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Abstract. White matter tracts are commonly analyzed in studies of
micro-structural integrity and anatomical connectivity in the brain. Over
the last decade, it has been an open problem as to how best to clus-
ter white matter fibers, extracted from whole-brain tractography, into
anatomically meaningful groups. Some existing techniques use region
of interest (ROI) based clustering, atlas-based labeling, or unsupervised
spectral clustering. ROI-based clustering is popular for analyzing anatom-
ical connectivity among a set of ROIs, but it does not always partition
the brain into recognizable fiber bundles. Here we propose an approach
using convolutional neural networks (CNNs) to learn shape features of
the fiber bundles, which are then exploited to cluster white matter fibers.
To achieve such clustering, we first need to re-parameterize the fibers in
an intrinsic space. The clustering is performed in induced parameterized
coordinates. To our knowledge, this is one of the first approaches for
fiber clustering using deep learning techniques. The results show strong
accuracy - on a par with or better than other state-of-the-art methods.

1 Introduction

White matter fibers are important structures in the brain, connecting its var-
ious components, and vulnerable to breakdown in a variety of brain diseases.
Studying white matter (WM) fiber bundles brings new insight into disease pro-
gression, and into the structural network supporting communication in the brain.
The brain’s neural pathways - or fiber tracts - have complex individual varia-
tions in geometry, and they are interspersed with each other - which makes
it very difficult to cluster them into anatomically meaningful groups or units
for further statistical analysis. One commonly used clustering method [13] uses
manual ROI delineation on the images of fractional anisotropy (FA), a scalar
metric derived from diffusion-weighted MRI. These regions can be used to seed
whole-brain fiber tractography, and the set of resulting curves - or streamlines -
is then grouped into white matter bundles using spectral clustering. One method
uses Hausdorfl’s distance [5] as a distance metric between two fibers, prior to
hierarchical clustering based on the distances between fibers. Recently, several
unsupervised clustering methods [12, 16, 20] have been proposed. Similar fla-
vors of unsupervised techniques and an understanding of hierarchical clustering


https://doi.org/10.1101/141036
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/141036; this version posted May 23, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2 Authors Suppressed Due to Excessive Length

of fibers in video analytics have been explored in [11]. We have also explored
the unsupervised learning procedures like support vector machines (SVM) and
spectral clustering in [7,8]. Though mathematically elegant, these methods come
with a baggage of assumptions and thus with their own limitations. However,
with the increasing amount of data, we can make a completely data driven
clustering algorithm free of any assumptions using convolution neural network
(CNN) framework. Though, texture based neural networks have been used even
in the early years of brain imaging [15], they were not used for white matter
clustering. Recently, CNNs have been extensively used in the computer vision
community for object detection, clustering and segmentation [17]. Deep learn-
ing methods offer some attractive properties. The most important is automatic
feature selection. A well designed CNN should be able to extract the most dis-
criminative features to achieve a given task. Another attractive feature of this
framework is re-usability of the model. A model trained on one dataset can be
used for classifying another dataset; we can test how well this "transfer learn-
ing” approach works, and what factors in the input data or method make it
perform best. Another benefit of such a system is the scalability. We can start
with a small number of training datasets, and the network will automatically
improve over time as we add increasing amounts of data to train the model.
To use the CNN framework, we introduce a volumetric parameterization tech-
nique to transform the brain into a topologically equivalent spherical domain.
In computational anatomy, many algorithms have been devoted for surface pa-
rameterization [6,18]. Surface parameterization may be sufficient for analyzing
surface geometry. However, it falls short when there is significant information
contained inside the shape under consideration (e.g., WM fibers in the brain).
Following the ”sphere carving” work by Wang and colleagues [19] in this paper,
we developed a novel method that parameterizes the entire volume of the brain
and every structure contained in it. We then use the parameterized coordinates
of the tracts to cluster the white matter fibers.

