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Abstract 
Droplet-based single cell RNA-seq has emerged as a powerful technique for massively parallel cellular 
profiling. While these approaches offer the exciting promise to deconvolute cellular heterogeneity in diseased 
tissues, the lack of cost-effective, reliable, and user-friendly instrumentation has hindered widespread adoption 
of droplet microfluidic techniques. To address this, we have developed a microfluidic control instrument that 
can be easily assembled from 3D printed parts and commercially available components costing approximately 
$540. We adapted this instrument for massively parallel scRNA-seq and deployed it in a clinical environment to 
perform single cell transcriptome profiling of disaggregated synovial tissue from a rheumatoid arthritis patient. 
We sequenced 8,716 single cells from a synovectomy, revealing 16 transcriptomically distinct clusters. These 
encompass a comprehensive and unbiased characterization of the autoimmune infiltrate, including 
inflammatory T and NK subsets that contribute to disease biology. Additionally, we identified fibroblast 
subpopulations that are demarcated via THY1 (CD90) and CD55 expression. Further experiments confirm that 
these represent synovial fibroblasts residing within the synovial intimal lining and subintimal lining, respectively, 
each under the influence of differing microenvironments. We envision that this instrument will have broad utility 
in basic and clinical settings, enabling low-cost and routine application of microfluidic techniques, and in 
particular single-cell transcriptome profiling. 
 
Introduction  
The complex architecture and associated higher-order function of human tissues relies on functionally and 
molecularly diverse cell populations. Disease states represent significant perturbations to cellular 
heterogeneity, with tissue-resident cells acquiring altered phenotypes and circulating cells infiltrating into the 
tissue. Therefore, defining the cellular subsets found in pathologic tissues provides insights into disease 
etiology and treatment options.  Traditional methods such as flow cytometry, which require a priori knowledge 
of cell type-specific markers, have begun to define this landscape, but fall short in comprehensively identifying 
cellular states in a tissue, with particular difficulty detecting novel or extremely rare subpopulations.  
 
Technological advancements in automation, microfluidics, and molecular barcoding schemes have permitted 
the sequencing of single cells with unprecedented throughput and resolution1–4. In particular, recent studies 
featuring analysis of 104-105 single cells have enabled unbiased profiling of cellular heterogeneity, where entire 
tissues can be profiled without advance enrichment of individual cell types1,5,6. In spite of this progress, 
technological advances can be slow to permeate into resource-limited clinical arenas due to a variety of 
reasons related to cost, personnel requirements, space or infrastructure. Specifically, a major barrier to 
widespread adoption of droplet microfluidic techniques is the lack of cost-effective and reliable 
instrumentation7,8. Microfluidic experiments are typically performed using commercial instruments which are 
expensive and often configured for a single purpose, or custom research instrument setups which are 
comprised of multiple pieces of equipment and rarely portable. Particularly in clinical settings, microfluidic 
instrumentation is not always proximal to the site of cell sample generation requiring transport to external sites 
or cell preservation, both of which can alter cellular transcriptomes or result in extensive cell death6,9. 
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To address these short-comings and provide a low-cost option for single-cell transcriptome profiling, we have 
developed a portable instrument for performing single-cell droplet microfluidic experiments in research and 
clinical settings. Recent microwell-based transcriptome profiling approaches have been shown to be 
advantageous for low-cost portable transcriptome profiling10–12, however some of these techniques are 
challenging to perform and or require extensive chemical modification to fabricate the devices. Additionally, the 
fixed architecture of microwell (partitioning) microfluidic devices dictates their use for specific applications. In 
contrast, the platform presented here is easy to use and can be implemented for a variety of droplet 
microfluidic (partitioning) or continuous phase microfluidic based experiments. Potential applications of this 
system include recent work profiling immune repertoires from hundreds of thousands of single cells13 and 
combined single-cell transcriptome and epitope profiling14 in addition to ddPCR15, ddMDA16, hydrogel 
microsphere fabrication for 3D cell culture17,18, chemical microfluidic gradient generation19 and microparticle 
size sorting20–22. The instrument is comprised of electronic and pneumatic components affixed to a 3D printed 
frame. The entire system is operated through software control using a graphical user interface on a 
touchscreen. Requiring only a standard wall power outlet, the instrument has an extremely small footprint; 
small enough to fit on a bench top or in a biocontainment hood. The total cost of materials to construct an 
instrument is approximately $540. (Supplementary Table 1) This represents an approximately 20-fold reduction 
in cost for a research-level, syringe-pump based microfluidic setup, and a 200-fold reduction in cost for a 
commercial microfluidic platform.   
 
