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Abstract

Cell-free protein synthesis (CFPS) is a widely used research tool in systems and

synthetic biology. However, if CFPS is to become a mainstream technology for applica-

tions such as point of care manufacturing, we must understand the performance limits

and costs of these systems. Toward this question, we used sequence specific constraint

based modeling to evaluate the performance of E. coli cell-free protein synthesis. A

core E. coli metabolic network, describing glycolysis, the pentose phosphate pathway,

energy metabolism, amino acid biosynthesis and degradation was augmented with

sequence specific descriptions of transcription and translation and effective models

of promoter function. Model parameters were largely taken from literature, thus the

constraint based approach coupled the transcription and translation of the protein

product, and the regulation of gene expression, with the availability of metabolic
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resources using only a limited number of adjustable model parameters. We tested

this approach by simulating the expression of two model proteins: chloramphenicol

acetyltransferase and dual emission green fluorescent protein, for which we have

training data sets; we then expanded the simulations to a range of additional proteins.

Protein expression simulations were consistent with measurements for a variety of

cases. The constraint based simulations confirmed that oxidative phosphorylation was

active in the CAT cell-free extract, as without it there was no feasible solution within

the experimental constraints of the system. We then compared the metabolism of

theoretically optimal and experimentally constrained CFPS reactions, and developed

parameter free correlations which could be used to estimate productivity as a function

of protein length and promoter type. Lastly, global sensitivity analysis identified the

key metabolic processes that controlled CFPS productivity and energy efficiency. In

summary, sequence specific constraint based modeling of CFPS offered a novel means

to a priori estimate the performance of a cell-free system, using only a limited number

of adjustable parameters. While we modeled the production of a single protein in this

study, the approach could easily be extended to multi-protein synthetic circuits, RNA

circuits or the cell free production of small molecule products.

Keywords

Synthetic biology, constraint based modeling, cell-free protein synthesis

1 Introduction

Cell-free protein expression has become a widely used research tool in systems and syn-

thetic biology, and a promising technology for personalized protein production. Cell-free

systems offer many advantages for the study, manipulation and modeling of metabolism

compared to in vivo processes. Central amongst these is direct access to metabolites and
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the biosynthetic machinery without the interference of a cell wall or the complications

associated with cell growth. This allows interrogation of the chemical environment while

the biosynthetic machinery is operating, potentially at a fine time resolution. Cell-free

protein synthesis (CFPS) systems are arguably the most prominent examples of cell-free

systems used today (1). However, CFPS is not new; Matthaei and Nirenberg first used

E. coli cell-free extracts in the 1960s to decipher the sequencing of the genetic code (2, 3).

Spirin and coworkers later improved the operational lifetime of cell-free protein produc-

tion with a continuous exchange of reactants and products; however, these systems could

only synthesize a single product and were energy limited (4). More recently, CFPS was

improved by generating ATP using both substrate level (5) and oxidative phosphorylation

(6, 7). Today, cell-free systems are used in a variety of applications ranging from ther-

apeutic protein production (8, 9) to synthetic biology (10). There are also several CFPS

technology platforms, such as the PANOx-SP and Cytomin platforms developed by Swartz

and coworkers (1, 5, 6), and the TX/TL platform of Noireaux (11). However, if CFPS

is to become a mainstream technology for advanced applications such as point of care

manufacturing (12), we must first understand the performance limits and costs of these

systems (1). One tool to address these questions is constraint based modeling.

Constraint based approaches such as flux balance analysis (FBA), which use stoichio-

metric reconstructions of microbial metabolism, have become standard tools in systems

biology and metabolic engineering (13). FBA and metabolic flux analysis (MFA) (14), as

well as convex network decomposition approaches such as elementary modes (15) and ex-

treme pathways (16), model intracellular metabolism using the biochemical stoichiometry

and other constraints such as thermodynamical feasibility (17, 18) under pseudo steady

state conditions. Constraint based approaches have used linear programming (19) to

predict productivity (20, 21), yield (20), mutant behavior (22), and growth phenotypes (23)

for biochemical networks of varying complexity, including genome scale networks, using

a limited number of adjustable parameters. Since the first genome scale stoichiometric
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model of E. coli (24), stoichiometric reconstructions of hundreds of organisms, including

industrially important prokaryotes such as E. coli (25) and B. subtilis (26), are now available

(27). Stoichiometric reconstructions have been expanded to include the integration of

metabolism with detailed descriptions of gene expression (ME-Model) (23, 28, 29) and

protein structures (GEM-PRO) (30, 31). These expansions have greatly increased the scope

of questions that constraint based models can explore. Thus, constraint based methods are

powerful tools to estimate the performance of metabolic networks. However, constraint

based methods are typically used to model in vivo processes, and have not yet been applied

to cell-free metabolism.