2 Harmonic Function

We parameterize the 3D volume using a potential function ¢ with harmonic
property. A function with the harmonic property is a C? continuous function
that satisfies Laplace’s equation. Harmonic functions can be used to establish a
bijective mapping between the brain and the topologically equivalent spherical
shape. If ¢ : U—R, where UCR" is some domain and ¢ is some function defined
over U, the function ¢ is harmonic if its Laplacian vanishes over U, i.e., VZ¢ = 0.
In terms of Cartesian coordinate system, we can write

vie=Y" o _y (1)

i=102%x;

where z; is the " Cartesian coordinate and n is the number of dimensions of
the shape under study (here, 3).
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2.1 Defining a shape-center

Ideally, the shape-center should be located at approximately the same anatom-
ical location. This particular point is located at (98,113,111) in the standard
MNTI template. The corresponding point among the subjects is located using a
linear registration process. The By, T1 images and the MNI templates are rigidly
registered in the same order. The transformations are combined and inverted.
When applied to the aforementioned point, the inverse transformation outputs
the shape-center in the subject space.

2.2 Boundary Conditions

We apply the Dirchlet and Neumann boundary conditions on the shape-center
and the boundary surface (9U), i.e., we assign the value of the function ¢ on all
the boundary points and the shape-center to 1 and 0 respectively. These values
remain unchanged across computation. All the remaining points inside the brain
are assigned random values between 0 and 1 as the initial condition.

2.3 Potential Computation

An iterative finite difference scheme is used to solve the Laplace equations. If
¢(x,y,2) is a harmonic function, its second derivative is computed using the
Taylor’s series expansion and using the Laplace equation from 1 we have

A(iv1,Yir 2i) + O(Tim1, ¥i, 2i)

(i, yis 2i) = 6h2
n AT, yi—1, 2i) + O(Ti, Yig1, %) n A(wq, i, 2i-1) + A4, Yi, Zig1)
6k2 6[2

where h, k and [ are the grid resolution in z,y and z directions respectively. The
above potential values are computed until the maximum difference between two
successive iterations is below a certain threshold ¢ (< 1079).

2.4 Computing potential-flow lines

Streamlines or the potential flow lines are orthogonal to the equi-potential sur-
faces created in the previous step. Each of the streamlines starts from the
boundary points on the brain surface and progresses towards the designated
shape-center. Each of these streamlines approaches the shape-center at unique
angle(s), which remain constant along the streamline. This property is endowed
by construction. The streamlines are computed by solving the following differ-

ential equation,

0X

S = —IVeIX (1) @)

where X = [z, v, 2]7 is the coordinate vector and 7 is the normalization constant.
MATLAB’s ode28 routine is used to solve the system of differential equations.
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Fig. 1. Left: 3D view of different equipotential surfaces are shown. The streamlines
lines emanating from the surface approach the shape-center at unique polar and az-
imuthal angles. These angles of approach remain constant along the streamlines and
intersect the surfaces at right angles. Middle: The equivalent spherical shape. The
streamlines are radial lines emanating from the surface. The different colors show the
potential value of equipotential surfaces. Right: Location of shape-center on the MNI
template.

2.5 Parameterizing the Brain

Each streamline originating from each of the boundary points approaches the
shape-center at a unique angle of approach. These angles remain constant along
the streamlines. In case of three dimensional objects, the angle of approach is
characterized by the elevation () and the azimuthal (¢) angles. The vector
between the shape-center and the end point of the streamline is calculated. The
angles are calculated using the Cartesian to spherical coordinate transformation

¢ = atan2(y, x); 6 = atan2(z, /22 + y2) 3)

The streamlines intersect the equipotential surfaces at right angles (see figure
1). Each point of intersection generates a tuple [¢,0,]7 for the corresponding
Cartesian coordinates [z, y, 2]7.

