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ABSTRACT

Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell
replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new
insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere
length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the
estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being
known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed
to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer
studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing
errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and
computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, technical replicates, and
cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the
underlying telomerase genotype.

Introduction
Telomeres are the ribonucleoprotein structures at the ends of chromosomes. They are multifunctional regions of the genome
that serve to protect coding DNA from the shortening process inherent in cell replication; that act as a molecular clock; and that
shield the ends of chromosomes from the DNA damage response1. In humans, the telomere is an extremely repetitive region of
the genome comprised of the nucleotide hexamer: (T TAGGG)n. Telomere length is both a driving force in tumour aetiology
and a risk factor for cancer and other diseases2, 3.

In this study we present Telomerecat, the first tool designed specifically to estimate mean telomere length from cancer
whole genome sequencing (WGS) data. There have been previous approaches to using WGS data to say something about
telomeres. Castle et al. provided a proof of concept in 20104, and this was refined by the first group to use such an approach in
earnest5. Ding et al.6 published the first fully-fledged method for estimating length rather than just telomere content, with
the accompanying tool ‘TelSeq’. Their study was also the first time a computational method had been validated against an
established experimental method.

TelSeq assumes a fixed number of chromosomes when estimating telomere length and so makes no allowance for
aneuploidy. Nevertheless, as the strongest available tool there are several examples of TelSeq being used to analyse cancer
datasets7, 8Ṅotably a recent pan-cancer analysis made use of the TelSeq tool9. While generally sound, such analyses are
vulnerable to misinterpretation in the event of systematic differences in aneuploidy (as may be the case when comparing
different cancer types). Indeed, recurrent somatic copy number alterations involving the telomere were observed in all cancer
types studied in a pan-cancer study of Cancer Genome Atlas data10.

Where such changes (suggestive of aneuploidy) occur, cells will likely be left with an altered number of telomeres.
Accordingly the quantity (and proportion) of telomere sequence within the sample is altered, even if the mean length of
telomeres is unaltered. Thus if we observe more telomere sequence in a cancer sample, we do not know if this is due to longer
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telomeres.
Two other tools of note have been published: TelomereHunter and Computel. TelomereHunter11 reports telomere content

rather than telomere length, and so does not provide a direct comparison. TelomereHunter classifies reads based on their
mapping location within the parent BAM file and outputs statistics relating to variations of the canonic telomere hexamer.
Computel12 does allow the user to specify the number of telomeres present, but since this is unknown (and cannot safely be
inferred from copy-number profiles or ploidy statistics) it again does not provide a direct comparison. Since TelSeq is more
frequently used in the literature, has greater experimental validation than Computel, and a recent comparison study13 did not
find that the greater convenience of TelSeq was at the cost of poorer performance, we take TelSeq as the representative of
current methods in our comparisons.

Telomerecat accounts for aneuploidy as an inherent part of the method, without relying on knowledge of the number of
telomeres present, and so avoids such potential misinterpretation of results. Another source of error for tools of this nature
can arise from stretches of the TTAGGG repeat sequence that appear in the human genome distal from the actual telomeres:
so-called Interstitial telomeric repeats (‘ITRs’)14. As well as a consideration of aneuploidy, Telomerecat estimates and corrects
for the number of ITR-originating reads without consideration for how these highly repetitive reads are aligned to a reference
genome. This removes any reliance on upstream preprocessing by a sequence aligner for the removal of ITR reads and increases
the wide applicability of the method.

A third potential hindrance is that it is difficult to define the end of the telomere precisely based solely on genomic sequence
(explicit information about DNA secondary structures and the locations of bound proteins having been lost). The subtelomere
is composed of subtelomeric repeat sequences and segmental duplicates, interspersed by canonic telomere repeats15. These
subtelomeric repeat sequences can look much like the telomere but with the addition of sequencing errors. Too strict a definition
of telomere as being the region of TTAGGG repeats would be hostage to genuine variations, sequencing errors, and somatic
mutations.

Telomere length is therefore necessarily a subjective measure, consistent only within the method used. Accordingly there
may be an off-set in comparisons with other methods. Even ‘gold standard’ laboratory methods for measuring telomere lengths
may have their own biases in this regard16.

