible through low 10

frequencies (so-called local field potential, LFP); see [2, 3] for discussion. 11

So far, the main advantages of growing throughput have been a better resolution in spike 12

detection [7], as more cells can be identified in a single recording, improved stimulation 13

precision [8, 9], of particular importance for retinal neuroprosthetics, and new features 14

observed in slow fields’ profiles [10]. Recently, high density probes have been used in axon 15

tracking [11,12] and in studies of multisynaptic integration [13]. 16
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In the present work we ask a question, which we believe has not been posed before, 17

although the necessary data are accessible experimentally today [13], and we propose a 18

method to address it. Consider an acute slice where we patch a cell with a glass pipette 19

and we drive it with intracellular current of specified time course. For simplicity, let us 20

assume oscillatory drive, which can be subthreshold or superthreshold. Simultaneously 21

extracellular potential is monitored with a multielectrode which will reflect the activity of 22

the whole network, however, the contributions from the patched cell will be tied to the 23

drive (we neglect for now possible synchronous activity of postsynaptic and other cells). 24

Once the recordings are done, we inject a dye into the cell and reconstruct its morphology. 25

Thus we have a set of synchronous multichannel extracellular recordings reflecting activity 26

of a single cell whose morphology is also known, as well as its relative position to the 27

electrode contacts. Can we use it to infer information on cell dynamics on the level of the 28

membrane? 29

The traditional use of such multielectrode recordings has been to identify more and 30

discriminate better spiking neurons [4–6,14] or reconstruct the density of current sources 31

(CSD) behind the recorded LFP [15–17], although more specific methods were also 32

devised [18–20]. There were several attempts to localize cells using multielectrode recordings 33

in different ways, taking into account the properties of electric field propagation in 34

the tissue [14], that form the basis of CSD methods [21, 22], or other triangulation 35

approaches [23, 24]. We are not aware of any prior attempts, however, to reconstruct 36

current source density of individual cells using their available morphologies (although 37

see [25]), which we propose here. 38

The single cell kernel Current Source Density method (skCSD) we introduce here is an 39

application of the framework of the kernel Current Source Density method [26] to the data 40

coming from a single cell. This is done by considering current sources located only along 41

the cell morphology. This can be done efficiently for arbitrarily complex morphologies 42

and arbitrary electrode configurations. In the Methods section we introduce the skCSD 43

and explain its relations to other methods of multielectrode recordings analysis. Then, 44

we validate this method on several ground truth datasets obtained in simulations and 45

apply it to a proof-of-concept experimental data. Finally, we discuss practical aspects and 46

feasibility of experimental acquisition of the required data. 47

2 Methods 48

2.1 Overview of current source density reconstruction methods 49

2.1.1 Traditional CSD 50

For reader’s convenience here we briefly present the basic ideas behind the traditional 51

and recent approaches to reconstruction of current source density (CSD analysis). For a 52

more complete review of CSD analysis see [17], for recent reviews of the relations between 53

neural activity, current sources and the recordings see [2, 3]. 54

The relation between current sources in the tissue and the recording potentials is given 55

by the Poisson equation 56

C = −∇(σ∇V ), (1)

where C stands for CSD and V for the potential. While this can be studied numerically 57

for nontrivial conductivity profiles [27], here we shall mostly assume a constant and 58

homogeneous conductivity tensor, σ. In that case, the above equation simplifies to 59

C = −σ∆V and can be solved for C given potential in the whole space. On the other 60
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hand, given the potential in the whole space, the potential is given by 61

V (x) =
1

4πσ

∫
d3x′

C(x′)

|x− x′|
. (2)

Walter Pitts observed that having recordings on a regular grid of electrodes we can 62

estimate CSD by taking numerical second derivative of the potential [15], we call this 63

approach traditional CSD method. Pitt’s idea gained popularity only after Nicholson 64

and Freeman popularized its use for laminar recordings [28] in the cortex. In this setup, 65

assuming the layers are infinite and homogeneous [29], the current source density at each 66

layer can be estimated from 67

C(zj) = −σV (zj + h)− 2V (zj) + V (zj − h)

h2
, (3)

where zj is the position of the jth electrode and h is the inter-electrode distance. 68

2.1.2 Inverse CSD (iCSD) 69

To overcome limitations of the traditional approach, such as difficulty of handling the data 70

at the boundary and hidden assumptions about the dimensions we do not probe, Pettersen 71

et al. proposed a model-based inverse CSD method [29]. Initially proposed in 1D, the 72

method was later generalized to other dimensionalities [30,31]. Given a set of recordings 73

V1, . . . , VN at regularly placed electrodes at x1, . . . ,xN this method assumes a model of 74

CSD parametrized with CSD values at the measurement points, C(x) =
∑N

k=1Ckfk(x), 75

where fk(x) are functions taking 1 at xk, 0 at other measurement points, with the values at 76

other points defined by the specific variant of the method, for example, spline interpolated 77

in spline iCSD [17]. Assuming the model C(x) one computes the potential at the electrode 78

positions obtaining a relation between the model parameters, Ck, and the measured 79

potential, Vk, which can be inverted leading to an estimate of the CSD in the region of 80

interest. 81

2.1.3 Kernel CSD (kCSD) 82

The kernel Current Source Density method [26] can be considered a generalization of the 83

inverse CSD. It is a non-parametric method which allows reconstructions from arbitrarily 84

placed electrodes and facilitates dealing with the noise. Conceptually the method proceeds 85

in two steps. First, one does kernel interpolation of the measured potentials. Next, one 86

applies a “cross-kernel” to shift the interpolated potential to the CSD. In 3D, in space of 87

homogeneous and isotropic conductivity, this amounts to applying the Laplacian to the 88

interpolated potential, Eq. (1). To handle all cases in a general way, including data of 89

lower dimensionality or with non-trivial conductivity, we construct the interpolating kernel 90

and cross-kernel from a collection of basis functions. The idea is to consider current source 91

density in the form of a linear combination of basis sources b̃j(x), for example Gaussian, 92

C(x) =
M∑
j=i

aj b̃j(x), (4)

where the number of basis sources M � N , the number of electrodes. Let bj(x) be the 93

contribution to the extracellular potential from b̃j(x), which in 3D is 94

bj(x, y, z) = Ab̃j(x, y, z) =
1

4πσ

∫
dx′

∫
dy′

∫
dz′

b̃j(x
′, y′, z′)√

(x− x′)2 + (y − y′)2 + (z − z′)2
,

(5)
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but in 1D or 2D we would need to take into account the directions we do not control in 95

experiment (for example, along the slice thickness for a slice placed on a 2D MEA). Then, 96

the potential will have a form 97

V (x) = AC(x) =
M∑
i=1

aibi(x). (6)

To avoid direct estimation of the coefficients aj we construct a kernel for interpolation of 98

the potential, 99

K(x,x′) =
M∑
i=1

bi(x)bi(x
′). (7)

Then, any potential field V (x) span by bi(x) can be written as 100

V (x) =
L∑
l=1

βlK(xl,x), (8)

for some L, xl, and βl, but it minimizes the regularized prediction error 101

N∑
k=1

(V (xk)− Vk)2 + λ

L∑
l=1

β2
l , (9)

when L = N . Here, xk are the positions of the electrodes, Vk are the corresponding 102

measurements, λ is the regularization constant. The minimizing solution is obtained for 103

β = (K + λI)−1 ·V. (10)

where V is the vector of the measurements Vk, and Kjk = K(xj,xk). 104

To estimate CSD we introduce a cross-kernel 105

K̃(x,x′) =
M∑
j=1

bj(x)̃bj(x
′). (11)