3 Mapping the White Matter Fibers

After the whole brain is parameterized as above, each fiber tract is mapped to
the new coordinate system, i.e., in the spherical space. At this stage, we have
a bijective mapping between the Cartesian coordinates of every voxel in the
brain and the newly computed coordinate system. A KD-tree accessor is built
using the native brain coordinates for ¢, 8 and . For every point on the fiber
streamline, the algorithm searches for ten neighborhood points and computes a
weighted average to get the corresponding coordinate in the target domain. This
process establishes the mapping of fibers in the target spherical domain.
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4 Data pre-processing and fiber tracking

Each of the diffusion images has 46 volumes acquired with 5 T2-weighted B0 vol-
umes and 41 diffusion-weighted volumes with voxel size of 1.36 x 1.36 x 2.7 mm?.
The scans are acquired using a GE 3.0T scanner, using with echo planar imag-
ing with parameters: TR/TE = 9050/62 ms. The raw DWI volumes are aligned
to the first by image using FSL’s eddy_correct [1] to correct for head motion
and eddy current distortions. The corresponding T1 image is skull stripped and
a brain-mask was calculated. The B0 and T1 images are registered using an
affine registration. The resulting inverse transformation is used to transfer the
mask was transferred to the diffusion image space. Diffusion tensors and whole
brain probabilistic tractography [14] are computed using the Camino toolkit [4].
Voxels with fractional anisotropy (FA) values greater than 0.2 were chosen as
seed points. The maximum fiber turning angle was set to 60°/voxel, and tracing
stopped at any voxel with FA < 0.2.

4.1 Data Augmentation

One challenge in multi-class classification problems like the one presented here is
the uneven training samples for each class. Ideally, the training samples should
contain an even number of samples to avoid bias against any particular class.
However, it is natural to have an unbalanced group as some fiber bundles will
be thicker and some fiber bundles will be very narrow. In order to have an even
distribution of the training samples, we create copies of the original data set by
convolving with a three 1-D Gaussian filters along x, y and z axes to create noisy
variants of the tracts in the training dataset. In addition, the order of points in
the tracts is flipped. This process makes the training process invariant to the
order of points in the tracts.

5 Network architecture

The augmented data is mapped to the spherical domain as described in section 3.
For our task the network architecture is presented below. We experimented with
multiple kernel sizes and layers and present the most successful architecture.
The network contains two convolutional layers with 32 and 64 feature maps.
Feature maps define the number of filters used in each layer, and their sizes
determine the receptive field. A large receptive field can acquire higher-order
spatial information while the trade-off is the increase in the number of parame-
ters. The non-linearity inducing functions used are rectified linear units (ReLU)
and the hyperbolic tangent function (tanh). To prevent over-fitting we use 80%
dropout [9], which randomly switches off neuronal units in each layer thereby
reducing their influence at any particular iteration during back-propagation. Fi-
nally, the last layer is a ’softmax’ layer with 17 outputs for 17 classes. In the
present work, the deep learning is implemented using the TensorFlow version
r0.11 [2].
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Fig. 2. Each fiber in the input layer is a 50 x 3 matrix. There are two convolutional
layers of size 32 and 64 respectively. Each layer contains convolutional kernels of size
3% 3. The last convolutional layer is followed by two fully connected (FC) layers of size
128 and 256 followed by a softmax (output) layer.

5.1 Training data and majority voting

Out of 96 subjects, manual segmentation is performed on four randomly selected
subjects. These four subjects act as the training data set. Each subject’s trac-
tography data is manually clustered into 17 anatomically relevant fiber bundles.
We use the manual tract segmentation on each of the four subjects used as the
training data for the method. Then we perform a leave one out cross-validation
(LOOCYV) procedure. Another method to improve the accuracy of the method
was to use bootstrap aggregation [3]. We sample our data with replacements
for 600,000 fibers, 20 times. In essence we fit 20 different models to the given
dataset. For prediction, we used the majority voting procedure from all the dif-
ferent models for prediction.

6 Results

The LOOCYV process proves the feasibility of our network architecture. Fur-
ther, we compare our method to an existing automatic clustering algorithm,
autoMATE [10]. The reliability can be assessed using the confusion matrix. In
Figure 3, we show two matrices that compare the accuracy of predictions. The
diagonal and the off-diagonal values represent the true positive and the false
positive rates of prediction. On the left, we show the mean prediction accuracy
on the 4 cross-validation dataset. The prediction labels are compared against
manual segmentation. On the right, we show a similar mean matrix for all the
92 subjects in the dataset, when compared to autoMATE [10]. One of the draw-
backs of autoMATE is that it is very conservative, in the sense that it will not
mis-classify tracts, but it is quite likely that it will miss out on true positives.
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Fig. 3. The confusion matrices show the classification accuracy of FiberNET. Left:
Validation set of 4 subjects. Right: 92 subjects in the dataset when compared to
autoMATE [10]

The presented method has no such bias. In Figure 4, the left panel shows a
comparison of FiberNET with manual segmentation. On the right, a compari-
son between FiberNET and autoMATE is presented. As we can see, FiberNET
mis-classifies certain tracts when compared against a random test subject from
the dataset. However, we would like to argue that the CNN based method is
much more flexible and gives us an opportunity to search for a better architec-
ture that could possibly address the misclassification problem as it happened in
the computer vision community, though challenges like ImageNET.