In this study, we used sequence specific constraint based modeling to evaluate the

performance of E. coli cell-free protein synthesis. A core E. coli cell-free metabolic model

describing glycolysis, pentose phosphate pathway, energy metabolism, amino acid biosyn-

thesis and degradation was developed from literature (25); this model was then augmented

with sequence specific descriptions of promoter function, transcription and translation

processes. Thus, the sequence specific constraint based approach explicitly coupled tran-

scription and translation processes with the availability of metabolic resources in the

CFPS reaction. We tested this approach by simulating the cell-free production of two

model proteins, and then investigated the productivity and energy efficiency for eight

additional proteins. Productivity was inversely proportional to carbon number, while

energy efficiency was independent of protein size. Based on these simulations, effective

correlations for the productivity and energy efficiency as a function of protein length

were developed. These correlations were then independently validated with a protein not

in the original data set. Further, global sensitivity analysis identified the key metabolic

processes that controlled CFPS performance; oxidative phosphorylation was vital to energy

efficiency, while the translation rate was the most important factor controlling productivity.

Lastly, we compared theoretically optimal metabolic flux distributions with experimentally

constrained flux distributions; CFPS retained an in vivo operational memory that led to
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the overconsumption of glucose which negatively influenced energy efficiency. Taken

together, sequence specific constraint based modeling of CFPS offered a novel means to

a priori estimate the performance of a cell-free system, using only a limited number of

adjustable parameters. While we considered only a single protein here, this approach

could be extended to synthetic circuits, RNA circuits (32) or even cell-free small molecule

production.
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2 Results and discussion

2.1 Model derivation and validation

The cell-free stoichiometric network was constructed by removing growth associated reac-

tions from the iAF1260 reconstruction of K-12 MG1655 E. coli (25), and adding deletions

associated with the specific cell-free system (see Materials and Methods). The iAF1260

reconstruction describes 1260 ORFs, and thermodynamically derived metabolic flux di-

rectionality. We then added the transcription and translation template reactions of Allen

and Palsson for the specific proteins of interest (28). A schematic of the metabolic network,

consisting of 264 reactions and 146 species, is shown in Fig. 1A. The network described the

major carbon and energy pathways and amino acid biosynthesis and degradation path-

ways. Using this network in combination with effective promoter models taken from Moon

et al. (33) and literature values for cell-free culture parameters (Table 2), we simulated the

sequence specific production of two model proteins: chloramphenicol acetyltransferase

(CAT) and dual emission green fluorescent protein (deGFP, shown in the Supporting Infor-

mation). We calculated the transcription rate using effective promoter models, and then

maximized the rate of translation within biologically realistic bounds. Transcription and

translation rates were subject to resource constraints encoded by the metabolic network,

and transcription and translation model parameters were largely derived from literature

(Table 2). In this study, we did not explicitly consider protein folding. However, the

addition of chaperone or other protein maturation steps could easily be accommodated

within the approach by updating the template reactions, see Palsson and coworkers (23).

The cell-free metabolic model code and parameters can be downloaded under an MIT

software license from the Varnerlab website (34).

Cell-free simulations of the time evolution of CAT production were consistent with

experimental measurements (Fig. 2). CAT was produced under a T7 promoter in a glu-

cose/NMP cell-free system using glucose as a source of carbon and energy (35). Metabolic
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fluxes were constrained by experimental measurements of glucose, nucleotides, amino

and organic acid consumption and production rates (estimated from a total of 37 metabo-

lite time series measurements) for the first hour of the reaction (rates assumed constant;

see Supporting Information). On the other hand, the rates of CAT transcription and

translation were predicted by the model. The model showed good agreement with the

CAT measurement with a coefficient of determination of R2 = 0.92. Next, we also sim-

ulated the production of deGFP under a P70a promoter in TXTL 2.0 using maltose and

3-phosphoglycerate (3PG) as a carbon and energy source (R2 = 0.84). The model captured

the saturation of the deGFP titer for a range of plasmid concentrations (R2 = 0.97, see

Supporting Information). Uncertainty in experimental factors such as the concentration

of RNA polymerase, ribosomes, transcription and translation elongation rates, as well as

the upper bounds on oxygen and carbon consumption rates (uniformly sampled around

the parameter values shown in Table 2), did not qualitatively alter the performance of

the model for both proteins (blue region, 95% confidence estimate). Together, these sim-

ulations suggested the description of transcription and translation, and its integration

with metabolism encoded in the cell-free model, were consistent with experimental mea-

surements. These simulations also showed that the sequence specific template reactions,

metabolic network, and literature parameters were sufficient to predict protein production

under different promoters. Recently, aerobic catabolism has been activated in CFPS which

increases the usable energy from a carbon sources such as glucose (1). The discovery that

such complex metabolism could be activated and controlled in CFPS led us to examine the

flux distribution of CFPS.