If we define 106

K̃T (x) := [K̃(x1,x), . . . , K̃(xN ,x)],

then the estimated CSD takes form of 107

C∗(x) = K̃T (x) · (K + λI))−1 ·V, (12)

where λ is the regularization parameter and I the identity matrix; see [26] for derivation 108

and discussion. 109

2.1.4 Spike CSD (sCSD) 110

The Spike CSD [22] is the forerunner of the method presented here, as it aims to estimate 111

the current source distribution of single neurons with unknown morphology. This requires 112

estimation of the cell-electrode distance and a simplified model of the shape of the neuron. 113

Separating potential patterns generated by different neurons is critical and it is obtained 114

by clustering extracellular fingerprints of action potentials which are different for every 115

neuron. The limitation of this model is the assumed simplified morphology of the model 116

and low spatial resolution. Even with this simplified model it was possible to demonstrate 117

for the first time the EC observability of backpropagating action potentials in the basal 118

dendrites of cortical neurons, the forward propagation preceding the action potential on 119

the dendritic tree and the signs of the Ranvier-nodes [22]. 120
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2.2 skCSD Method 121

The single cell kCSD method (skCSD), which we introduce in this work, is an application 122

of the kCSD framework where we assume that the measured extracellular potential comes 123

mainly from a cell of known morphology and known spatial relation to the MEA. To 124

estimate the CSD in this case we must cover the morphology of the cell with a collection 125

of basis functions. To do this, a one dimensional parametrization of the cell morphology 126

is needed. This could be done independently for each branch of the neuron or globally 127

for the whole cell at once. While the first approach might seem easier, handling of the 128

branching point is non-trivial. Instead, we decided to fit a closed curve on the morphology, 129

which we call the morphology loop (Fig. 1). This curve should cover all the segments

Figure 1. Schematic overview of the skCSD method. The black line indicates the
2-dimensional projection of the neuron on the MEA plane, the blue circles mark the
location of multielectrode array (hexagonal grid, in this example), rk is the position of the
kth electrode. The morphology in our method is described by a self-closing curve in three
dimensions, which is indicated by red on the plot. We shall refer to this curve as the
morphology loop. A point of the cell is visited once, if it is a terminal point of a dendrite,
more than twice, if it is a branching point and twice in all the other cases. With this
strategy, any point on the morphology loop uniquely identifies the physical location of the
corresponding part of the cell unambiguously. To set up estimation framework we
distribute 1-dimensional, overlapping Gaussian basis functions spanning the current
sources. Several of these Gaussians are plotted in green, ti marks the center of the ith
basis element, R is the width parameter.

130

of the cell, be as short as possible, and be aligned with the morphology. For example, 131

in case of a ball-and-stick neuron, the curve starts at the soma, goes towards the tip 132

of the dendrite, turns back, goes back to the soma, and closes there. One parameter s 133

is enough to unambiguously determine a position on this line, although most points on 134

the morphology are mapped to two s parameters. We also need a method to handle the 135

branching points and guide the parametrization so that all the branches will be visited in 136

an optimal way. This problem is a special case of the Chinese postman problem known 137

from graph theory [32]. Given this information we can distribute the basis functions b̃j(x) 138

along the morphology of the cell (Fig. 1). 139
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In practice, based on the morphology information we define an ordered sequence of 140

all the segments such that the consecutive segments are always physically connected and 141

preference is given to those neighbors which have not been visited yet. The process is 142

continued until all the segments are covered and the last element in the sequence connects 143

to the first element. Note that in the sequence the final segments of the branches are 144

present once, the branching point multiple times and the itermediate ones twice. Then we 145

fit a spline on the coordinates of the segments following the ordered sequence resulting in 146

a morphology loop construction. The CSD basis functions are distributed along this loop 147

uniformly. Any point x ≡ (x, y, z) on the morphology can be parameterized with s ∈ [0, l] 148

on the loop: 149

x = fx(s),

y = fy(s), (13)
z = fz(s),

where l is twice the length of all the branches. Consider the following basis functions: 150

b̃i(s) = e−(s−si)
2/R2

(14)

where si is the location of the i-th basis function on the morphology loop, R its width. 151

The contribution to the extracellular potential from a basis source b̃i(s) is given by 152

bi(x, y, z) =
1

4πσ

∫
b̃i(s)√

(x− fx(s))2 + (y − fy(s))2 + (z − fz(s))2
ds. (15)

As in kCSD, for CSD of the form 153

C(s) =
M∑
i=1

aib̃i(s)

we obtain the extracellular potential as 154

V (x) =
M∑
i=1

aibi(x). (16)

As before, for estimation of potential we use kernel interpolation. Note that in this case 155

the basis functions in the CSD space, b̃(s), live on the morphology loop, while the basis 156

functions in the potential space, bi(x), live in the physical 3D space. To determine the 157

current source density distribution along the fitted curve we introduce the following kernel 158

functions: 159

K(x,x′) =
M∑
j=1

bj(x)bj(x
′), (17)

K̃(s,x′) =
M∑
j=1

b̃j(s)bj(x
′). (18)

With these definitions the regularized solution for C on the morphology loop is given by 160

Eq. (12): 161

C(s) = K̃
T

(s)(K + λI)−1V. (19)
To obtain the distribution of currents at a given point in space we need to sum the currents 162

on the loop at points which are mapped to that physical position x: 163

C(x) =
∑

s:r(s)=x

C(s). (20)

6

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2017. ; https://doi.org/10.1101/141069doi: bioRxiv preprint 

https://doi.org/10.1101/141069
http://creativecommons.org/licenses/by/4.0/


2.3 Construction of ground truth data 164

To validate the method we used simulated data which allows us to consider arbitrary 165

cell-electrode setups and test various current patterns. The LFPy package [33] was used to 166

simulate the extracellular potential at arbitrarily placed virtual electrodes. We assumed 167

the .swc morphology description format [34] and the sections were further divided to 168

segments. The coordinates of every segment’s ends were used to find the connections. 169

Once the connection matrix was calculated, we used the Chinese postman algorithm 170

to obtain the morphology loop. We calculated the potential using neuron models with 171

various morphologies shown in Fig. 2 and different input distributions, assuming one-

Figure 2. Neuron morphologies used for simulation of ground truth data. A.
Ball-and-stick neuron. B. Y-shaped neuron. C. Ganglion cell.

172

and two-dimensional multielectrode arrays. We used toy models to better understand 173

and characterize the method as well as a biologically realistic neuron model to estimate 174

performance of skCSD in an experimentally realistic scenario. 175

The simplest setup we used was a ball-and-stick neuron recorded with a laminar probe. 176

Various artificial CSD patterns and also biologically more realistic CSD distributions 177

served as test distributions in order to quantify the spatial resolution and reconstruction 178

errors. To generate the ground truth data we simulated a 500 µm long linear cell model of 179

52 segments in LFPy. The diameter of the two segments representing the soma was 20 µm, 180

while the other segments were 4 µm wide. 100 synaptic excitation events were distributed 181

randomly along this morphology in order to imitate a biologically realistic scenario. 182

To test the effect of branching on the results, a simple Y-shaped morphology was used 183

(Fig. 2B). The synapses were placed at segments 33 and 62 on different branches. The first 184

was stimulated at 5, 45, 60 ms, the other at 5, 25, 60 ms after the onset of the simulation. 185

As a realistic example we used a mouse retinal ganglion cell morphology [35] from 186

NeuroMorpho.Org [36]. In the simulations 608 segments were used. 100 synaptic excitation 187

events were distributed randomly along this morphology within the first 400 ms of the 188

simulation. The cell was also driven with an oscillatory current. In the dendrites, only 189

passive ion channels were used. 190
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Parameters of the simulations. We simulated three different model morphologies: 191

ball-and-stick (BS), Y-shaped (Y), and a ganglion cell (Gang). The Y-shaped neuron was 192

oncisdered in two situations, when it was parallel (Y) or orthogonal (Y-rot) to the MEA 193

plane. The extracellular potential was computed at multiple points modeling different 194

experimentally viable recording configurations (cell and setup). All combinations used are 195

summarized in Table 1. The parameters describing the neuron membrane physiology are 196

given in Table 2. The length of the simulation was 70 s in case of the ball-and-stick and 197

Y-shaped neurons, and 850 s for the ganglion cell model. 198

Table 1. Main parameters of the simulated cells and setups.
Cell Properties Synapse Properties Distribution of Electrodes

Length
(µm)

Number
of Seg.