We applied the microfluidic control instrument in conjunction with the Drop-seq technique1 to perform unbiased 
identification of transcriptomic states in diseased synovial tissue, which becomes highly inflamed in rheumatoid 
arthritis (RA) and drives joint dysfunction. RA is a common autoimmune disease affecting approximately 1% of 
the population. While the cause of RA is not precisely known, disease etiology is hypothesized to originate 
from a combination of environmental and genetic factors23,24. RA affects the lining of the joint; the synovial 
membrane, leading to painful inflammation, hyperplasia, and joint destruction. RA is clinically characterized by 
multiple tender and swollen joints, autoantibody production (rheumatoid factor and anti-citrullinated protein 
antibody or ACPA) in addition to cartilage and bone erosion25. Unlike other tissue membranes with an epithelial 
layer, the synovial lining is composed of contiguously aligned fibroblasts and macrophages 2-3 cells deep26. In 
RA, the membrane lining is expanded to 10 – 20 cells deep and synovial fibroblasts assume an aggressive 
phenotype marked by the expression of disease relevant cytokines, chemokines and extracellular matrix 
remodeling factors.27–29 The sublining is marked by an accumulation of lymphocytes, macrophages, and 
dendritic cells amidst the subintimal synovial fibroblasts. Pioneering studies have uncovered heterogeneity in 
fibroblast morphology30 and phenotype31,32, observing differences in activation state and invasive behavior33,34. 
In addition, in situ hybridization has identified non-uniform activation of inflammatory drivers and matrix 
metalloproteinases35,36, motivating the use of our unbiased approach to catalogue fibroblast subpopulations, 
and molecular markers which define them. 
 
Here we describe the design of a novel microfluidic control instrument that can be assembled with 3D printed 
and commercial components at low cost, is fully portable, and functions as a reliable and flexible droplet 
generator. We adapted this device to perform massively parallel single cell RNA-seq (Drop-seq), observing 
metrics and performance that were indistinguishable from a research level Drop-seq setup. We deployed this 
instrument to a hospital laboratory to profile 8,716 single cells from the synovial tissue of an RA patient. To our 
knowledge, this represents the first unbiased ‘atlas’ of hematopoietic and fibroblast transcriptional subtypes 
from scRNA-seq of autoimmune disease tissue. We identified 16 subpopulations, including both abundant and 
rare groups that contribute to disease biology. We also define novel cellular subsets of synovial fibroblasts, 
which were validated and used to leverage additional insights by immunofluorescence and flow cytometry. The 
deconvolution of cellular complexity in a diseased tissue by this portable device provides a template for the 
application of droplet-based single-cell transcriptome profiling for routine clinical analysis.  
 
Results 
Development of a portable, low-cost droplet microfluidic control instrument 
To perform single-cell transcriptome profiling experiments in clinical settings at low-cost, the components of a 
standard Drop-seq setup were replaced with alternative miniature components and packaged onto a multi-
tiered 3D printed frame. (Figure 1a,b,c, Supplementary Figure 1) For example, syringe pumps in a standard 
Drop-seq setup (which provide a means for fluid flow through a microfluidic chip) were replaced with 
components such as a micro air-pump, regulators, and micro solenoid valves. These components are just as 
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effective for providing adequate fluid flow, in a much smaller footprint and at significantly lower cost. Stirring of 
barcoded microparticles is achieved through actuation of a stepper motor affixed with a permanent magnet at 
the end of 3D printed shaft. Rotation of the motor shaft locally inverts a magnetic field thereby tumbling a 
magnetic stir disc in the microparticle fluid reservoir. A custom printed circuit board (PCB) was designed to 
interface the electronic and pneumatic components of the instrument to a single board computer (Raspberry 
Pi). Further critical components of the instrument include pressure sensors for optimal flow rate determination, 
micro solenoid valves for on-demand pressure actuation, and a microscope for real-time experiment 
monitoring. The microscope is comprised of an inexpensive 5-megapixel CMOS camera coupled with a laser 
diode collimating lens. This provides sufficient magnification operating in fixed-focus mode to view the 
microfluidic channels with the ability to resolve single cells. (Figure 1d, Supplementary Video 1) The instrument 
is operated through a custom graphical user interface on a touchscreen. All components were affixed to a 3D 
printed frame measuring approximately 21 cm by 20 cm and 9 cm tall. (Figure 1b) For Drop-seq experiments, 
fluorinated oil, cells, and barcoded microparticles are pipetted into fluid reservoirs situated at the rear of the 
instrument. Custom pressure caps seal the vial and tubing connections are made to a microfluidic chip situated 
on the top of the instrument above the microscope camera. The small footprint of the device permitted use in 
clinical laboratory space requiring only a standard wall outlet for power.  
 
Instrument validation and operation 
To validate the design and operation of the instrument we first assessed the droplets produced by the device in 
conjunction with a slightly modified Drop-seq microfluidic chip. (Supplementary Figure 1d) Droplets produced 
using the instrument displayed a high degree of uniformity (diameter = 105 +/- 3 µm) across multiple 
microfluidic chips and instruments at identical operating pressures indicating stable and reproducible flow 
patterns of the assembly. (Figure 1e) Next, the loading of microparticles (tested at an optimized concentration) 
into droplets was assessed using a custom written MATLAB image analysis script to measure the number of 
empty, singly occupied, and doubly occupied droplets. The resulting microparticle loading profile followed a 
Poisson statistical distribution, which is expected for a stochastic loading process such as encountered here.  
(Figure 1f) Finally, to validate single-cell encapsulation, we performed a species-mixing experiment in which 
approximately equal numbers of HEK293 (human) cells and NIH 3T3 (mouse) cells were combined in a single 
run, followed by shallow sequencing (average of 2,017 reads/cell, 1,187 unique molecules (UMI)/cell) (Figure 
1g). We observed low doublet rates (2.57%), and high species-specificity across singlets (98.2%), consistent 
with technical metrics for Drop-seq. 
 