2.2 Metabolic flux distributions

While there is no cell growth, complex anabolic and catabolic processes still occur during

cell free protein synthesis (36). To optimize these processes, we must understand the

differences in optimal metabolism, and the metabolism occurring in an actual system.
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Toward this question, we compared the flux distribution of optimal CAT production with

experimentally constrained CAT production. The CAT translation rate was optimized

without experimental constraints on substrate consumption or byproduct formation to

estimate the theoretically optimal metabolic flux distribution. In all cases, the CFPS reaction

was supplied with glucose; however, we considered different scenarios for amino acid

(AA) supplementation. First, the CFPS reaction was supplied with glucose and amino

acids, and was able to synthesize amino acids from glucose (AAs supplied and de novo

synthesis). In this case, the flux distribution showed an incomplete TCA cycle, where a

combination of glucose and amino acids powered protein expression (Fig. 3A). Glucose

was consumed to produce acetyl-coenzyme A, and associated byproducts, while glutamate

was converted to alpha-ketoglutarate which traveled to oxaloacetic acid and pyruvate for

additional amino acid biosynthesis. Second, the CFPS reaction was supplied with glucose

and amino acids, but de novo amino acid biosynthesis was not allowed (AAs supplied w/o

de novo synthesis). This scenario was potentially consistent with common cell-free extract

preparation protocols which often involve amino acid supplementation; in the presence of

supplementation we might expected the enzymes responsible for amino acid biosynthesis

to be largely absent from the CFPS reaction. With supplementation and without de novo

synthesis, the flux distribution showed no TCA cycle flux with all carbon flux traveling

from glucose to acetate. In this case, ATP was produced by a combination of substrate level

and oxidative phosphorylation, where ubiquinone was regenerated via either cyo and cyd

activity, without relying on succinate dehydrogenase in the TCA cycle (Fig. 3B). These first

two cases where amino acids were available had similar performance, and their respective

metabolic flux distributions had a 99% correlation. Lastly, the CFPS reaction was supplied

with glucose but not amino acids, thus the system was forced to synthesize amino acids

de novo from glucose (de novo synthesis only). In the final case, the flux distribution showed

a largely complete TCA cycle, and there was diversion of metabolic flux into the Entner-

Doudoroff pathway to produce NADPH (Fig. 3C). However, these simulations represent
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the theoretically optimal metabolic flux distribution, which may not be consistent with

what is observed experimentally. Toward this issue, we constrained the feasible solution

space with experimental measurements (see Supporting Information) and estimated the

optimal CAT metabolic flux distribution.

The experimentally constrained metabolic flux distribution had a 55% correlation with

the theoretically optimal flux distribution (Fig. 3). The low similarity suggested several dif-

ferences between the experimentally constrained and optimal metabolic flux distributions.

The largest discrepancy was in oxidative phosphorylation, where the experimental system

heavily relied on cyd rather than cyo to produce ATP through oxidative phosphorylation.

The constraint based simulations confirmed that oxidative phosphorylation was active in

the cell-free extract, as without it there was no feasible solution within the experimental

constraints of the system. The experimentally constrained simulation suggested a high flux

through zwf, yielding NADPH which was interconverted to NADH via the pnt1 reaction.

This NADH was consumed to convert pyruvate to lactate or to generate ATP via oxidative

phosphorylation. In contrast, the optimal solutions with amino acid supplementation had

low zwf and pnt1 activity. Surprisingly, folate, purine, and pyrimidine metabolism, along

with amino acid biosynthesis, were active in the experimental system, but inactive in the

optimal system. In particular, the experimental system had high alanine and glutamine

biosynthetic flux (both accumulated in the media), while there was no accumulation of

amino acids in the optimal simulations. Lastly, alanine, glutamine, pyruvate, lactate,

acetate, malate, and succinate all accumulated in the experimental system, whereas the

optimal solution produced (or consumed) only the required amount of metabolites; this

accumulation contributed to the difference in the flux distributions. Next, we examined

CFPS performance in terms of productivity and energy efficiency.
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2.3 Analysis of CFPS performance