Location
(ID of
Seg.)

Number
of Syn.

Synaptic
Weight
(µS )

Type Number

BS 516 53 random 100 0.01 linear 8,16, 32,
64, 128

Y 848 86 33, 62 6 0.04 rectangular,
random

2x4, 4x4,
4x8, 4x16

Y-rot 848 86 33, 62 6 0.04 rectangular 8,16,
32, 64

Gang 5876 608 random 100 0.01 hexagonal,
rectangular

128,
25, 49, 81, 441

Table 2. Biophysical parameters characterizing the simulated cell models.
Quantity Value Unit

Initial potential -65 mV
Axial Resistance 123 Ωcm

Membrane resistivity 30000 Ωcm2

Membrane capacitance 1 µF/cm2

Passive mechanism reversal potential -65 mV

Parameters of synapses. In most simulations we modeled synaptic activity. We 199

used synapses with discontinuous change in conductance at an event followed by an 200

exponential decay with time constant τ (ExpSyn model as implemented in the NEURON 201

simulator). When simulating the Y-shaped neuron we placed two synapses with the 202

following parameters: reversal potential: 0 mV , synaptic time constant: 2 ms, synaptic 203

weight: 0.04 µS. The synapses were placed at segments 33 and 62 (See Fig. 2 and 5). 204

When simulating the other models (ball-and-stick and ganglion cell) we used the same 205

type of synapse, however, the synaptic weights were a quarter of the above (0.01 µS) since 206

they were more numerous (Table 1). 207

2.4 Measuring the Quality of Reconstruction 208

To validate the skCSD method we need to consider two situations. When we know the 209

ground truth — the actual distribution of sources which generated the measured potentials 210

— we can compare the reconstruction with it. This is available directly only in simulations. 211

In that case we can measure the prediction error between the reconstruction and the 212

original. However, the skCSD method by its nature gives smooth results. This is a 213

8

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2017. ; https://doi.org/10.1101/141069doi: bioRxiv preprint 

https://doi.org/10.1101/141069
http://creativecommons.org/licenses/by/4.0/


consequence of kernel interpolation of the potential which occurs in the first step of the 214

method. The same phenomenon occurs in regular CSD estimation [17]. Thus, we can 215

never recover the original CSD distribution but only a coarse-grained approximation. This 216

is not a significant problem as the coarse-grained CSD should have equivalent physiological 217

consequence. However, to compare the reconstructed density with the ground-truth, which 218

is typically very irregular in consequence of multiple synaptic activations, we always 219

smoothed the ground truth CSD with a Gaussian kernel. The width of the kernel was 15 220

µm for ball-and-stick model, while for the Y-shaped and ganglion cell models we used 30 221

µm. 222

Thus, whenever ground truth was known, we computed L1 norm of the difference 223

between the reconstruction C∗ and smoothed ground truth C normalized by the L1 norm 224

of C: 225

εL1 =

∑
segments,time

|C−C∗|∑
segments,time

|C|
. (21)

When analyzing experimental data we only have access to the noisy measurements 226

and cannot apply the above strategy directly. Thus we consider two strategies. One 227

is to use cross-validation error (CV). In leave-one-out cross-validation [26] we estimate 228

CSD from all the measurements but one and compare estimated prediction with actual 229

measurement on the removed electrode. Repeating this procedure for all the electrodes 230

gives us a measure of prediction quality for a given set of parameters for this specific 231

dataset. Scanning over some parameter range we identify optimal parameters as those 232

giving minimum error. They are further used to analyze the complete data. The advantage 233

of using cross-validation error is that it does not require the knowledge of the ground 234

truth current source density distribution and can still provide an estimation about the 235

performance of the skCSD method. As this algorithm is quadratic in the number of 236

electrodes, for large arrays one might prefer to use the leave-p-out cross-validation instead. 237

When we test how the quality of the reconstruction changes with the number of electrodes 238

we use CV error normalized by the number of electrodes which can then be compared 239

between different setups. 240

The other strategy we use and recommend in the experimental context, when we know 241

the cell morphology and its geometric relation to the setup, as well as the measurements, 242

is model-based analysis. The idea is to simulate different current source distributions, 243

either placing specific distribution by hand or by modeling activity of the cell assuming 244

passive membrane and random or specific synaptic activations, both of which are relatively 245

inexpensive both in computational time and coding complexity. This reduces the problem 246

to the modeling case. We can use thus generated data (CSD and potentials) scanning for 247

optimal reconstruction parameters to be used in analysis of actual experimental data from 248

the setup. 249

To handle the effects of noise one should study its properties on electrodes, e.g., assuming 250

white measurement noise identify its variance, then tune the regularization parameter λ 251

on simulated sets with comparable simulated noise added. 252

2.5 Parameter selection 253

To apply the skCSD method we need to decide upon the number of basis functions, set their 254

width (R), and choose the regularization parameter λ. In this work the number of basis 255

function was set to 512 for all cases, which is at least twice the number of electrodes used. 256

This is usually not a limitation, the more the better. For the basis width (Eq. (14)) we 257
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took the following values: 8, 16, 32, 64, 128 µm. Selection of the regularization parameter 258

is not trivial [26, 37]. Here, we tested the effect of the regularization parameter taking 259

values of 0.00001, 0.0001, 0.001, 0.01, 0.1 The optimal parameters were identified by the 260

lowest value of reconstruction error. 261

2.6 Visual representation of CSD on the morphology 262

To visualize the distribution of current sources and other quantities along a neuron 263

morphology we use two representations of the cell: 264

1. Interval: we stack all the compartments consecutively along the y-axis so that the 265

part of the dendrite stemming from the soma is shown first, followed by one branch, 266

followed by the other. The order of the branches in the stack is taken from the 267

morphology loop to make these representations consistent. The x-axis either shows 268

different time instants of the simulations or various distribution patterns. 269

2. Branching morphology: in this case a two-dimensional projection of the cell is shown 270

which is colored according to the amplitudes of the membrane current source densities 271

at a time instant. To visually enhance the current events, gray circles proportional 272

to the amplitude of CSD at a point are placed centered at the point to facilitate 273

comprehension. 274

2.7 Experimental methods 275

In vitro experiment One male Wistar rat (300g) was used for the slice preparation 276

procedure. The in vitro experiment was performed according to the EC Council Directive 277

of November 24, 1986 (86/89/EEC) and all procedures were reviewed and approved 278

by the local ethical committee and the Hungarian Central Government Office (license 279

number: PEI/001/695-9/2015). The animal was anesthetized with isoflurane (0.2 ml/100g). 280