Moreover, differences in patterns of sequencing error have the potential to lead to inconsistency between samples even
if using the same method. To this end, Telomerecat includes a novel method for correcting sequencing error in telomere
sequencing reads. This model automatically adapts to differing error across sequencing preparations.

Telomerecat is an open source tool, the code is available from https://github.com/jhrf/telomerecat. Full installation and
usage documentation is available at https://telomerecat.readthedocs.io

Results
Validation in presumed-diploid blood samples
To verify that Telomerecat is able to identify telomere length within WGS samples, we compared the algorithm to an established
experimental method (mean terminal restriction fragment Southern blot experiment (mTRF)) and the leading computational
method (TelSeq). Blood samples were taken from 260 adult females as part of the TwinsUK10K study, WGS and mTRF were
conducted on each sample (described previously1718). The donor’s age at sample collection is also recorded for each sample.
Since absolute agreement is not expected, we consider correlations between the methods. The results of the comparisons are
shown in Table 1 and in Figure 1.

We observe that the best correlation is between the the two computational methods at ρ = .631. The next best correlation
was between mTRF and Telomerecat indicating that Telomerecat agrees with the established experimental method. Both
Telomerecat and TelSeq correlate well with mTRF indicating that both tools are providing realistic estimates of telomere length.
The extent that Telomerecat correlates with mTRF is in line with correlations previously observed between other experimental
methods and mTRF16.

Telomerecat estimates telomere length that is shorter, on average, than TelSeq. At least part of this disparity may be due to
Telomerecat’s active filtering of reads from ITRs. Telomerecat finds that, on average 7% of telomeric read-pairs identified are
from ITRs.

Telomerecat was able to identify a correlation with age only slightly weaker than that of mTRF, a strong indicator that we
are capturing genuine information about telomere lengths.

Application to a longitudinal MSC data set
We applied Telomerecat to a set of WGS samples from a mesenchymal stem cell (MSC) experiment described previously19.
Mesenchymal stem cells are multipotent stromal cells commonly located in bone marrow20. The experiment constituted six
WGS samples: an in vivo MSC sample from a healthy 31 year old male, three passaged MSC samples (P1,P8 and P13) and two
induced pluripotent stem cell (iPSC) samples.
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Figure 1. Scatter plots describing the relationship between Telomerecat, mTRF, and TelSeq estimates of telomere length (TL).

MSCs are unusual amongst mature human stem cells as they do not express any measurable amount of telomerase21.
Accordingly, telomere length attrition has been described in MSC passage experiments22. Conversely, iPSC cells have been
shown to exhibit heightened telomerase expression23. We hypothesised that telomere length would shorten across the passaged
MSC samples and lengthen within the iPSC samples.

We applied Telomerecat and TelSeq to the aforementioned MSC WGS data. The results are shown in Figure 2. Telomerecat
identifies telomere shortening across the passaged samples, as expected. Telomerecat estimates that between P1 and P13 the
average telomere length was shortened by 2.5KB, at a rate of approximately 0.2KB per passage. Furthermore, we see that
Telomerecat identifies long telomere length in the the two iPSC samples. We also note that TelSeq fails to identify the expected
telomere dynamics.

Application to a cancer dataset
After establishing that Telomerecat performs well in diploid samples, we demonstrated that it can also be applied to cancer
samples. We applied Telomerecat to a data set comprised of samples from four donors suffering from Hepatocellular carcinoma
(HCC)24. Primary HCC cells were extracted from each donor in that study. These primary cells were cultured to create cell
lines. Samples of the primary cells in vitro, an early passage and a late passage were taken for sequencing. Table 2 lists the
exact passage number for each sample.

Figure 3 shows the results of applying Telomerecat to the HCC cohort. We observe two telomere length phenotypes across
the four donors. CLC11 and CLC13 show a telomere length that is not altered across the passage process. By contrast, in
CLC16 and CLC5 we see that telomere length increases across the passaged samples. Z. Qiu et. al report that all four samples
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Telomerecat TelSeq mTRF

TelSeq ρ = 0.631 - -
mTRF ρ = 0.618 ρ = 0.583 -

Donor Age ρ =−0.306 ρ =−0.239 ρ =−0.321

Table 1. Results for the comparisons between Telomerecat, TelSeq, mTRF and Donor Age. Pearson correlation was used for
each comparison.
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Figure 2. This figure shows estimates for the MSC samples produced by Telomerecat (left) and TelSeq (right). We expect to
see a decrease in telomere length with additional passaging (P1 to P13), but consistent high telomere lengths in the two iPSC
samples (iPSC1 and iPSC2)

contain corruptions in the TERT gene as shown in Table 2. It is interesting to note that CLC16 and CLC5 share both a TERT
genotype and telomere length phenotype.