We analyzed the productivity and energy efficiency for the cell-free production of eight

proteins with and without amino acid supplementation (Fig. 4). The expression of each

protein was under a P70a promoter, with the exception of CAT which was expressed using

a T7 promoter. In all cases, the CFPS reaction was supplied with glucose; however, we

considered different scenarios for amino acid (AA) supplementation, similar to the cases

considered in the flux distribution: AAs supplied and de novo synthesis, AAs supplied

w/o de novo synthesis, and AA de novo synthesis only. Eight proteins, ranging in size,

were selected to evaluate CFPS performance: bone morphogenetic protein 10 (BMP10),

chloramphenicol acetyltransferase (CAT), caspase 9 (CASP9), dual emission green fluo-

rescent protein (deGFP), prothrombin (FII), coagulation factor X (FX), fibroblast growth

factor 21 (FGF21), and single chain variable fragment R4 (scFvR4). An additional case was

considered for CAT, where central metabolic fluxes were constrained by experimental mea-

surements of glucose, organic and amino acids (see Supporting Information). Using these

model proteins, we developed effective correlation models that predicted the productivity

and energy efficiency given the carbon number of the protein. Finally, we independently

validated the correlations with a protein not in our original data set: maltose binding

protein (MBP).

2.3.1 Productivity

The theoretical maximum productivity for proteins expressed using a P70a promoter

(µM/h) was inversely proportional to the carbon number (CPOI) and varied between 1 and

12 µM/h for the proteins sampled (Fig. 4A-B). The theoretical maximum productivities,

with and without amino acid supplementation, were within a standard deviation of one

another for each protein, but varied significantly between proteins. Productivity varied

non-linearly with protein length; for instance, BMP10 (424 aa) had a optimal productivity

of approximately 2.5 µM/h, whereas the optimal productivity of deGFP (229 aa) was
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approximately 8.4 µM/h. To examine the influence of protein length, we plotted the

mean optimal productivity against the carbon number of each protein (Fig. 4B). The

optimal productivity and protein length were related by the power-law relationship

α × (CPOI)
β, where α = 6.02× 106 µM/(h·carbon number) and β = −1.93 for a P70a

promoter. Interestingly, CAT did not obey the P70a power-law relationship; the relatively

high productivity of CAT was due to its T7 promoter. The higher transcription rate of

the T7 promoter increased the steady state level of mRNA by 34%, resulting in a higher

productivity. However, CAT expressed under a P70a promoter followed the P70a power-

law correlation with a productivity of approximately 8.5 ± 2.3 µM/h (predicted to be

7.2 µM/h by the optimal productivity correlation). Thus, these simulations suggested a

promoter specific relationship between the productivity and protein length. However, it

was unclear if the productivity correlation was predictive for proteins not considered in

the original training set.

We independently validated the productivity correlation by calculating the optimal

productivity of MBP (which was not in the original training set) using the full model

and the effective correlation model (Fig. 4B). The prediction error was less than 8% for

an a priori prediction of CFPS productivity using the effective correlation. Thus, the ef-

fective productivity correlation could be used as a parameter-free method to estimate

optimal productivity for cell-free protein production using a P70a promoter. For CFPS

using other promoters, a similar correlation model could be developed. For example,

maximal transcription occurs when the promoter model coefficient u (κ) = 1; the theoret-

ical maximum productivity correlation for maximum promoter activity also followed a

power-law distribution (α = 1.39× 107 µM/(h·carbon number) and β = −1.99) (Fig. 4B,

gray). The CAT value under a T7 promoter was similar to the maximal productivity as

uT7 (κ) ' 0.91 given the T7 promoter model parameters used in this study (Table 2).

Taken together, the maximum optimal productivity of a cell-free reaction was found to

be inversely proportional to protein size, following a power-law relationship for proteins
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expressed under a P70a promoter.

2.3.2 Energy efficiency

The optimal energy efficiency of protein synthesis was independent of protein length,

with and without amino acid supplementation (Fig. 4C-D); it was approximately 84%

for the model proteins sampled. The relationship was linear, but with negligible slopes:

mY × (CPOI) + bY, where mY = −1.43× 10−4 energy efficiency (%)/carbon number for the

case with supplementation, and mY = 3.21× 10−3 energy efficiency (%)/carbon number

for the case without supplementation. The energy efficiency (y-intercept) was calculated at

bY = 84.15 (%) with supplementation, and bY = 66.96 (%) without supplementation. In the

presence of amino acids, energy was utilized to power CFPS instead of synthesizing amino

acids; thus, a constant energy efficiency was observed regardless of the protein size. In

the absence of supplementation, the energy efficiency decreased to between 68% and 76%.

In this case, glucose consumption more than doubled (64% increase for CAT) compared

to cases supplemented with amino acids; meanwhile, the productivity was similar for

each protein (Fig. 4D). Therefore, the energy burden required for synthesizing each amino

acid and powering CFPS lowered the energy efficiency. Surprisingly, without amino acid

supplementation, proteins with a higher carbon number had marginally higher energy

efficiency; however, this linear trend was mostly independent of protein size (R2 = 0.82).