Horizontal hippocampal slices of 500 µm thickness were cut with a vibratome (VT1200s; 281

Leica, Nussloch, Germany). We followed our experimental procedures developed for human 282

in vitro recordings [38], adapted to rodent tissue. Briefly, slices were transferred to a dual 283

superfusion chamber perfused with artificial cerebrospinal fluid. Intracellular patch-clamp 284

recordings, cell filling, visualization and three-dimensional reconstruction of the filled cell 285

was performed as described in [38]. For the extracellular local field potential recordings, we 286

used a 16-channel linear multielectrode (A16x1-2mm-50-177-A16, Neuronexus Technologies, 287

Ann Arbor, MI, USA), with an INTAN RHD2000 FPGA-based acquisition system (InTan 288

Technologies, Los Angeles, CA, USA). The system was connected to a laptop via USB 289

2.0. Wideband signals (0.1—7500 Hz) were recorded with a sampling frequency of 20 kHz 290

and with 16-bit resolution. The recorded neuron was held by a constant −40 nA current 291

injection. 292

Data preprocessing 154 spikes were detected on the 180s long intra-cellular recording 293

by 0 mV upward threshold crossing. A ±5 s wide time windows were cut around the 294

moments of each spikes on each channels of the extra-cellular (EC) potential recordings 295

and averaged, to access the fine details of the EC spatio-temporal potential pattern which 296

accompanied the firing of the recorded neuron on all channels. Two channels were broken (2, 297

5), however, as the skCSD method allows retrieving CSD maps from arbitrarily distributed 298

contacts, this has not prevented the analysis; the broken channels were excluded from 299

further consideration. The averaged spatio-temporal potential maps were high-pass filtered 300
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by subtracting a moving window average with 100 ms width. This filtering, together 301

with the spike triggered averaging procedure, ensured that the resulted EC potential 302

map contains only the contribution from the actually recorded cell. The price we paid 303

was filtering out EC signals of the spontaneous repetitive sharp-wave like activity of the 304

slice which was correlated by the firing of the recorded neuron and thus the presumptive 305

synaptic inputs of the recorded neuron as well. An additional temporal smoothing by a 306

moving average with 0.15 ms window was used to reduce the effect of noise. 307

3 Results 308

In this section we study the properties of the skCSD reconstruction for three representative 309

morphologies of increasing complexity and for different setups. First, for a ball-and- 310

stick neuron, we study the general quality of reconstruction of fine detail by considering 311

oscillating CSD distributions of increasing spatial frequency which form the Fourier basis. 312

Since the oscillating sources are not a natural representation for branching morphologies, 313

there we show examples of reconstructions for random or specific activation, typically 314

synaptic, which might arise in experimental context. To build intuition on how the Fourier 315

space representation translates into a specific distribution we consider reconstruction of 316

sources for random synaptic activation of the ball-and-stick cell. 317

Then, for a neuron with a single branching point (Y-shaped morphology), we check if 318

skCSD can differentiate between synaptic activations close to the branching point located 319

on different branches. We also investigate the effects of random electrode placement on 320

skCSD reconstruction. Finally, we investigate the possibility of skCSD reconstruction on a 321

realistic model of a ganglion cell placed on a MEA as well as the sensitivity to noise of the 322

method. 323

After establishing and validating the method on these fully controlled model data, to 324

show experimental viability of the proposed method, the spike-triggered average current 325

source density distribution is reconstructed for a pyramidal cell from experimental data. 326

3.1 Ball-and-stick neuron 327

Here we consider the simplest neuron morphology, so-called ball-and-stick model, which 328

stands for the soma and a single dendrite. A virtual linear electrode was placed in parallel 329

to the cell 50 µm away, the electrodes were distributed evenly along the electrode extending 330

for 600 µm. 331

Increasing the density and number of electrodes improves spatial resolution of 332

the method. To study the spatial resolution of the skCSD method we consider ground 333

truth membrane current source density distributions in the form of waves with increasing 334

spatial frequencies 335

CSD(x) = A cos(2πfx/L),

where A = 0.15 nA/µm is the amplitude, f ∈ {0.5, 1, 1.5, . . . , 12.5} is the spatial frequency, 336

x is the position along the cell, L is the length of the cell. Then, we compute the generated 337

extracellular potential at the electrode locations. The laminar shank consisting of 8, 16 and 338

128 electrodes was placed 50 µm from the cell in parallel to the dendrite. Finite sampling 339

of the extracellular space sets a limit on the spatial resolution of the method. Increasing 340

the density of electrodes within the studied region leads to higher spatial precision. As 341

we can see in Fig. 3, with 128 electrodes it is possible to reconstruct higher frequency 342

distributions as compared to 8 electrodes. This is reminiscent of the Nyquist theorem, 343
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except here we measure the potential and reconstruct current sources, while Nyquist 344

applies to sampling and reconstruction of the same quantity. What we observe is quite 345

intuitive and typically observed in the discrete inverse methods [37]. Note that once we 346

move to complex morphologies and random rather than regular electrode placement, the 347

intuition we build here, that denser probing gives better spatial resolution, would still 348

hold, even if the relation with the Nyquist theorem would be less apparent. 349

Reconstruction of random synaptic activations. In the same setup as before we 350

place 100 synapses along the dendrite and stimulate them randomly in time. We simulate 351

70 ms of recordings from this synaptically activated cell. The stimulation is sufficiently 352

strong to evoke spiking, see the Appendix for details. The spiking is indicated by strong 353

red spots in the lowest first two segments in Fig. 4, which correspond to the soma. As we 354

can see, the reconstructed current source density distribution reflects the ground-truth, 355

and the precision of reconstruction improves with increasing the number of electrodes, 356

which is reflected in the reduction of cross-validation error. Notice how the reconstructed 357

synaptic activity gets more precise with increasing the density of probing the potential. 358

3.2 Simple branching morphology 359

Let us now study the effect of branching and breaking of rotational symmetry of the 360

cell on the skCSD method. We consider here a simple Y -shaped model neuron with one 361

branching point (Fig. 2 B). We place two synapses, one on each branch (at segments 362

33 and 62, close to the branching point, see Fig. 2 D and Fig. 5 C). We consider both 363

simultaneous and independent activation of these synapses, specifically, the first synapse 364

was activated at 5, 45, 60 ms of the 70 ms long simulation, while the other was stimulate 365

at 5, 25, 60 ms from the stimulation onset. Our goal here is to find out if we can separate 366

the synaptic inputs located on two different branches, what happens at the branching 367

point, how the arrangement of the electrodes-cell setup affects the reconstruction, and if 368

our method provides more detail about the current distribution on the cell than what is 369

accessible from the interpolated potential and the CSD reconstructed with kCSD under 370

the assumption of smooth distribution of sources in space. 371

Differentiation of synaptic inputs located on different branches. To investigate 372

the differentiation power of the proposed approach we consider two placements of the cell 373

with respect to the electrode grid. One, in which the cell is placed in parallel to the plane 374

of electrodes 50µm above (Fig. 5 A), and the other, where the cell is perpendicular to the 375

grid, with the grid 50µm away from the dendritic shaft stemming from the soma, (Fig. 5 376

B, C). In Fig. 5, each panel (A–C) shows the spline-interpolated extracellular potential 377

(V), followed by standard kCSD reconstruction, both at the plane of the 4x16 electrodes’ 378

grid used for simulated measurement. Then, the ground truth and skCSD reconstruction 379

are shown in the branching morphology representation in the plane containing the cell 380

morphology. Each figure shows superimposed morphology of the cell. The dark gray 381

shapes are guides for the eye and are sums of circles placed along the morphology with 382

radius proportional to the amplitude of the sources located at the center of the circle. 383