Transcriptomic profiling of synovial tissue 
After validation of the instrument, we turned to profiling the inflammatory cellular milieu in synovial tissue 
extracted from the knee of a seropositive RA patient (Figure 2a). Histologically the tissue displayed 
characteristics of extensive inflammation, including synovial lining hyperplasia (black arrow) and dense 
leukocyte infiltrations in the sub-lining (blue arrow) (Figure 2b). Fibroblast morphology within the sub-lining 
varied widely in the intervening space suggesting that subpopulations of fibroblasts may exist in 
heterogeneous micro-niches. Immediately after surgery, a portion of the recovered joint tissue was processed 
using an optimized disaggregation protocol to generate a single cell suspension. Cells were counted, re-
suspended for optimal single cell loading into droplets, and immediately pipetted into the appropriate fluid 
reservoir of the instrument to run through the Drop-seq protocol. Briefly, following encapsulation in droplets, 
cells are lysed and mRNAs hybridized to microparticles undergo reverse transcription in bulk to generate 
stable cell-barcoded cDNAs as previously described1. The total time starting with sample extraction from the 
patient to initiation of the microfluidic instrument is approximately 1.5 hours, obviating the need for cell 
preservation. The instrument processes 1 mL of cells at a concentration of 150 - 200 cells/µl in about 35 
minutes, generating over one million droplets at a generation rate of approximately 660 Hz. We performed two 
replicate runs on identical instruments simultaneously to obtain a total of 8,716 single cell transcriptomes, 
sequenced to an average read depth of 30,443 reads/cell, and detecting an average of 1,903 unique 
molecules per cell. This corresponds to a profiling throughput (per individual instrument) of approximately 
7,500 cells/hour. Therefore the throughput, cell capture, and input requirements are in line with a research 
Drop-seq setup1. 
 
We applied our previously developed graph-based clustering procedure10,37, to partition cells into 16 distinct 
subpopulations, which we visualized using t-distributed stochastic neighbor embedding (t-SNE) (Figure 2c). 
While the clustering was unsupervised, differential expression revealed combinations of known markers that 
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could be used to confidently assign subpopulations to broad categories. For example, we observed 13 immune 
populations that broadly expressed PTPRC (CD45) and three fibroblast populations, expressing uniform high 
levels of COL1A2. Similarly, as we explored further within immune cells, we identified clear markers of known 
subtypes types, including canonical macrophage markers (MARCO), T cell (CD3) and B cell (MS4A1, CD20) 
markers (Figure 3).  
 
The proportion of cells mapping to each of the 16 clusters was tightly conserved between replicate 
experiments (R=0.98). Additionally, we compared averaged expression levels for cells in the same cluster 
across replicates. For example, global macrophage transcriptomes were highly reproducible between 
replicates (R=0.99) (Figure 2e), but transcriptomes for different cell populations were widely divergent as 
expected (macrophage/CD8+ T cell R=0.82) (Figure 2f). These results demonstrate the reproducibility of the 
overall workflow. Additionally, our reproducible and quantitative ‘in silico’ bulk transcriptomes offer an 
alternative to traditional bulk RNA-seq on sorted populations, as our procedure requires no sorting, and can 
derive averages for all 16 populations simultaneously. 
 
To our knowledge, this single-cell dataset represents the first unbiased and comprehensive ‘atlas’ of cellular 
subpopulations present in human autoimmune disease tissue. Below, we summarize both abundant and rare 
cell states in our data, with unbiased markers shown in Figure 3 and Supplementary Data 1. We highlight 
particular subtypes of lymphocyte and myeloid cells that have not been previously identified in healthy PBMCs, 
as well as unexpected transcriptomic heterogeneity within fibroblast populations.   

 
Unsupervised taxonomy of cellular states in synovial tissue 
 
We identified 8 lymphocyte subpopulations corresponding to heterogeneous groups of T, B, and NK cells. T 
cells (CD3+) were grouped into CD4+ (helper) and CD8+ (cytotoxic) subpopulations based on canonical 
markers. Within the CD4+ T helper cell population we detected a distinct subset marked by high levels of MAF, 
CXCL13 and PDCD1 (PDL1), which has not been previously identified in previous single cell RNA-seq studies 
of human PBMCs4,10. However, a recent  CyTOF analysis of RA synovial tissue identified a population with 
consistent markers, representing an RA synovial “peripheral T helper cell” (TPH) that may support B cell activity 
and antibody production in this non-lymphoid tissue38 (Figure 2c). Pathway enrichment analysis tailored to 
single cell data39 identified functional modules up-regulated specifically in these cells, including the regulation 
of B cell proliferation and T cell chemotaxis (Supplementary Figure 2a), supporting these functional analyses, 
and demonstrated our ability to identify cellular phenotypes that are unique to diseased tissue.  
 