Lastly, MBP was well predicted by the linear efficiency model with and without amino

acid supplementation. The estimated MBP energy efficiency had a maximum error of 6%

without supplementation, and an error of 1% in the presence of amino acids.

Experimentally constrained CAT simulations showed suboptimal energy efficiency

(Fig. 4D, dagger). CAT production was simulated using the constraint based model in com-

bination with experimental measurements of glucose consumption and organic and amino

acid consumption and production rates (Fig. 1B). The experimentally constrained energy

efficiency was 16.4 ± 5.6% compared to the theoretical maximum of approximately 84.2 ±
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0.1%. Given that the CAT productivity was similar between the simulated and measured

systems, differences in the glucose consumption rate and the ATP yield per glucose were

likely responsible for the difference between the optimal and experimental systems. The

glucose consumption rate was approximately 30 - 40 mM/h in the experimental system

(even in the presence of amino acids). On the other hand, the constraint based simulation

suggested the optimal glucose consumption rate was significantly less than the observed

rate, approximately 1 - 7 mM/h (depending upon amino acid supplementation). In the

constraint based simulation, the CFPS reaction produced only acetate as a byproduct,

but in the experimental system acetate, lactate, pyruvate, succinate and malate all accu-

mulated during the first hour of production. The energy produced per unit glucose was

also different between the optimal and experimentally constrained cases. In the optimal

simulation, 12 ATPs were produced per unit glucose (the theoretical maximum for this

network was 21), while the experimentally constrained simulation produced only ~4 ATPs

per glucose. Thus, approximately 120 - 160 mM ATP/h was produced in the experimental

case, in contrast to 12 - 84 mM ATP/h for the optimal case. Thus, the experimental system

overproduced ATP. We know from measurements that ATP did not accumulate in the

media, which suggested it was consumed by pathways that were not active in the optimal

simulation. Thus, CFPS retained an in vivo memory that led to the overconsumption of

glucose, and counter intuitively the over production of ATP.

2.4 Global sensitivity analysis

We performed global sensitivity analysis to understand which parameters controlled CFPS

productivity and energy efficiency (Fig. 5). The translation elongation rate was the most

important factor controlling productivity, while RNAP and ribosome abundance had only

a modest effect irrespective of amino acid supplementation (Fig. 5A). This suggested that

the translation elongation rate, and not transcriptional parameters, controlled produc-

tivity. Underwood and coworkers showed that increasing ribosome abundance did not
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significantly increase protein yields or rates; however, adding elongation factors increased

protein synthesis rates by 27% (37). In addition, Li et al. increased the productivity of firefly

luciferase by 5-fold in PURE CFPS by first improving translation, followed by transcription

by adjusting elongation factors, ribosome recycling factor, release factors, chaperones,

BSA, and tRNAs (38). In examining substrate utilization, glucose consumption was not

important for productivity in the presence of amino acid supplementation. However, its

importance increased significantly when amino acids were not available. On the other

hand, amino acid consumption was only sensitive when de novo amino acids biosynthetic

reactions were blocked, as these were the only source of amino acids for protein synthesis.

The oxygen consumption rate was the most important factor controlling the energy effi-

ciency of cell-free protein synthesis (Fig. 5B). In the model, we assumed that ATP could be

produced by both substrate level and oxidative phosphorylation. Jewett and coworkers

reported that oxidative phosphorylation still operated in cell-free systems, and that the

protein titer decreased from 1.5-fold to 4-fold when oxidative phosphorylation reactions

were inhibited in pyruvate-powered CFPS (1). Furthermore, we showed that oxidative

phosphorylation must be active to simultaneously meet the metabolic and protein produc-

tion constraints. However, it is unknown how active oxidative phosphorylation is in a

glucose-powered cell-free system and its quantitative effect on energy efficiency.