Panel A shows results for a synaptic input depolarizing one branch. Panel B shows the 384

same current distribution as in the previous setup, but the cell is rotated by 90 degrees 385

with respect to the grid. In panel C a synaptic input is added to the other branch. Observe 386

that in all three cases the interpolated potential and the standard CSD reconstruction, 387

which can be drawn only in the plane of the electrodes’ grid, do not differ significantly, 388
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Figure 3. Limitations of the spatial resolution of the skCSD method in a
simple ball-and-stick and laminar electrode setup. A. The ground truth
membrane current source density distribution was constructed from cosine waves of
increasing spatial frequency (x-axis) along the cell mophology (y-axis), which is shown in
the interval representation. B–D. skCSD reconstruction from 8, 16 and 128 electrodes. E.
The L1 Error of the skCSD reconstruction for 8 (black), 16 (red) and 128 (green)
electrodes for CSD patterns of increasing frequency.
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Figure 4. Performance of the skCSD method for a ball-and-stick neuron with random
synaptic stimulation for recordings with a laminar probe placed 50 µm away from the cell.
A. The ground truth spatio-temporal membrane current density in time (x-axis) along the
cell in the interval representation (y-axis). The lowest segment is the soma, where the
visible high amplitude of potential is a consequence of spiking. To make the much less
pronounced synaptic activity on the dendritic part visible, nonlinear color map was used.
Panel B shows the lowest values of cross-validation and L1 error for the before-mentioned
setups. Panels C–E present the best skCSD reconstruction in case of recording with 8, 32,
and 128 electrodes. One can see how increasing the number and density of probes in the
region improves the reconstruction quality until a certain level. CV error was used here to
select the parameters leading to the best reconstructions.

hence they cannot distinguish between these three situations. On the other hand, skCSD 389

method is able to identify correctly the synaptic inputs in all three cases. 390

The effect of electrodes placement on skCSD reconstruction for Y-shaped cell. 391

In Fig. 6 we show how the number and specific distribution of the electrodes affect the 392

quality of the reconstruction in the case of simultaneous stimulation. Panel 6.A shows the 393

ground truth data, that is the actual distribution of the transmembrane current sources, 394

along the morphology. To visualize it simply, we used the interval representation, the 395

soma is shown first, followed by one branch, followed by the other. Fig. 6.B shows the 396

reconstruction results for regularly arranged 8 (4x2), 16 (4x4), 32 (4x8), and 64 (4x16) 397

electrodes. In Fig 6.C we show reconstructions for five different random placements of 398

the same number of electrodes as for the regular case. As expected, the skCSD method is 399

able to recover the synaptic activations and the reconstruction resolution increases with 400

the number of electrodes. Note that in certain cases the random distribution is more 401

efficient than the regular grid, which is probably due to more fortunate samplings of the 402

area covered by the morphology. 403
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3.3 Reconstruction of current distribution on complex morphol- 404

ogy 405

In this section we consider the performance of skCSD method in case of complicated, 406

biologically realistic scenario. To reach good spatial resolution allowing detailed study 407

of a cell with substantial extent, densely packed electrode arrays are required. In the 408

present reconstruction we assumed a hexagonal grid arrangement with 17.5 µm inter- 409

electrode distance inspired by recent experiments on reconstructing axonal action potential 410

propagation [11,25]. We assumed the grid consisting of 936 contacts from which we used 411

128 electrodes for reconstruction to be consistent with the hardware of [11, 25]. 412

In the simulation we assumed an experimentally plausible scenario, where oscillatory 413

current was injected to the soma of a neuron in a slice with other inputs impinging through 414

a 100 excitatory synapses distributed on the dendritic tree. The simulated data consisted 415

of two parts. During the first 400 ms the cell was stimulated by the injected current as well 416

as through the synapses. The amplitude of the injected current was 3.6 nA, the frequency 417

of the current drive was around 6.5 Hz. During the second 400 ms the cell was stimulated 418

only with the current. Fig. 7 shows an example of the skCSD reconstruction at a time 419

selected right after a spike was elicited by the cell. As we can see, neither the standard 420

CSD recontruction assuming smooth current distribution in space, nor the interpolated 421

potential, give justice to the actuall current distribution. At the same time, the skCSD 422

reconstruction is quite a faithful reproduction of the ground truth. A movie comparing 423

the ground truth with kCSD, interpolated potential, and skCSD reconstruction, in time, 424

is provided as a supplementary material (S1 Video). 425

3.4 Dependence of reconstruction on noise level 426

So far we have assumed that the data are noise-free which is never true in an experiment. 427

Both the measurement device and the neural tissue are potential sources of distorted 428

data. To investigate how the performance of the method is influenced by noise, we added 429

Gaussian white noise of differing amplitudes to the simulated extracellular recordings 430

of Y-shaped cell described in Section 3.2. Fig. 8. A shows the smoothed ground truth 431

we used. The Y-shaped neuron is placed on top of a MEA with a regular grid of 4x8 432

electrodes marked by asterisks. Fig. 8.B shows the noise-free reconstruction. Panel C–F of 433

the figure show the reconstruction results for increasing measurement noise with signal to 434

noise ratio, SNR= 16, 4, 1. The signal-to-noise ratio (SNR) here is the standard deviation 435

of the simulated extracellular potentials normalized with the std of the added noise. The 436

degradation of reconstruction visible in this figures is summarized in Fig. 8.C. As we can 437

see in the reconstruction plots (Fig. 8.D–F), the increasing noise actually does not seem to 438

significantly alter the obtained reconstructions so the regularization is providing adequate 439

correction, except for the noise on the order of signal (Fig. 8.F). 440

3.5 Dependence of reconstruction on the number and arrange- 441

ment of Recording Electrodes 442

Reconstruction of the distribution of the current sources along the morphology with skCSD, 443

just like the reconstructions of smooth population distributions with kCSD, formally can 444

be attempted from arbitrary set of recordings, even a single electrode. While we do not 445

expect enlightening results at this extreme, it is natural to ask to what extent can we trust 446

the reconstruction in a given case, which of the reconstructed features are real and which 447

are artifacts of the method, and how to select optimal parameters of the method. We will 448
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discuss these issues in the final section. Here we wish to investigate how the number of 449

electrodes, the density of the grid, and the area covered by the MEA, affect the results. 450

To answer these questions, we selected a snapshot of simulation of the model of 451

the ganglion cell described in the Methods section, with the specific membrane current 452

distribution shown in Fig. 9.A. In Fig. 9.B–H we show 7 different reconstructions assuming 453

different experimental setups, with differing numbers of electrodes, covering different area. 454

In each case we selected the width of basis functions and the regularization parameter 455

for the method by minimizing L1 error calculated for the first 1000 time steps of the 456

simulation or cross-validation error (L1-T and CV in Fig. 9.I). To verify the quality of 457

reconstruction we computed the L1 error between the ground truth and reconstruction 458

for the remaining 5800 time steps of the simulation. It turns out that minimization of L1 459

error gave better results and L1-V in Fig. 9.I shows the results for this case. 460