Previous studies suggest that the presence of TERT promoter mutations and HBV Integration increases TERT expression25, 26.
However it is not clear that heightened expression is indicative of longer telomere lengths. Indeed, HCC tumours generally
have shorter telomeres than adjacent normal cells27.

Application to a set of technical replicates
We have also tested Telomerecat on pairs of WGS technical replicates from the NIHR BioResource - Rare Diseases study.
Telomerecat was applied to 93 samples of DNA extracted from whole blood. For each participant two samples were taken.
Each sample was sequenced on either the HiSeq2000 or HiSeqX platform. We observe cases in this cohort where samples from
the same participant were sequenced on the same technology and where samples were sequenced on different technologies.

A sound approach to telomere-length estimation will be reproducible across duplicate samples. After accounting for batch
effects relating to choice of platform, Telomerecat achieves good agreement between duplicate pairs, as shown in Figure 4.
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CLC11 CLC13 CLC16 CLC5

Early Passage Count 6 3 3 7
Late Passage Count 24 18 21 27
TERT Promoter Mutation No Yes Yes Yes
TERT Amplification Yes Yes No No
HBV Integration Yes No No No

Table 2. Patients in the HCC study
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Figure 3. Telomerecat estimates for the HCC cell line dataset. Results are shown as log2 fold change in relation to the
Primary Cell telomere length

Application to mouse samples

Mouse telomeres are known to be longer than human telomeres28. However, telomere length is known to vary across different
mouse strains. We applied Telomerecat to 10 samples from the Mouse Genomes Project29. Telomerecat identifies a range of
telomere lengths, most of which are substantially greater than estimates from human samples. The estimates for the mouse
samples, as well as two human samples for comparison, are shown in Figure 5. TelSeq was not applied as the tool is specifically
tailored to the human genome.

Telomerecat identifies a range of telomere lengths for the mice, almost all of the lengths are substantially longer than the
longest human telomeres in the TwinsUK10K cohort. Additionally, we note that two of the samples with the shortest estimates
- CAST Eij and SPRET Eij - have been identified as having comparatively short telomeres30–32. We also note that previous
studies have identified the BALB cJ mouse strain as having long telomeres32.
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Figure 4. A plot of telomere length (TL) estimates for technical duplicate pairs. Colours correspond to the sequencing
platform of each sample in the pair.

A comparison of running time and resource allocation
Benchmarking was conducted on a MacPro desktop computer with 2x 2.93 Ghz Quadcore Intel Xeon processors and 16GB
of 1066Mhz DDR3 memory. The results of benchmarking for the Telomerecat and TelSeq tools can be found in Table 3.
Benchmarking was conducted on QTL190044 from the TwinsUK10K cohort. The results displayed are the average from the
three runs.

Discussion
Here we have demonstrated and validated a novel approach to estimating telomere length from WGS data. Importantly,
Telomerecat is the first tool designed to be applicable to cancer experiments as it does not assume a given number of telomeres.

Core to Telomerecat’s estimation process is the ratio between read-pairs that lie within the telomere and read-pairs that
span the telomere boundary. Observing reads on the boundary between telomere and subtelomere provides a quantification of
telomere numbers through which we normalize the telomere lengths. Where other samples always assume that more telomere
reads mean longer telomere, Telomerecat is able to account for the fact that there may actually be more individual telomeres.

We have validated Telomerecat by showing that it correlates with existing computational and experimental methods as well
as with sample donor age. mTRF itself provides an imperfect measure of telomere length and, from correlations with age, it
seems that computational methods may be capturing as much information as that approach.