We calculated the optimal CAT energy efficiency as a function of the oxidative phos-

phorylation flux to investigate the connection between energy efficiency and oxidative

phosphorylation (Fig. 6). We calculated energy efficiency across an ensemble of 1000 flux

balance solutions by varying the oxygen uptake rate with transcription and translation

parameters. Oxidative phosphorylation had a strong effect on the energy efficiency, both

with and without amino acid supplementation. In the presence of amino acid supple-

mentation, the energy efficiency ranged from 50% to approximately 84%, depending on

the oxidative phosphorylation flux. However, without amino acid supplementation, the

energy efficiency dropped to approximately 39%, and reached a maximum of 70%. In the
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absence of supplementation, a lower energy efficiency was expected for the same oxidative

phosphorylation flux, as glucose was utilized for both energy generation and amino acid

biosynthesis. In all cases, whenever the energy efficiency was below its theoretical maxi-

mum, there was an accumulation of both acetate and lactate. The experimental dataset

exhibited a mixture of acetate and lactate accumulation during CAT synthesis, which

suggested the CFPS reaction was not operating with optimal oxidative phosphorylation

activity. Oxidative phosphorylation is a membrane associated process, while CFPS has no

cell membrane. Jewett and coworkers hypothesized that membrane vesicles present in

the CFPS reaction carried out oxidative phosphorylation (1). Toward this hypothesis, they

enhanced the CAT titer by 33% when the reaction was augmented with 10 mM phosphate;

they suggested the additional phosphate either enhanced oxidative phosphorylation ac-

tivity or inhibited phosphatase reactions. The model validated the activity of oxidative

phosphorylation in this CFPS system, since without oxidative phosphorylation there was

no feasible solution satisfying the constraints of the experimental dataset. However, the

number, size, protein loading, and lifetime of these vesicles remains an open area of study.

2.4.1 Potential alternative metabolic optima

Optimal flux distributions predicted using constraint based approaches may not always be

unique. Alternative optimal solutions have the same objective value, e.g., productivity, but

different metabolic flux distributions. Techniques such as flux variability analysis (FVA)

(39, 40) or mixed-integer approaches (41) can estimate alternative optima. In this study,

we used group knockout analysis to estimate potential alternative optimal solutions for

CAT production constrained by experimental measurements (Fig. 7). Groups of reactions

were removed from the metabolic network, and the translation rate was maximized.

The difference between the nominal and altered system was then calculated. Knockout

analysis identified pathways required for CAT production; for example, deletion of the

glycolysis/gluconeogenesis or oxidative phosphorylation pathways resulted in no CAT
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production. The absence of CAT production when oxidative phosphorylation was knocked

out in the experimentally constrained case confirmed that oxidative phosphorylation was

present in the CFPS cell-extract. Likewise, there were pathway knockouts that had no effect

on productivity or the metabolic flux distribution, such as removal of isoleucine, leucine,

histidine and valine biosynthesis. Globally, the constraint based simulation reached the

same optimal CAT productivity for 40% of the pairwise knockouts, while 92% of these

solutions had different flux distributions compared with the wild-type. For example, one

of the features of the predicted optimal metabolic flux distribution was a high flux through

the Entner-Douodoroff (ED) pathway. Removal of the ED pathway had no effect on the

CAT productivity compared to the absence of knockouts (Fig. 7A). Pairwise knockouts of

the ED pathway and other subgroups (i.e. pentose phosphate pathway, cofactors, folate

metabolism, etc.) also resulted in the same optimal CAT productivity. However, there was

a difference in the flux distribution with these knockouts (Fig. 7B); thus, alternative optimal

metabolic flux distributions exist for CAT production, despite experimental constraints. In

addition, knockouts of amino acid biosynthesis reactions had no effect on the productivity

with the exception of alanine, aspartate, asparagine, glutamate and glutamine biosynthesis

reactions, since amino acids were available in the media. Ultimately, to determine the

metabolic flux distribution occurring in CFPS, we need to add additional constraints to

the flux estimation calculation. For example, thermodynamic feasibility constraints may

result in a better depiction of the flux distribution (17, 18), and 13C labeling in CFPS could

provide significant insight. However, while 13C labeling techniques are well established

for in vivo processes (42), application of these techniques to CFPS remains an active area of

research.

2.5 Summary and conclusions

In this study, we developed a sequence specific constraint based modeling approach to

predict the performance of cell-free protein synthesis reactions. First principle predic-
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tions of the cell-free production of CAT and deGFP were in agreement with experimental

measurements for two different promoters. While we considered only the P70a and T7

promoters here, we are expanding our library of possible promoters. These promoter

models, in combination with the cell-free constraint based approach, could enable the

de novo design of circuits for optimal functionality and performance. We also developed

effective correlation models for the productivity and energy efficiency as a function of

protein size that could be used to quickly prototype CFPS reactions. Further, global sensi-

tivity analysis identified the key metabolic processes that controlled CFPS performance;

oxidative phosphorylation was vital to energy efficiency, while the translation rate was the

most important for productivity. While this first study was promising, there are several

issues to consider in future work. First, a more detailed description of transcription and

translation reactions has been utilized in genome scale ME models e.g., O’Brien et al (23).