We also observed further cellular heterogeneity within the CD8+ and NK lymphocyte subsets. In particular, for 
both classes we observed subsets of cells expressing extremely high levels of the cytokines XCL1 
(lymphotactin) and XCL2, which have previously been demonstrated to be present at higher levels in synovial 
RA tissue. While CD8+ T cells are known to express XCL140, our observation that this is restricted to only a 
specific subpopulation (Figure 3a,b) may suggest a functionally important role for this group, particularly in 
stimulating the trans-migration of primed lymphocytic subsets, or modulating matrix metalloproteinase 
expression in synovial fibroblasts41. For the NK cells (uniformly expressing GNLY), principal component 
analysis revealed a subpopulation expressing similarly high levels of XCL1 and XCL2, while also down-
regulating cytotoxic genes (PRF1) and FCGR3A (CD16), representing a bifurcation between CD16+CD56bright 
and CD16-CD56dim subsets (Supplementary Figure 2b). Notably, while CD56bright cells are rare in healthy tissue 
and have not been identified in scRNA-seq analyses of PBMCs, we detect them at 37% frequency here, 
consistent with previous reports that the presence of this subset is enriched within RA tissue42.  
 
We also characterized B cell populations (MS4A1+) (also known as CD20), as well as terminally differentiated 
populations that secrete high levels of immunoglobulins (IGHG4+). Our single-cell dataset indeed distinguished 
two distinct populations of plasma cells, again not previously observed in existing scRNA-seq data of PBMCs, 
based on antibody light chain usage (IgA kappa+ vs. IgA lambda+). This enabled us to calculate a 
kappa/lambda ratio based on single cell proportions, that was conserved across replicates (2.5 replicate 1, 2.8 
replicate 2). (Figure 3b). Finally, we also identified four non-lymphocytic hematopoietic subpopulations, 
including mast cells (TPSAB1+), macrophages (MARCO+), dendritic cells (HLA-DRB5+), and platelets 
(VWF+). Taken together, these clusters represent an unbiased and detailed characterization of tissue-resident 
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immune cells from inflamed synovial tissue, including both abundant and rare populations that contribute to 
disease biology. 
 
 
Identification and validation of heterogeneous fibroblast subtypes 
 
Non-hematopoietic cells were composed primarily of fibroblasts based on a commonly expressed set of genes 
consistent with the fibroblast lineage such as COL1A2, COL3A1 and CLU (Figure 3a). While immune cell 
subsets can be defined based on canonical marker expression, potential source of cellular heterogeneity in 
fibroblasts are poorly understood, despite their strong implication in inflammatory diseases26–28.  Our unbiased 
clustering returned three fibroblast subpopulations (Figure 3a, 4a-b). These represented two groups of 
fibroblasts with distinct bifurcations in marker expression (Fibroblast 1 vs. Fibroblast 2), as well as a further a 
subdivision of the latter (Fibroblast 2a vs. Fibroblast 2b) representing more quantitative differences in gene 
expression. Genes differentially expressed between the subsets included known drivers of RA biology, 
including cytokines (CXCL12), matrix metalloproteinases (MMP2, MMP3), in addition to a subset of surface 
protein markers (i.e. CD55; CD90) (Fig. 4c).  
 
We next looked to validate the major separation of fibroblast subsets, and to test the specificity of the putative 
markers using complementary techniques. To this end, paraffin-embedded tissue blocks for this tissue were 
sectioned and analyzed by immunofluorescence with antibodies against subset-specific markers (Figure 4d). 
Importantly as this approach examines the cells and markers within the intact tissue, it eliminates dissociation-
induced artifacts and potentially informs on anatomic localization within the tissue. Interestingly CD55 
(Fibroblast 1 marker) predominantly stained in the synovial lining (Figure 4d).  Distinctly, CD90 antibodies 
(Fibroblast 2 marker) labeled cells in the sublining regions, with intense staining around presumed small 
vessels and intermediate staining that encircled wider rings around larger vessels (Figure 4d).   
 
Furthermore, a flow cytometric analysis of non-hematopoietic viable cells from this tissue demonstrated that 
CD90 and CD55 antibodies stained independent cell populations (Figure 4e, middle panel). The CD55+ cells 
were also largely positive for the common fibroblast marker podoplanin, while the CD90+ non-hematopoietic 
cells separated into a podoplanin-positive (fibroblasts) and -negative population (Fig. 4e, right panel). The 
CD90+ CD45- PDPN- population likely represents endothelial cells43. These data further indicate the unique 
nature of fibroblast subsets in RA synovial tissue and suggest an approximate ratio of 3:1 sublining CD90+ 
versus lining CD55+ fibroblasts, consistent with our scRNA-seq data. 
 