WGS-based methods will naturally be more accurate as the depth of sequencing increases.
Much of the inaccuracy in the estimates of the TwinsUK10K data may be attributable to the relatively low coverage of the

WGS data. At low coverage, Telomerecat’s estimate of the number of reads crossing the boundary is less certain. As coverage
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Telomerecat estimates for samples from the Mouse Genome Project

0

5

10

15

20

25

30

35

40

45

50

T
e

lo
m

e
re

 L
e

n
g

th
 E

s
ti
m

a
te

 (
K

B
)

SPR
ET E

iJ

M
O
LF

 E
iJ

C
AST E

iJ

BU
B B

nJ

LE
W

ES E
iJ

12
9S

1 
SvI

m
J

KK H
iJ

LP
 J

AKR
 J

BALB
 c
J

Mouse Samples

M
ed

ia
n 

Lo
ng

es
t 

Human Samples

TwinsUK10K Cohort

Figure 5. Telomere length estimates by Telomerecat for 10 mouse samples from the Mouse Genomes Project

at the boundary decreases and the observed read counts for each individual sample become less certain Telomerecat relies
more on the cohort error adjustment (discussed in the methods section). With higher coverage we would expect even better
agreement between Telomerecat and the other methods for diploid cells.

By applying Telomerecat to the duplicate blood samples we have demonstrated Telomerecat’s ability to generate meaningful
results on two of the most popular Illumina paired-end platforms. As well as confirming the reliability of Telomerecat’s
telomere length estimates, this shows that the estimates are robust to sequencing batches once batch effects are accounted for.

Amongst the most striking results presented here is the estimation of telomere length across MSC cell line passaged data.
Telomerecat identifies a clear deterioration of telomere length across the passaged cells and an increase of telomere length in
the iPSC samples, in which telomerase had been reactivated. Notably, TelSeq fails to identify this pattern.

On observing TelSeq’s output, we see that the most likely reason for its failure to observe the expected telomere dynamics
is in the GC correction part of the algorithm (see Supplementary Information). This indicates that the relationship between
coverage at locations where genomic GC is identical to telomere and actual telomere, on which TelSeq relies, may not always
be consistent across experiments.

Telomerecat TelSeq

Time Taken (seconds) 756 3894
Reads per hour 1.562×109 3.299×108

Max. Processor Usage (%) 537.6 96.8
Avg. Processor Usage (%) 356.8 80

Max. Memory Usage (GB) 1.9 0.104
Avg. Memory Usage (GB) 1.3 0.037

Table 3. Benchmarking results for Telomerecat and TelSeq
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We have presented the first application of a WGS telomere length estimation approach to data derived from non human
samples; Telomerecat’s agnosticism to telomere numbers provides a natural advantage here also. As expected, Telomerecat
identifies long telomere length in most of the mice samples. Pleasingly, Telomerecat is concordant with the literature in
demonstrating the short telomeres in CAST EiJ and SPRET cJ samples and long telomeres in BALB cJ.

Telomerecat tends to report shorter telomere length than other methods, both computational and experimental. There will
be several contributing factors, including disagreement over the definition of the telomere/sub-telomere boundary, and the
stringency for categorizing read-pairs as being telomeric. One clear contributing factor in the comparison of computational
methods will be Telomerecat’s exclusion of ITR read-pairs, typically contributing 4% to 10% of apparently telomeric read-pairs.

We have also demonstrated that Telomerecat can be run quickly (five times faster than TelSeq for our example). Telomerecat
is able to process samples quickly as it is built on a parallel BAM processing framework - parabam33 - and thus uses multiple
processing cores at all stages of the analysis. Telomerecat promotes reproducible research by generating subsets of reads from
which telomere length estimates can be generated. We hope that these smaller file will be more easily stored and transferred
allowing researchers to regenerate estimates without the need to process the cumbersome original BAM files.

Finally, we have demonstrated the application to a cancer WGS dataset: Telomerecat’s raison d’être. We see that Telomerecat
identifies differing telomere phenotypes across four passage experiments. Intriguingly the two experiments with the most
similar telomere length phenotype have an identical underlying TERT corruption.