These template reactions could be adapted to a cell-free system. This would allow us to

consider important facets of protein production, such as the role of chaperones in protein

folding. We would also like to include post-translation modifications such as glycosylation

that are important for the production of therapeutic proteins in the next generation of

models. In conclusion, we modeled the cell-free production of a single protein in this

study, but sequence specific constraint based modeling could be extended to multi-protein

synthetic circuits, RNA circuits or small molecule production.
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Materials and Methods

Glucose/NMP cell-free protein synthesis.

The protein synthesis reaction was conducted using the PANOxSP protocol with slight

modifications from that described previously (43). The glucose/NMP cell-free protein

synthesis reaction was performed using the S30 extract in 1.5-mL Eppendorf tubes (work-

ing volume of 15 µL) and incubated in a humidified incubator at 37 ◦C. The S30 extract

was prepared from E. coli strain KC6 (A19 ∆tonA ∆tnaA ∆speA ∆endA ∆sdaA ∆sdaB

∆gshA met+). This K12-derivative has several gene deletions to stabilize amino acid

concentrations during the cell-free reaction. The KC6 strain was grown to approximately

3.0 OD595 in a 10-L fermenter (B. Braun, Allentown PA) on defined media with glucose

as the carbon source and with the addition of 13 amino acids (alanine, arginine, cysteine,

serine, aspartate, glutamate, and glutamine were excluded) (44). Crude S30 extract was

prepared as described previously (45). Plasmid pK7CAT was used as the DNA template

for chloramphenical acetyl transferase (CAT) expression by placing the cat gene between

the T7 promoter and the T7 terminator (46). The plasmid was isolated and purified using

a Plasmid Maxi Kit (Qiagen, Valencia CA).

All reagents were purchased from Sigma (St. Louis, MO), unless otherwise noted.

The initial mixture included 1.2 mM ATP; 0.85 mM each of GTP, UTP, and CTP; 30 mM

phosphoenolpyruvate (Roche, Indianapolis IN); 130 mM potassium glutamate; 10 mM

ammonium glutamate; 16 mM magnesium glutamate; 50 mM HEPES-KOH buffer (pH 7.5);

1.5 mM spermidine; 1.0 mM putrescine; 34 µg/mL folinic acid; 170.6 µg/mL E. coli tRNA

mixture (Roche, Indianapolis IN); 13.3 µg/mL pK7CAT plasmid; 100 µg/mL T7 RNA

polymerase; 20 unlabeled amino acids at 2-3 mM each; 5 µM l-[U-14C]-leucine (Amersham

Pharmacia, Uppsala Sweden); 0.33 mM nicotinamide adenine dinucleotide (NAD); 0.26

mM coenzyme A (CoA); 2.7 mM sodium oxalate; and 0.24 volumes of E. coli S30 extract.

This reaction was modified for the energy source used such that glucose reactions have
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30-40 mM glucose in place of PEP. Sodium oxalate was not added since it has a detrimental

effect on protein synthesis and ATP concentrations when using glucose or other early

glycolytic intermediate energy sources (47). The HEPES buffer (pKa ∼ 7.5) was replaced

with Bis-Tris (pKa ∼ 6.5). In addition, the magnesium glutamate concentration was

reduced to 8 mM for the glucose reaction since a lower magnesium optimum was found

when using a nonphosphorylated energy source (43). Finally, 10 mM phosphate was added

in the form of potassium phosphate dibasic adjusted to pH 7.2 with acetic acid.

Protein product and metabolite measurements.

Cell-free reaction samples were quenched at specific timepoints with equal volumes of ice-

cold 150 mM sulfuric acid to precipitate proteins. Protein synthesis of CAT was determined

from the total amount of 14C-leucine-labeled product by trichloroacetic acid precipitation

followed by scintillation counting as described previously (35). Samples were centrifuged

for 10 min at 12,000g and 4◦C. The supernatant was collected for high performance liquid

chromatography (HPLC) analysis. HPLC analysis (Agilent 1100 HPLC, Palo Alto CA)

was used to separate nucleotides and organic acids, including glucose. Compounds

were identified and quantified by comparison to known standards for retention time

and UV absorbance (260 nm for nucleotides and 210 nm for organic acids) as described

previously (35). The standard compounds quantified with a refractive index detector

included inorganic phosphate, glucose, and acetate. Pyruvate, malate, succinate, and

lactate were quantified with the UV detector. The stability of the amino acids in the

cell extract was determined using a Dionex Amino Acid Analysis (AAA) HPLC System

(Sunnyvale, CA) that separates amino acids by gradient anion exchange (AminoPac PA10

column). Compounds were identified with pulsed amperometric electrochemical detection

and by comparison to known standards.
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Formulation and solution of the model equations.