The distinct anatomical distribution of Fibroblast 1 and 2 populations hereafter referred to as CD55+ lining and 
CD90+ sublining fibroblasts, respectively, implicate putative functional differences.  CD55+ fibroblasts locate to 
the intimal lining, which is responsible for the generation and turnover of synovial fluid. Importantly, hyaluronan 
synthase 1 (HAS1) expression was enriched in CD55+ lining fibroblasts. (Figure 4a) As hyaluronan represents 
the most abundant macromolecule in synovial fluid, this suggests these cells function within the lining to 
produce synovial fluid components. Pathway and gene-set enrichment analysis revealed hierarchical 
relationships between fibroblast subpopulations that were consistent with transcriptomic similarities, and also 
suggested heterogeneous pathway activation between these groups. For example, CD55+ fibroblasts 
exhibited stronger activation of epidermal growth factor signaling and metalloendopeptidase activity, while both 
CD90+ fibroblast groups were enriched for modules associated with the production and interaction with the 
extracellular matrix. Between the CD90+ groups, we observed more quantitative differences in the activation of 
acute inflammatory responses, supporting the role of these sublining fibroblasts interacting with lymphocytic 
infiltrates. Collectively, distinct anatomic locations, cell surface staining and transcriptomic differences confirm 
the independent nature of these synovial fibroblast subsets.  
 
Discussion 
In this study, we developed a low-cost, portable microfluidic control instrument to perform droplet-based single-
cell transcriptomic profiling in a clinical laboratory. Using this instrument we profiled thousands of single cells 
derived from synovial tissue obtained from an RA patient immediately after surgery. This methodology allowed 
us to profile gene expression in an unbiased and highly quantitative manner across all cell populations 
simultaneously, providing an attractive alternative to bulk-sorting followed by RNA-seq. Single cell 
deconvolution of synovial tissue revealed immune subsets including CD4+, CD8+ T cells, and NK cells that 
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likely contribute to RA disease etiology through expression of signaling molecules and their interactions with 
immune and fibroblast populations. Further, single cell transcriptomic signatures identified sources of 
heterogeneity, specifically in fibroblasts, corresponding to differences in microenvironment and function. 
Importantly, this dataset can be used to discover and validate putative markers enabling future functional 
studies. Here we used immunofluorescence to localize CD55+ and CD90+ synovial fibroblasts to the lining and 
sublining respectively. More generally this work offers a first comprehensive glimpse into inflamed synovial 
tissue at the single-cell level and is a step towards compiling an RA cell atlas. Rich datasets such as this could 
potentially elucidate disease mechanisms in RA and be used to stratify patients, ascertain treatment efficacy, 
and classify disease sub-states across many arthritic conditions.  
 
Methods 
Microfluidic chip fabrication 
Microfluidic chips were designed in AutoCAD (Autodesk) and a transparency mask was manufactured 
(Advance Reproductions). SU-8 3050 (MicroChem) was spin coated onto a clean silicon wafer to a thickness 
of 100 µm and exposed through the mask using a contact mask aligner. After development, 
polydimethylsiloxane (PDMS) was poured over the master mold, degassed in a desiccator and cured in an 
oven at 80°C for 2 hours. PDMS slabs were cut from the substrate, holes were punched for tubing connections 
and the slab was bonded to a clean glass slide using oxygen plasma. Finally, microfluidic channels were 
treated with Aquapel (Pittsburgh Glass Works) and dried in an oven at 80°C for 30 minutes.       
 
Microfluidic control instrument 
The microfluidic control instrument consists of a 3D printed frame affixed with a custom printed circuit board 
(PCB) designed in Eagle (Autodesk) containing electronic and pneumatic components. The frame 
accommodates a microfluidic chip viewed at fixed focus through a Raspberry pi camera with lens. Fluid flow 
through the microfluidic chip is achieved through pressurization of the head space of reservoir vials situated at 
the rear of the instrument using a micro air pump, two independent regulators and micro solenoid valves. 
Pressures for the oil vial and the aqueous vials (cell and microparticle) were independently measured using 
two analog gauge pressure sensors. Barcoded microparticles were stirred with a stir bar located inside of the 
vial under the influence of a permanent magnet affixed to a stepper motor shaft situated at the base of the 
instrument. The instrument is controlled through a Raspberry Pi 2 model B single-board computer with a 
custom graphical user interface for monitoring of the experiment (through the microscope camera) and control 
of solenoid valves, micro-air pump, and magnetic stirring. The instrument is powered through an external wall 
adapter power supply (12V, 3A) through a barrel jack connection mounted on the PCB.  
 
RA Patient synovial tissue disaggregation 
Synovial tissue was collected from an RA patient enrolled and genetically consented under the HSS Early RA 
Tissue Study (IRB# 2014-317) during a synovectomy procedure.  The patient was under 40 years old, 
seropositive with high titers for CCP antibodies and met 2010 ACR/EULAR Criteria25.The HSS Pathology Lab 
confirmed the sample was synovial tissue by gross inspection and histologic examination of OCT- and 
Paraffin-embedded blocks.  For single-cell suspensions, the synovial tissue was minced with scissors to 
~2mm3 pieces, which were then digested with Liberase TL (100 µg/mL, Roche) and DNAsel (100ug/mL, 
Roche) at 37°C for 15 minutes with inversion of the sample every 5 minutes. The enzymatic reaction was 
quenched by 10% fetal bovine serum in RPMI (Invitrogen) and debris filtered out using two 70 µm 
strainers.  Red blood cells were lysed (reagent a gift of J. Lederer) for 5 min at room temperature, followed by 
an additional filter step through a 70 µm strainer. The filtration steps should remove large pieces of debris, as 
well as poorly disaggregated cell clumps. Cells were counted on a hemocytometer and assessed for viability 
(>85%) using trypan blue staining and 150,000 synoviocytes were re-suspended in Drop-seq loading buffer.  
 