Methods

Overview

For each BAM For each TELBAM

Apply cohort wide

F2a correction (optional)

Use F1, F2a and Insert length 

distribution to estimate telomere length 

Output TL estimates 

in CSV format

Extract reads with at least

two occurences of

TTAGGG or CCCTAA

Output as TELBAM

Find mismatching loci in each read

using segment based alignment

Define an error profile of reads

with the TELBAM 

Categorise reads into telomere read types: 

 F1, F2a, F2b, F3, F4

For each F1 / F2a measurement

Figure 6. An overview of the Telomerecat length estimation process

Telomerecat functions as three discrete operations: TELBAM generation, read categorisation and length estimation. A
flowchart depicting the method is given in Figure 6.

First, we collect a relevant subset of reads and their pairs from a BAM file. This subset is referred to as a TELBAM
and consists of read pairs where one end of a read pair has two occurrences of the telomeric hexamer. This read subsetting
operation is expedited by using the parallel processing framework parabam33. We observe that TELBAMs contain less than one
ten-thousandth of the reads from an input BAM file.

Next we categorise read pairs according to their sequence composition and orientation on the genome. The telomere length
estimate is informed by a ratio of complete telomere read pairs to read pairs on the boundary between telomere and subtelomere.
In order to differentiate between the various type of telomere read we must first understand how reads differ from the telomere
sequence and whether these differences are genuine biological perturbations or the result of sequencing error.
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Lastly, we use the ratio of complete to boundary read-pairs in conjunction with insert length distribution to estimate the
underlying telomere length that produced the observed complete to boundary ratio.

Defining error in telomere reads
Key to the process of identifying sequencing error is identifying loci within reads that do not match the expected telomere
sequence. We shall refer to these as “mismatching loci”. Telomeres are extremely repetitive stretches of DNA. This repetition
of sequence allows us to imagine a hypothetical telomere sequence and then to compare reads to the hypothetical sequence to
find differences. In order to account for insertions and deletions in the sequencing reads (both biological and as a result of
sequencing error) we use a method of fragmentary local alignment. Reads that suffer few mismatches, and those mismatches at
loci with low Phred scores, likely represent complete telomere sequences.

Since mismatch loci that represent sequencing errors should be associated with lower Phred scores, we first observe the
empirical joint distribution of Phred scores at mismatching loci, and number of mismatching loci across the BAM file (Figure
8A) before constructing the equivalent distribution for loci chosen at random within the reads (Figure 8B). We find that reads
with few mismatches and low Phred scores (complete telomere sequences suffering from sequencing error) are over-represented
in the empirical data set.

We define Pmax and Pmin as the global maximum and minimum observed Phred score across all reads, and (L) as the read
length used.

We let N represent the total number of reads in the TELBAM such that {0,1,n, ...,N−1} are indices representing each
read. Values associated with the nth read are denoted with a superscript (n). For example, the vector of Phred scores associated
with the L locations in read n is denoted p(n) = {p(n)0 , p(n)1 , ..., p(n)L−1}. For the nth read, let m(n) be a random vector in the space
{0,1}L such that a 1 is found at each loci in the read that does not agree with the telomere sequence. In the case that the
sequence is comprised of perfect telomere sequence then the vector should sum to zero. The method for obtaining m(n) via an
fragmentary alignment method is shown in Figure 7.

Then define zn (the number of mismatches for read n), and λ n (the average Phred score at mismatches in read n)) as:

zn =
L−1

∑
i=0

m(n)
i

λ
n =

⌊
∑

L−1
i=0 m(n)

i p(n)
i

z(n)

⌋
−Pmin

We then define an indicator function

1(λ ,z, i, j) :=

{
1 if λ = i∧ z = j,
0 if λ 6= i∨ z 6= j.

So that a matrix X takes the form,

xi j =
N−1

∑
n=0

1(λ (n),z(n), i, j)

Where i ∈ {0, ...,Pmax−Pmin} and j ∈ {0, ...,L−1}. Thus each xi j in X records the number of reads with the relevant λ and z
contained within the TELBAM and is depicted in Figure 8A.

Where X captures information about the average Phred score (λ (n)) at z(n) mismatching loci, we seek to create an equivalent
matrix Y about the average Phred score at z(n) random loci in the nth read.