6.1 Conclusions

In this paper, we presented an ensembled deep learning approach to cluster
white matter fibers into anatomically meaningful fiber bundles. We have shown
for the first time a reliable method to apply deep learning approaches to the
fiber clustering problem. Though our method is not 100% accurate in case of a
few fiber bundles, this is understandable as they are equally difficult to cluster
even manually by a neuroanatomy expert, because of the underlying complexity
of the white matter structures. Nonetheless, this is a first step towards solving
this clustering problem using a neural network. We also expect that the reliabil-
ity of the method should increase with time as more datasets are added to the
model, to better capture the spectrum of variability. This hypothesis is based on
the near-perfect results we see in the computer vision community for the case
of image classification problems. We also proposed a volumetric parameteriza-
tion procedure to define an intrinsic coordinate system for the brain. We showed
the efficacy of such parameterization in solving the white matter classification
problem. We also believe that this parameterization method can be further ex-
plored for interesting brain imaging applications such as registration and ROI
segmentation.
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Fig. 4. Comparison of ground truth (top row) versus predicted clusters (bottom row)
on a validation subject (left) and a random test subject (right). We present here six
representative tracts to show examples of good and average clustering; the right inferior
fronto-occipital fasciculus (red), right cortico-spinal tract (orange), right inferior lon-
gitudinal fasciculus (green), right cingulum (yellow), right uncinate fasciculus (pink),
and right anterior thalamic radiation (blue). The arrows show the mis-classified tracts.
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7 Appendix

The following table shows the abbreviations of all the 17 white matter fibers
considered for clustering in this paper.

Abbreviation Fiber bundle name

atr_l anterior thalamic radiation (left)

atr_r anterior thalamic radiation (right)
cc_frontal  |the corpus callosum section connecting frontal lobes
cc_occipital | corpus callosum section connecting occipital lobes
cc_parietal corpus callosum section connecting parietal lobes
cc_temporal | corpus callosum section connecting temporal lobes

cgel cingulate gyrus part of cingulum (left)

cger cingulate gyrus part of cingulum (right)

cst 1 corticospinal tract (left)

cst_r corticospinal tract (right)

ifo 1 inferior fronto-occipital fasciculus (left)

ifo_r inferior fronto-occipital fasciculus (tight)

ilf 1 inferior longitudinal fasciculus (left)

ilf r inferior longitudinal fasciculus (right)

slf 1 superior longitudinal fasciculus (left)

unc_l uncinate fasciculus (left)

unc_r uncinate fasciculus (right)

To corroborate our findings, we are presenting additional results. In figures
5 and 6, we compare our results to that of manual segmentation on the 4 train-
ing subjects. These results were obtained through a leave one out cross valida-
tion (LOOCYV) procedure, i.e., the training data was comprised of 3 of the four
subjects and the remaining subject was the validation subject. The cycle was
repeated for all the 4 subjects. In Figure 7, we show a comparison between auto-
MATE [10] and the proposed method, FiberNET. The two subjects are chosen
at random from the set of 92 subjects.
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Validation Subject 1
Ground Truth  FiberNet

Validation Subject 2
Ground Truth  FiberNet

Fig. 5. Comparison between ground truth and FiberNET prediction on 2 subjects from
the four-fold cross validation (part 1 of 2)
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Fig. 6. Comparison between ground truth and FiberNET prediction on 2 subjects from
the four-fold cross validation (part 2 of 2)
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Fig. 7. Comparison between autoMATE and FiberNET predictions on two random
test subjects from a database of 92 subjects.
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