Single-cell droplet experiments 
Single-cell experiments are nearly identical to those described in Macosko et al., save for the addition of Ficoll 
PM-400 to the cell buffer to match fluid viscosity of the aqueous flows. Briefly, cells and split-pool synthesized 
barcoded microparticles suspended in lysis buffer are co-encapsulated into nanoliter volume droplets. 
Microparticles contained oligos consisting of a cell barcode (same for all oligos on a microparticle), a UMI 
(different for each oligo on a microparticle), a PCR handle and a polyT stretch for capture of polyA mRNA. 
Following encapsulation (and immediate cell lysis) mRNAs hybridize to the microparticle, the emulsion is 
broken, microparticles are collected and cDNA is generated through reverse transcription in bulk. Exonuclease, 
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PCR (15 cycles total), cDNA purification, and Nextera library preparation steps were performed as in the 
original manuscript. Libraries were sent for sequencing on the Illumina HiSeq 2500 platform.  
 
Single-cell RNA-seq analysis 
The raw sequencing data were processed as in Macosko et al. Briefly, reads were aligned to the UCSC hg19 
transcriptome and then binned and collapsed onto the cell barcodes corresponding to individual microparticles 
using Drop-seq tools (http://mccarrolllab.com/dropseq). To exclude low quality cells, we filtered out cells for 
which fewer than 500 genes were detected and excluded likely doublets by removing cells with greater than 
13,000 UMIs. All genes that were not detected in at least 3 cells were discarded, leaving 24,576 genes. 
Library-size normalization was performed on the UMI-collapsed gene expression values for each cell barcode 
by scaling by the total number of transcripts and multiplying by 10,000. The data was then natural-log 
transformed before any further downstream analysis with Seurat.  
 
For each gene, we constructed a generalized linear regression model (with negative binomial errors) to predict 
gene expression based on cellular read depth, percentage of mitochondrial genes detected, run ID, and 
alignment rate to the transcriptome. We used the scaled (z-scored) Pearson residuals from this model as 
corrected gene expression estimates for downstream dimensional reduction. We first selected 2,117 genes 
with high variance, using the MeanVarPlot function with log-mean expression values between 0 and 8 and 
dispersion (variance/mean) between 0.8 and 30. We then reduced the dimensionality of our data using 
independent component analysis and identified 32 independent components (ICs) for downstream analysis. 
We removed one IC that was driven primarily by cell cycle genes. We then utilized the smart local moving 
algorithm for modularity-driven clustering44, based on a cell-cell distance matrix constructed on these ICs. This 
was implemented using the FindClusters function in Seurat with a resolution of 1.6, a k.param of 40, and 
prune.SNN set to 0.1 to identify 16 distinct clusters of cells.  
 
We and others5 have noticed that while modularity-based clustering is a sensitive method for community 
detection, it can be affected by the multi-resolution problem, and can occasionally over-partition large clusters 
in order to sensitively detect rare populations. We therefore implemented a post-hoc procedure to merge 
together clusters with similar gene expression patterns. We reasoned that if a partitioning represented ‘over-
clustering’ of the data, it would be challenging to distinguish the two resulting cluster based on gene expression 
values. Therefore, for each pair of clusters, we trained a random forest classifier to predict cluster membership 
based on the expression level of variable genes, using the ranger package in R with default parameters45. We 
merged clusters together if the classifier had a prediction error greater than 13% as measured by the out-of-
bag error. This procedure resulted in the iterative merging of two pairs of clusters, both of which also had few 
differentially expressed genes between them. For visualization, we applied t-distributed stochastic neighbor 
embedding (t-SNE) on the cell loadings of the previously selected ICs to view the cells in two dimensions.   
 
Additionally, to explore potential heterogeneity within the NK cell cluster (Supplementary Fig. 2), we took all 
GNLY+ NK cells and performed a PCA on the 1,000 genes with the highest variance/mean ratio, observing 
that PC1 and PC2 separated CD56bright from CD45dim NK populations. 
 
Immunofluorescence  
Antibodies for CD55 (NaM16-4D3) and CD90 (EPR3133) were purchased from Santa Cruz Biotechnology, 
INC. and Abcam, respectively.  Sectioning of paraffin-embedded synovial tissue and immunofluorescent 
staining was performed by the Molecular Cytology Core Facility at Memorial Sloan-Kettering Cancer Center.   
 