For the nth read, let r(n) be a random vector in the space {0,1}L such that ∑
L
k=1 r(n)k = z(n). That is, a vector for which the

non-zero entries identify z(n) random loci within the read.
So that,

µ
(n) =

⌊
∑

L
i=1 r(n)i pi

z(n)

⌋
−Pmin
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Figure 7. The algorithm that determines the indices of divergence from the telomere sequence. 0: We observe a sequencing
read 1: We split the read into ‘segments’ (11 in total in our example) such that each segment is a substring of the original
sequence and that every other segment consists of unbroken telomere sequence. In our example we see that segments
1,3,5,7,9,11 contain unbroken telomere sequence. 2: Each segment containing a telomere hexamer is ‘expanded‘ to capture the
full extent of the surrounding telomere sequence. The number of segments is reduced by 2. 3: When two segments both
containing the telomere hexamer are adjacent after Step 2 this indicates a deletion event. We take the loci with the lowest
corresponding Phred score. For any segment that does not contain a telomere hexamer and where the length of the segment is
greater or equal to 4 apply we conduct a basic alignment of all possible telomere offset telomere sequences. The telomere
sequence with the lowest Hamming distance is taken as a local alignment for that segment. Where two alignments are equal the
one with the lowest average Phred score is preferred. 4: Sequence loci that are not in a complete hexamer or were mismatched
in the Hamming alignment step are taken as mismatching loci. m for this example is given in the final line of the diagram.
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Figure 8. A: A heatmap of the joint distribution of Phred scores a mismatching loci and the number of mismatching loci (X).
The intensities in the top left corner of the heatmap indicate an association between fewer mismatches and lower phred scores.
We observe that the maximum mismatching loci is commonly ∼75% of the read length. This effect is caused by non-telomere
reads match a the telomere sequence simply by chance B: A heatmap of the joint distribution of random loci in reads and the
associated phred score (Y). We note that the joint distirubtion of reads in the upper half of the matrix is different to that in X
while the lower portion is identical. C: The difference between X and Y. Referred to as D in the text. D: A binary heatmap
showing all cells in D that are greater than the threshold k. We note the preponderance of cells in the upper left hand corner of
the figure E: We remove noise from the figure using the methods detailed in (Supplementary Algorithm 1) F: We apply a final
rule to ensure cells associated with low Phred scores are captured in the error profile (Supplementary Algorithm 2)
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Thus,

1(µ,z, i, j) :=

{
1 if µ = i∧ z = j,
0 if µ 6= i∨ z 6= j.

yi j =
N−1

∑
n=0

1(µ(n),z(n), i, j)

As before, i ∈ {0, ...,Pmax−Pmin} and j ∈ {0, ...,L−1}.
When we plot the matrices X (Figure 8A) and Y (Figure 8B) as heat maps we typically see that there is a striking difference

in their composition. The heatmap for X shows an intensity in the upper left hand corner pertaining to reads with low Phred
scores at mismatching loci. This hotspot is missing from the Y heatmap. We interpret this region as representing telomere reads
affected by sequencing error that we wish to capture in our length estimation process.

We find the difference between the two matrices:

D = X−Y

We plot values of D > 0 as a heatmap in 8C. To capture cells that contain more reads than we would expect at random we define
a mask E. E is defined such that:

ei j =

{
1 if di j > k,
0 if di j ≤ k.

Where k is max{Di j} for all values where 1
2 p < i≤ p and 1

2 L < j ≤ L. This matrix is depicted as a heatmap in Figure 8D.
We note that the mask depicted in Figure 8D has gaps that appear as a result of using k as a threshold. We apply the

procedure detailed in Supplementary Algorithm 1 in order to remove noise from the error profile. The results of applying this
procedure are shown in Figure 8E. We conclude by applying the operation described in Supplementary Algorithm 2 and shown
in Figure 8F. This is the final matrix and is provided to the read classification procedure shown in Supplementary Algorithm 3
as E. All reads falling within the area by the error profile are counted as fully telomeric suffering from sequencing error.

Our definitive definition of a fully telomeric read is a read where 90% of the the sequence is telomere or the read falls into
the error profile (See Supplementary Algorithm 3). In practice we observe that using a threshold above 90% leads to decreased
accuracy. It is possible that this is indicative of genuine telomere heterogeneity but further study is required to understand this
phenomenon.