Given that L1 error can only be used in simulations, where the ground truth is known, 461

and yet it gives better parameters for the method to be applied to actual experimental 462

data than the CV error, we propose the following. Given data necessary to apply skCSD 463

method, thus the morphology, electrode positions, and recordings, one should assume 464

different current sources distributions, for example, make a simulation of a cell model 465

with the obtained morphology, make reconstructions for a range of parameters, and use L1 466

error for optimization. Then, perform the analysis of actual experimental data with thus 467

obtained parameters. Performing the simulations and comparing the best reconstructions 468

with the assumed ground truth has the further benefit of building intuition about which 469

features of the real CSD survive in the reconstruction and which are distorted. This is 470

another example of model-based data analysis which we believe becomes inevitable with 471

the growing complexity of experimental paradigms, such as the one considered here. 472

The results obtained in this study are consistent with our expectations: the quality 473

of reconstruction improves with the coverage of the morphology by the electrodes, with 474

increasing density of probing, and with increasing number of probes (Fig. 9.I). Interest- 475

ingly, it seems, that it is difficult to improve the reconstruction beyond certain level, in 476

consequence, the setups with moderate densities (on the order of 200 µm IED) can easily 477

compete with setups at the edge of current developments (4̃0 µm IED, [5]). We believe 478

this is not a hard limit, that better results can be obtained here. This, however, requires 479

further development of the methods. 480

3.6 Proof of Concept experiment: Spatial Current Source Distri- 481

bution of Spike-triggered Averages 482

To examine the experimental feasibility of the skCSD method we analyzed data from a 483

setup including simultaneous patch clamp electrode and linear probe with 14 working 484

electrodes recording signals from a hippocampal pyramidal cell in vitro slice preparation 485

(see Methods). As there is no ground truth data available in this case, the optimal width 486

of the basis functions and the regularization parameter were selected using the L1 error 487

and simulated data. To do this, we used the same simulation protocol as for the ganglion 488

cell model. A snapshot of the reconstruction is shown in Fig. 10 at the moment of firing. 489

A 10 ms long video of the spike triggered average is shown in the supplementary materials 490

(S2 Video). At -0.05 ms one can observe a brief appearance of a sink (red) in the basal 491

dendrites which can be a consequence of the activation of voltage sensitive channels in 492

the axon hillock or the first axonal segment leading to the firing of the cell. Since the 493

axon has not been traced in this case, the skCSD method is trying to reconstruct in the 494

most meaningful way introducing the activity in the basal dendrite. This phenomenon is 495

quickly replaced by a source (blue) in the basal dedrite with a sink at the soma and in 496
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the proximal part of the apical dendritic tree, with return current sinks at more distal 497

dendrites. The extracellular potential on the second electrode reaches its minimum at 0.45 498

ms, which signals the peak of the spike. The deep red of the soma at this point signifies 499

a strong sink, while the blue of the surrounding parts of the proximal apical and basal 500

dendrites indicates the current sources set by the return currents. At 1.30 ms a source 501

appears at the soma region, which indicates hyperpolarization. From an experimental 502

setup consisting of only 14 electrodes on a linear probe a detailed distribution of current 503

sources along a complex morphology cannot be expected, but the firing activity is well 504

observable. This example demonstrates the experimental feasibility of the skCSD method 505

and may help in planning further experiments using this method. 506

4 Discussion 507

Summary. In this work we introduced a method to estimate the distribution of current 508

sources (CSD) along the dendritic tree of a neuron given its known morphology and a set 509

of simultaneous extracellular recordings of potential generated predominantly by this cell. 510

First, assuming the ball-and-stick neuron model and a laminar probe parallel to the cell, we 511

studied the basic viability of the method. We showed that introducing more electrodes to 512

cover the same area leads to the increase of spatial resolution of the method allowing us to 513

reconstruct higher Fourier modes of the CSD generating the measured potentials (Fig. 3). 514

In a dynamic scenario of multiple synaptic inputs impinging on the cell, higher density of 515

probes leads to higher reconstruction precision allowing us to distinguish individual inputs 516

(Fig. 4). Testing the reconstruction against the known CSD (the ground truth) shows a 517

clear transition between faithful and poor reconstruction when the electrode distribution 518

becomes too sparse to capture the fine detail of the CSD profile to be reconstructed 519

(Fig. 3.E). Also in neurons of more complex morphologies we studied, the Y-shape and 520

the ganglion cell, as expected, the reconstructed CSD profiles became more detailed with 521

the increase of electrode number on a fixed area (Fig. 6 and 9). 522

Using the Y-shaped morphology we showed that i) synaptic inputs activating different 523

dendrites can be separated, Fig. 5; ii) skCSD provides meaningful information about the 524

membrane CSD in cases, when interpolated LFP and standard, population CSD analysis, 525

are not informative, Fig. 5; iii) the reconstruction is not sensitive to a specific selection of 526

electrode placement, Fig. 6 and 8; and iv) even significant additive noise (SNR=1) is not 527

prohibitive for the reconstruction, Fig. 8. 528

Biologically, the most relevant example we considered was a ganglion cell model which 529

we studied with virtual multi-electrode arrays of different designs. The MEAs used differed 530

with the inter-electrode distances for the simulated setups, as well as in the area they 531

covered, ranging from an area close to the soma to roughly four times the size of the 532

square covering the whole morphology. The best results where obtained when we used the 533

electrodes from the region covering closely the cell (9.G and H); reduction of interelectrode 534

distance from 100µm to 40µm was less spectacular than selecting the electrodes from the 535

smallest square covering the convex hull span by the morphology. Our study, assuming 536

realistic cell morphology of the ganglion cell and commercially available MEA designs, as 537

well as realistic cell activity showed that it is feasible to reconstruct the distribution of the 538

current sources in realistic, noisy situations. 539

The skCSD method performed adequately for the proof of concept experimental data, 540

even if the nature of the setup allowed only the reconstruction of the general features of 541

the spike-triggered average spatio-temporal current source density distribution patterns. 542

Historically, the idea of investigating the membrane currents of single cells was first 543
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proposed in [21], however, it used simplified, linear neuron morphologies. An important 544

preprocessing step proposed there was separating the single neuron’s contributions to 545

the extracellular potentials from the background activity. The novelty of the skCSD 546

method proposed here is in its use of actual neuronal morphologies and in the underlying 547

algorithmic solutions based on the kCSD method [26] devised for the study of populations 548

of neurons. 549

Experimental Recommendations. To attempt experimental application of skCSD 550

we must have 1) an identified cell of known morphology, and 2) a set of simultaneous 551

extracellular recordings of electric potential generated by this cell. Each aspect poses 552

its challenges, some of which have been addressed here. Once we have the necessary 553

data the natural question is how to select the parameters of the method in the specific 554

context of a given setup, specific morphology, and recordings. Our investigations above 555

give some indications: the electrodes selected for analysis should essentially uniformly 556

cover the area span by the cell; the width of a basis source should be on the order of mean 557

nearest neighbor interelectrode distance (for essentially uniformly distributed electrodes). 558

We feel, however, that the proper approach is to actually investigate the effects of the 559

different parameters through simulations. This is a natural place to apply the model-based 560

validation of data analysis [39]. Our suggestion is to build a computational model of the 561

cell. We believe that for the purpose of parameter selection assuming passive membrane 562

in the dendrites should be sufficient, but of course, more realistic biophysical information 563

may be included, especially if available. The model cell may be stimulated with synaptic 564

input, with current injected, or even specific profiles of ground truth CSD may be placed 565

along the cell. Then the extracellular potential must be computed at points where the 566

actual electrodes are placed in the experiment. One can then investigate the effects of 567

different parameter values on reconstruction and, for the analysis of actual experimental 568

data, select those parameters minimizing prediction error on test data. The advantage of 569

this procedure is two-fold. First, we end up with a selection of parameters adapted for 570

the specific problem at hand. Secondly, we build intuition regarding the interpretation 571

of the results for our specific cell and setup. This approach is the only way to address 572

arbitrary electrode-cell configurations and to see how much information we can extract 573

in a given case. Finally, we found that the best way to identify optimal parameters for 574

reconstruction is by minimizing the L1 error between the reconstruction and the ground 575

truth. Since we cannot have the ground truth in an experiment but we can assume it 576

in the model-based validation, this is another argument for the model-based validation 577

approach. Obviously, to efficiently apply this technique one must have appropriate tools. 578