Flow Cytometry 
Synovial cell suspensions were stained with fluorochrome-conjugated CD45 (H130Biolegend), CD90 (5E10-
Biolegend), CD55 (JS11-Miltenyi Biotec), podoplanin (REA446-Miltenyi Biotec), propidium iodide (PI) 
(Invitrogen) and analyzed by FACS. Data were analyzed using FlowJo (Tree Star, Inc.) software. 
 
Identification of differentially expressed genes 
To identify marker genes for each cluster, we used the FindAllMarkers command in Seurat, applying the 
negative binomial differential expression test (‘negbinom’) that we have previously applied to Drop-seq data46. 
Briefly, this test models expression data for individual genes as a generalized linear model with negative 
binomial errors. The test compares two models with a likelihood ratio test, one constructed with a group (i.e. 
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cluster) indicator variable, and the other assuming an identical model for all clusters. For each cluster, we 
performed differential expression tests comparing cells within that cluster, to all other cells in the dataset, 
applying a Bonferroni correction for returned p-values in Supplementary Table 2. 
 
GO enrichment 
We performed pathway and gene-ontology (GO) enrichment for the fibroblast and T cell clusters using the 
pagoda routines from the scde package on the scaled and normalized scRNA-seq data. We used the genome 
wide annotation for humans as our reference (Carlson M (2017). org.Hs.eg.db: Genome wide annotation for 
Human. R package version 3.4.1). We performed a PCA analysis and the top principle component for each 
gene set was obtained using the pagoda.pathway.wPCA function. We then evaluated the statistical 
significance of each gene set using the pagoda.top.aspects function and retained those with a p-value of less 
than 0.01. To remove redundant GO terms, we used the pagoda.reduce.loading.redundancy function to 
collapsed gene sets driven by the same combinations of genes and the pagoda.reduce.redundancy function to 
collapse those that separated the same sets of cells. Finally, we took the GO terms with the 10 highest 
average cell PC1 score for each of our identified clusters for heatmap visualization and analysis.  
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Figure 1 | Microfluidic control instrument design and validation. a) Picture of the microfluidic control instrument 
performing a Drop-seq run. b) Top down views of multi-tiered instrument. Levels 1-4 reveal assorted components for 
instrument operation. c) 3D rendering of the instrument with levels corresponding to those in b). Components in light gray 
are 3D printed. d) Microscope image screen capture directly from the instrument. Cells and barcoded microparticles are 
visualized easily on the screen. e) Microscope image of droplets output from the instrument. Droplets and microparticles 
are detected via image analysis software as blue circles and green circles respectively. Inset: droplet diameter distribution 
histogram. f) Microparticle loading distribution into droplets as measured via automated image analysis is consistent with 
Poisson loading.  g) Species mixing experiment using mouse (3T3) and human (HEK293) cells.  
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Figure 2 | RA sample workflow and histology, single-cell unsupervised clustering and analysis. a) Sample 
workflow from operating room to sequencing. Preparation of single cells into droplets with barcoded microparticles is 
performed in about 2 hours. b) H&E stain of synovial tissue from the patient. The synovial lining is indicated by the black 
arrow. An example of vasculature is indicated by a red arrow. The blue arrow denotes a dense lymphocyte infiltrate. c) 
Unsupervised graph-based clustering of single-cell RNA-seq, visualized using t-distributed stochastic neighbor embedding 
(tSNE). Each point represents a single cell (droplet barcode). d) Fraction of total cells present in each cluster, subdivided 
by replicate. e) Bulk expression (‘in silico average’) comparisons across macrophages from each replicate. f) Expression 
comparison across combined CD8+ T cell and macrophage population from both replicates. 
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Figure 3 | Transcriptomic markers of gene expression for individual clusters. a) Single cell expression heatmap 
displaying up to five transcriptomic markers for each cluster, based on differential expression testing. b) Gene expression 
for canonical marker genes, overlaid on the tSNE visualization. A list of transcriptomic markers for each cluster is provided 
in Supplementary Data 1. 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 22, 2017. ; https://doi.org/10.1101/140848doi: bioRxiv preprint 

https://doi.org/10.1101/140848


 
 