Categorising telomere read types
Once we have adequately described sequencing error we now classify each read-pair. In this section we describe the step that
allows us to sort read-pairs into ‘complete’ read-pairs (denoted F1 reads in Figure 9 - both reads of the pair lying wholly within
the telomere) and boundary (F2a - exactly one read of the pair lying wholly within the telomere) reads.

The Telomerecat length estimation method requires that all read pairs are sorted into four categories: F1, F2, F3 F4.
Examples of each read type are given in Figure 9. Pseudocode for categorisation of reads is given in Supplementary Algorithm
3.

The read categorisation process is crucial to Telomerecat’s ability to filter interstitial reads. As we see in Figure 9, F2a are
read pairs that straddle the boundary between telomere and the rest of the genome whereas F2b reads fall on one side of an ITR.
We cannot directly observe the number of F2a or F2b read pairs; the orientation and sequence content of the read types are
identical. However, we do know that, on average, within a sequencing experiment, there should be a corresponding F2b for
each F4. Using this information we can deduce the amount of F2a reads.

F2b≡ F4
F2a = F2−F2b

F4 reads give us an estimate of ITR reads, so subtracting F4 from F2 we are left with a count of reads F2 for which there
was no corresponding F4. We posit that this is the count of reads on the boundary between telomere and subtelomere.

This method allows us to attain an estimate of F2a without filtering reads based on any upstream processing or any sequence
structure beyond a distinction between “complete” and “incomplete” (see Supplementary Algorithm 3).
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Using cohort wide information to correct error in F2a counts
We observe that in some cases it is useful to normalise a cohort’s F2a count based on information from other samples in the
batch. What follows is a method for adjusting F2a using a weighted average.

Let C be the total number of TELBAMs in a batch provided to Telomerecat. Such that subscript c represents a value relevant
to any individual TELBAM. Let θ = F2a

F2+F4 such that θ exp is the average θ observed across all TELBAMs in a cohort and θ obs
c

is the observed value of θ with in a particular TELBAM.

θ
exp =

∑
C
c=1 θ obs

c

C

θ
cor
c =

θ obs
c ·ψc +θ exp ·w

ψc ·w

Where w is a predetermined weight of 3. ψ for any given TELBAM is obtained as follows.

µc =
∑

2
5 p
i=1 ∑

L
j=1 Xi j

L · ( 2
5 p)

σc =
∑

2
5 p
i=1 ∑

L
j=1 (Xi j−µc)

2

L · ( 2
5 p)

ψc =
σc

µc

So it follows that the adjusted value of F2a is given as θ cor · (F2+F4)

Estimating length from read pair categories
The final step of the telomere length estimation process involves converting a ratio of F1 : F2a read counts into an estimation
of length. We achieve this by simulating telomere length under the observation of counts for F1, F2a and the fragment size.
Psuedocode for the simulation is given in Algorithm 1

Algorithm 1 Telomerecat length estimation simulation algorithm

function LENGTHESTIMATION(F1,F2a)
τ ← Arbitrary starting TL
µ,σ ← Sample fragment mean and standard deviation
while (F1′ 6= F1)&(F2a′ 6= F2a) do

F1′,F2a′← simulate(τ,F1+F2a,µ,σ)
if F1′ < F1 then

τ ← τ + i
else if F1′ > F1 then

τ ← τ− i
return τ

Batch effect correction when multiple sequencing platforms are used
Our observation has been that estimates from the HiSeqX platform are shorter on average than estimates from the HiSeq2000
platform. We have also observed that samples sequenced on the HiSeqX platform show lower scores in quality assessment. To
account for this effect we propose that a mean correction should be applied to estimates from the HiSeqX platform.
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Figure 9. A: The read-pair types at the boundary between telomere and subtelomere. F2a reads stem from the boundary
whereas F1 reads stem from anywhere within the telomere proper. F3 are reads where neither read in the pair is complete
telomere B: Detail of the F1 and F2a read types. F1 read-pairs are comprised of two complete telomere reads. F2a read-pairs
are comprised of a read-pair where one read is complete telomere and the other is not. Crucially, the complete telomere read is
comprised of CCCTAA C: The read-pair types at an ITR. D Detail of the F2b and F4 read types. Note that the F2b is physical
indistinguishable from an F2a read. An F4 read is read-pair where one read is complete telomere and the other is not. The
complete end is comprised of TTAGGG
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