We plan to develop and open framework facilitating such studies, meanwhile, the code 579

used for the present study will be made available upon request. 580

Challenges of recording extracellular potential and obtaining morphology from 581

the same cell. Although recording extracellular potential with a MEA, filling up a 582

neuron with a dye, and reconstructing its morphology, are standard experimental techniques, 583

using them simultaneously remains a challenge due to the size of the experimental devices 584

which need to be arranged within a small volume. Cells in the vicinity of the MEA can 585

be filled up individually by intracellular or juxtacellular electrodes, or with bulk dying. 586

Individual recording and dying with a glass electrode provides not only the morphology, 587

but also unambiguous spike times, gividing an opportunity to determine the extracellular 588

potential fingerprint of the recorded cell on the MEA. Although these would be favorable 589

data, intracellular recording less than 100µm from the MEA is extremely challenging. 590

Experimental setups featuring the necessary equipment already exist [40], but as far as 591
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we know, haven’t been used in this way. On the other hand, bulk dying techniques result 592

in more filled neurons, although the quality of the dying, and thus the quality of the 593

3D morphology reconstructions, is considerably lower in these cases. Although there are 594

methods for estimation of the cell position relative to the MEA ( [21], [22]), association of 595

multiple optically labeled neurons with the recorded extracellular spike patterns is still 596

unsolved. 597

Challenges of separating the activity of a single neuron from background. We 598

propose two ways to separate the activity of a neuron from the background. If we can sort 599

the spikes elicited by the neuron of interest we can calculate the spike-triggered averages 600

of the potentials reducing all uncorrelated contributions. Unfortunately, in live tissue, 601

contributions from neighboring cells will have some correlations due to shared inputs. 602

Separation of the contribution of the neuron of interest from the correlated background can 603

be obtained in two ways. One is decomposition of the activity into meaningful components, 604

for example, our results show that the high amplitude correlated oscillatory background 605

of hippocampal theta activity can be extracted with independent component analysis, 606

allowing the determination of cell-type specific time course of the synaptic input [41]. An 607

alternative is combining skCSD with population kCSD analysis, i.e., inclusion of basis 608

sources covering not just the cell of interest but also the space covering the whole population. 609

This will be the subject of further study. A second way to obtain the contributions to the 610

extracellular potential from a specific cell is by driving the cell with intracellular current 611

injection of known pattern, for example, with an oscillatory drive as we discussed (Fig. 7), 612

and by averaging over multiple periods (event-based triggering). Again, further study is 613

needed to establish efficiency of such a procedure in experiment. 614

Challenges of using novel MEAs. Handling data from high density MEAs with 615

thousands of electrodes will require further studies, as the large numbers of small singular 616

values of the kernel matrix may introduce numerical sensitivity to the reconstruction. Also, 617

optimal selection of electrodes in case of programmable MEAs merits further investigations. 618

We believe it is best to address such issues when actual experiments are attempted. 619

Importance of this work. Traditional electrophysiology has focused on the electrical 620

potential, which is relatively easy to access, from intracellular recordings, all kinds of patch 621

clamp, juxtacellular, to extracellular and voltage sensitive dyes [42]. While the relation 622

of the actual measurement to the voltage at a point may significantly differ, often this is 623

a reasonable interpretation, if needed one may always consider more realistic models of 624

measurement, for example, average over the contact surface for extracellular electrodes, 625

etc [27,43]. 626

Already in the middle of XXth century, Walter H. Pitts had realized that with recordings 627

on regular grids one can approximate the Poisson equation to estimate the distribution of 628

current sources in the tissue, which he did [15]. His approach assumed recordings on a 629

regular 3D grid, which was challenging to obtain for some 60 years [30]. However, with the 630

work of Nicholson and Freeman [28] 1D CSD analysis became attractive, as summarized by 631

Ulla Mitzdorf [16]. In 2012 we proposed how to overcome the restriction of regular grids 632

with a kernel approach which both allows to use arbitrary distribution of contacts and 633

corrects for noise [26]. All the previous work, however, always assumed the contributions 634

to the extracellular potential coming from the whole tissue and smooth in the estimation 635

region. 636

In the present work we show for the first time how one can use a collection of extracellular 637
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recordings in combination with a cell morphology to estimate the current sources located 638

on the cell contributing to the recorded potential. Since it is now feasible experimentally 639

to obtain the relevant data, we believe that the method proposed here may find its 640

uses to constrain the biophysical properties of the neuron membrane, facilitate checking 641

consistency of morphology reconstruction, as well as guide new discoveries by offering a 642

more global picture of the distribution of the currents along the cell morphology, giving a 643

coherent view of the global synaptic bombardment and return currents within a cell. 644

5 Acknowledgments 645

Research supported by grants from the Polish Ministry of Science and Higher Education 646

2948/7.PR/2013/2, the Hungarian National Research, Development and Innovation Fund 647

NKFIH K 113147 and NN 118902, and the Hungarian National Brain Research Program 648

KTIA NAP 13-1-2013-0001 and KTIA-13-NAP-A-IV/1,2,3,4,6. We are grateful for Emese 649

Pálfi and László Négyessy for the opportunity of using their Neurolucida setup at the 650

Department of Anatomy, Histology and Embryology, Semmelweis University. 651

Supporting Information 652

S1 Video 653

skCSD reconstruction of current source density distribution on the ganglion 654

cell. The video shows the skCSD reconstruction for the retinal ganglion cell model 655

driven with oscillatory current (Section 3.3) for the whole duration of simulation. Figure 7 656

shows a snapshot taken at t = 495.25 ms from the simulation onset. As described in 657

Section 3.3, during the first 400 ms of simulation, apart from somatic drive, 100 excitatory 658

synaptic inputs were randomly distributed along the dendrites. For reconstruction, 128 659

virtual electrodes were selected from the 936 arranged in a hexagonal grid of 17.5 µm 660

interelectrode distance to record the extracellular potentials. Panel A presents the somatic 661

membrane potential during the simulation. The red line marks the time instant for which 662

the remaining plots were made. The colormap on Panel B shows the extracellular potential 663

interpolated between the simulated measurements computed at the electrodes, which 664

are marked with asterisks. The regular CSD is shown on Panel C, while the spatially 665

smoothed ground truth membrane current is presented on Panel D. Panel E shows the 666

skCSD reconstruction of current source density along the cell morphology from the selected 667

measurements. The dark gray shapes are guides for the eye and are sums of circles placed 668

along the morphology with radius proportional to the amplitude of the sources at the 669

center of the circle. 670

The movie is available at https://www.dropbox.com/s/8ea0q9mjhgk2s0x/CSDSmoothed.671

mp4?dl=0. 672

S2 Video 673

Spike triggered average of pyramidal cell in vitro. The video shows the recorded 674

potentials and skCSD reconstruction for a 10 ms time window centered around the spike 675

as described in Section 2.7. The top panel presents the spike triggered averages of the 676

potentials during 5 seconds before and after the spike recorded at five electrodes closest 677

to the soma. The lower left panel shows the morphology of the cell, electrode positions, 678