 
Figure 4 | Identification of synovial fibroblast subtypes. a) Bulk expression (‘in silico average’) comparison of 
fibroblast populations (1 vs. 2a&b). Genes up-regulated in fibroblast population 1, based on differential expression 
analysis with Bonferroni-corrected p<0.05, are indicated in red and genes expressed predominantly in fibroblast 
population 2 are indicated in teal. b) Expression comparison across fibroblast sub-populations 2a and 2b. c) CD55 and 
THY1 (CD90) expression across the global tSNE. d) CD90 and CD55 localization in RA synovial tissue. Paraffin-
embedded synovial tissue was sectioned and assayed for target markers by immunofluorescent staining with antibodies 
for CD90 (green) or CD55 (green) and counterstained with DAPI (blue). Lymphocyte infiltrates are denoted by grey 
asterisks. Images were acquired at 20x magnification. Scale bar is 100 µm. e) Cell surface expression of CD90, CD55 
and podoplanin in synovial tissue. Synovial cell suspensions were assayed for target markers by flow cytometry and 
stained with CD45, CD55, CD90, podoplanin and PI.  Synovial cells were gated on the CD45- PI- population and analyzed 
for the proportion of CD90+ and CD55+ cells.   Relative podoplanin cell surface expression was analyzed in CD90+ (red) 
and CD55+ (blue) as shown in histograms. f) Pathway and gene set overdispersion analysis on the three fibroblast 
populations identified from unbiased clustering of single cell RNA-seq data. Enrichment score corresponds to each cells’ 
first principle component loading from pathway analysis as computed in pagoda. 
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Supplementary Figure 1 | Microfluidic control instrument design and microfluidic chip design. a) Component diagram of 
the instrument. The instrument is controlled with a Raspberry pi 2 model B single board computer that interfaces with the 
components through a custom designed printed circuit board (PCB). b) Circuit layout (top) and image (bottom) of the 
completed PCB. c) Multi-angle view of the 3D printed instrument frame. d) Microfluidic chip design. Cell and microparticle 
inlets have equal hydrodynamic resistance up to the junction with the bifurcated oil channel.  
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Supplementary Figure 2 | T cell GO enrichment and NK cell subdivision. a) Pathway and gene set overdispersion 
analysis on the four T cell populations identified via unbiased clustering of the single cell RNA-seq data. The enrichment 
score corresponds to each cells’ first principle component loading from pathway analysis as computed in pagoda. b) 
Comparison of XCL1, XCL2, and FCGR3A expression across GNLY+ NK cells plotted on the first two principle 
components after performing a PCA on the top 1,000 genes with the highest variance/mean ratio. The dashed line 
corresponds to the separation of CD56bright and CD56dim NK cells.		
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Supplementary Table 1 | Bill of materials (BOM) for the microfluidic control instrument. Prices as of 5/4/2017. 

 

 

Part	No.	 Item	Description Part	No. Unit	Cost Quantity Cost	[$] Retailer

1 Raspberry	Pi	2	model	B 95Y1948 35.00 1 35.00 Newark	Element14
2 Micro	SD	Card	8GD	SD10 SDSDQUAN-008G-G4A 9.89 1 9.89 Amazon.com
3 Raspberry	Pi	Touchscreen 49Y1712 60.00 1 60.00 Newark	Element14
4 7mm	collimating	laser	diode	lens B00PPSJJ40 1.54 1 1.54 Amazon.com
5 Raspberry	Pi	camera 77Y6521 18.50 1 18.50 Newark	Element14
6 mX7	Solenoid	valve SAMH000756/961-712321-000 42.00 2 84.00 Parker	Hannafin	Precision	Fluidics
7 Airtrol	Regulator V800-90	W/K 36.30 2 72.60 Hi-Tech	Pneumatics
8 Micro	air	pump AP-2P01 65.00 1 65.00 Smart	products
9 4-phase	5VDC	unipolar	stepper	motor 237825 9.95 1 9.95 Jameco
10 EasyDriver	stepper	motor	driver ROB-12779 14.95 1 14.95 SparkFun
11 Custom	PCB N/A 25.00 1 25.00 Royal	Circuit	Solutions
12 Honeywell	TruStability	pressure	sensor SSCDLNN005PGAA5 32.87 2 65.74 DigiKey
13 DC/DC	converter,	12V-5V,	2000mA V7805-2000R 10.68 2 21.36 DigiKey
14 Solenoid	driver	DRV104 296-15746-1-ND 5.62 2 11.24 DigiKey
15 LDV33	transistor 497-1491-5-ND 0.56 1 0.56 DigiKey
16 68Kohm	RES PPC68.1KZTR-ND 0.52 4 2.08 DigiKey
17 1uF	CAP 493-12567-3-ND 0.11 2 0.22 DigiKey
18 470pF	CAP 1286PH-ND 0.25 2 0.50 DigiKey
19 220ohm	RES CF12JT220RCT-ND 0.04 1 0.04 DigiKey
20 2.1mm	Barrel	Jack	Connector PRT-00119 1.25 1 1.25 SparkFun
21 MCP3008 856 3.75 1 3.75 Adafruit
22 2N4401	transistor 2N4401D75ZCT-ND 0.15 1 0.15 DigiKey
23 40-PIN	IDC	connector 2222 1.00 1 1.00 Adafruit
24 1N4007	DIODE 1N4007FSCT-ND 0.09 2 0.18 DigiKey
25 Disc1	magnet	N42 D403 0.29 4 1.16 K&J	Magnetics
26 Disc2	magnet	N42 D46 0.79 1 0.79 K&J	Magnetics
27 60W	AC-to-DC	switching	table-top	power	supply	12V	5A 1952370 18.95 1 18.95 Jameco
28 Miscellaneous	(Screws,	standoffs,	nuts,	etc) N/A 2.00 1 2.00 Jameco
29 PLA	3D	printing	plastic	(@	$41/750g	or	$41/95m) Ultimaker	PLA	Black 0.43 21.13 9.12 fbrc8

TOTAL: $536.52
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