and the recorded potentials. The electrodes are marked by stars and the amplitude of the 679
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recorded potential is shown as color-coded circles around the electrodes. The snapshot is 680

taken at the time given in the figure title and indicated by the black vertical line in the 681

top panel. The reconstructed skCSD distribution at the same moment is shown in the 682

lower right panel. 683

At -0.05 ms a sink appears at the basal dendrites. This can be a consequence of the 684

activation of voltage sensitive channels in the axon hillock or the first axonal segment 685

leading to the firing of the cell. Since there were no electrodes close to the axon initial 686

segment, the skCSD method did not resolve it and reconstruct the source by introducing 687

the activity into the basal dendrite. This phenomenon is quickly replaced by a source (blue) 688

in the basal dedrite with a sink at the soma and in the proximal part of the apical dendritic 689

tree, with return current sinks at more distal dendrites. The extracellular potential on the 690

second electrode reaches its minimum at 0.45 ms, which signals the peak of the spike. The 691

deep red of the soma at this point signifies a strong sink, while the blue of the surrounding 692

parts of the proximal apical and basal dendrites indicates the current sources set by 693

the return currents. At 1.30 ms a source appears at the soma region, which indicates 694

hyperpolarization. 695

The movie is available at https://www.dropbox.com/s/50tgai6oiz172zm/PyramidalSTA.696

mp4?dl=0. 697
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Time: 45.5 ms

A

B

A

C Time: 5.5 ms

Figure 5. Reconstruction of synaptic inputs on a Y-shaped neuron with a
regular rectangular 4x16 electrode grid. Each panel (A–C) shows the
spline-interpolated extracellular potential (V), followed by standard kCSD reconstruction,
both at the plane of the 4x16 electrodes’ grid used for simulated measurement. Then, the
ground truth and skCSD reconstruction are shown in the branching morphology
representation in the plane containing the cell morphology. Each figure shows
superimposed morphology of the cell. Note that in panel A the grid is parallel to the cell,
while in panels B–C it is perpendicular. The dark gray shapes are guides for the eye and
are sums of circles placed along the morphology with radius proportional to the amplitude
of the sources at the center of the circle. A. Shows results for a synaptic input
depolarizing one branch. B. Shows the same current distribution as in the previous setup,
but the grid is rotated by 90 degrees. C A synaptic input is added to the other branch.
Observe that in all three cases the interpolated potential and the standard CSD
reconstruction, which can be drawn only in the plane of the electrodes’ grid, do not differ
significantly, hence they cannot distinguish between these three situations. On the other
hand, skCSD method is able to identify correctly both synaptic inputs.
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Figure 6. Reconstruction of synaptic inputs placed on different branches of
the Y-shaped neuron for electrodes arranged regularly and randomly within
the same area. We use the interval representation for visualization. The numbers on
horizontal axis enumerate different electrode setups. The black profiles show the averaged
membrane current as reconstructed in a given case; for random electrode distribution
these are averages over five different realizations. A Ground truth membrane currents,
the strong red indicates the synaptic inputs. B Reconstruction results for 8 (4x2), 16
(4x4), 32 (4x8), and 64 (4x16) electrodes arranged regularly. The skCSD reconstruction
improves with the number of electrodes as the color representation and the black profiles
indicate. C When distributing the same numbers of electrodes on the same plane as in
the previous case, the quality of the average skCSD reconstruction, as indicated by the
black profiles, is similar.
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Figure 7. skCSD reconstruction of dendritic backpropagation patterns for a
retinal ganglion cell model driven with oscillatory current. A Somatic
membrane potential during the simulation. The red line marks the time instant for which
the remaining plots were made. B Extracellular potential interpolated between the
simulated measurements computed at the electrodes, which are marked with asterisks. C
kCSD reconstruction computed from the simulated measurements of the potential. D
Spatial smoothing with a Gaussian kernel was applied to the ground truth membrane
current to facilitate comparison with the skCSD reconstruction with the same spatial
resolution level. E skCSD reconstruction computed from the simulated measurements of
the potential.
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Figure 8. The effect of noise on the reconstruction. The corrupting influence of
noise on the skCSD reconstruction is shown with the example of simultaneous excitation
of both branches of the Y-shaped cell close to the branching point in case of the 4x8
electrodes setup. A Smoothed ground truth CSD shown on the branching morphology
used. B,D,E,F skCSD reconstructions in cases of no added noise and signal-to-noise
ratio equal to 16, 4, 1, respectively. Even the highest noise consider does not fully disrupt
the reconstructed source distribution, although increasing the noise systematically
degrades the result. This is shown in C, where the L1 error of the reconstruction was
calculated for the full length of the simulations. This is consistent for different electrode
setups which are marked with various colors. While the setups consisting of more
electrodes perform better for low noise, the reconstruction seems to be more sensitive to
noise in these cases. This might be a side effect of a specific definition of error.
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Figure 9. Dependence of skCSD reconstruction on multielectrode setup.
Figures A–H show morphology used in the simulation together with the distribution of
current sources in branching morphology representation taken at 247.5 ms of the
simulation. Figures B–H show additionally the electrode setup assumed. A. Smoothed
ground truth CSD. B. Reconstructed sources for a setup of 5x5 electrodes with 50 µm
interelectrode distance (IED) covering a small part of the cell morphology around the
soma. C. Reconstructed sources for a setup of 5x5 electrodes with 100 µm IED covering a
substantial part of the dendritic tree, which improves the reconstruction of the synaptic
input on the left. D. Reconstructed sources for 5x5 setup with 200 µm IED setup; both
sinks in the membrane currents are visible. E. Expanding the 5x5 electrode setup to 400
µm IED leads to a small number of electrodes placed in the vicinity of the cell which
leads to a poor reconstruction. F. Increasing the number of electrodes to 9x9 while
keeping the coverage, which leads to 200 µm IED, does not improve the reconstruction.
G. Reducing IED in the previous example to 100 µm, which reduces the coverage of the
MEA to the whole cell (same area as in panel D) bringing majority of the electrodes close
to one of the dendrites, leads to one of the most faithful reconstructions among the ones
shown in this figure. H. Shows results for a matrix of 21x21 contacts with 40 µm IED,
covering the same area as in examples D and G. The results are very good but the
improvement in reconstruction does not justify the use of so many contacts with so high
density. I. Comparison of reconstruction errors for all the cases shown. Left axis: L1 error
for the training (L1-T) and validation (L1-V) part . Right axis: crossvalidation error
(CV). The L1-T error is marked with black points, L1-V error is represented by green
stars. Generally, the L1-V errors are a bit higher than the L1-T errors but show a similar
tendency. Also the CV errors, which are drawn with red crosses, show a similar tendency.
The reconstructions in panels B–H are for parameters determined with the L1-T error.
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Figure 10. skCSD reconstruction of spike-triggered average for a
hippocampal pyramidal cell A Extracellular potentials measured with the 5
electrodes closest to the soma. The 0s marks the time of the membrane potential crossing
the 0 mV threshold. The black vertical line marks the 0.40 ms time instant for which the
extracellular potentials and skCSD reconstruction are shown. B Two-dimensional
projection of the cell morphology and extracellular electrodes’ positions marked by stars,
the five electrodes used in the top panel of the figure are labeled with matching colors.
The amplitudes of the measured potentials are shown as color-coded circles around the
electrodes. C The skCSD reconstruction on the branching morphology representation.
This is a snapshot of the cell firing, the red color indicates the sinks close to the soma, the
blue marks the current sources on the dendrites.
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