The sequence specific flux balance analysis problem was formulated as a linear program:

max
w

(
wX = θTw

)
Subject to : Sw = 0

Li ≤ wi ≤ Ui i = 1, 2, . . . ,R

(1)

where S denotes the stoichiometric matrix (M×R), w denotes the unknown flux vector

(R× 1), θ denotes the objective vector (R× 1) and Li and Ui denote the lower and upper

bounds on flux wi, respectively (bothR× 1 column vectors). Unless otherwise specified,

Li = 0 and Ui = 100 mM/hr. The transcription (T) and translation (X) stoichiometry was

modeled using the template reactions of Allen and Palsson (28) (Table 1). The objective of

the cell free flux balance calculation was to maximize the rate of protein translation, wX.

The total glucose uptake rate was bounded by [0,40 mM/h] according to experimental

data, while the amino acid uptake rates were bounded by [0,30 mM/h], but did not

reach the maximum flux. Gene and protein sequences were taken from literature and are

available in the Supporting Information. The sequence specific flux balance linear program

was solved using the GNU Linear Programming Kit (GLPK) v4.55 (48). For all cases,

amino acid degradation reactions were blocked as these enzymes were likely inactivated

during the cell-free extract preparation (11, 35). In the absence of de novo amino acid

synthesis, all amino acid synthesis reactions were set to 0 mM/h. In the experimentally

constrained simulations, E. coli was grown in the presence of 13 amino acids (alanine,

arginine, cysteine, serine, aspartate, glutamate, and glutamine were excluded) (44), thus

the synthesis reactions responsible for those 13 amino acids were set to 0 mM/h. Lastly,

reactions that were knocked out in the host strain used to prepare the extract were removed

from the network (∆speA, ∆tnaA, ∆sdaA, ∆sdaB, ∆gshA, ∆tonA, ∆endA).
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The bounds on the transcription rate (LT = wT = UT) were modeled as:

wT = Vmax
T

(
GP

KT + GP

)
(2)

where GP denotes the concentration of the gene encoding the protein of interest, and KT

denotes a transcription saturation coefficient. The maximum transcription rate Vmax
T was

formulated as:

Vmax
T ≡

[
RT

(
v̇T

lG

)
u (κ)

]
(3)

where RT denotes the RNA polymerase concentration (nM), v̇T denotes the RNA poly-

merase elongation rate (nt/h), lG denotes the gene length (nt). The term u (κ) (dimension-

less, 0 ≤ u (κ) ≤ 1) is an effective model of promoter activity, where κ denotes promoter

specific parameters. The general form for the promoter models was taken from Moon et al.

(33); which was based on earlier studies from Bintu and coworkers (49), and similar to

the genetically structured modeling approach of Lee and Bailey (50). In this study, we

considered two promoters: T7 and P70a. The promoter function for T7, uT7, was given by:

uT7 =
KT7

1 + KT7
(4)

where KT7 denotes a T7 RNA polymerase binding constant. The P70a promoter function

uP70a (which was used for all other proteins) was formulated as:

uP70a =
K1 + K2 fσ70

1 + K1 + K2 fσ70

(5)

where K1 denotes the weight of RNA polymerase binding alone, K2 denotes the weight

of RNAP-σ70 bound to the promoter, and fp70 denotes the fraction of the σ70 transcription

factor bound to RNAP, modeled as a Hill function:

fσ70 =
σn

70
Kn

D + σn
70

(6)

21

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 28, 2017. ; https://doi.org/10.1101/139774doi: bioRxiv preprint 

https://doi.org/10.1101/139774
http://creativecommons.org/licenses/by-nc-nd/4.0/


where σ70 denotes the sigma-factor 70 concentration, KD denotes the dissociation constant,

and n denotes a cooperativity coefficient. The values for all promoter parameters are given

in Table 2.

The translation rate (wX) was bounded by:

0 ≤ wX ≤ Vmax
X

(
mRNA

KX + mRNA

)
(7)

where mRNA∗ denotes the steady state mRNA abundance and KX denotes a translation

saturation constant. The maximum translation rate Vmax
X was formulated as:

Vmax
X ≡

[
KPRX

(
v̇X

lP

)]
(8)

The term KP denotes the polysome amplification constant, v̇X denotes the ribosome elonga-

tion rate (amino acids per hour), and lP denotes the number of amino acids in the protein

of interest. The mRNA abundance mRNA was estimated as:

mRNAt+∆t = mRNAt + (wT −mRNAtλ)∆t (9)

where λ denotes the mRNA degradation rate (h−1). All translation parameters are given

in Table 2.
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Calculation of energy efficiency.

Energy efficiency (E ) was calculated as the ratio of transcription and translation (weighted

by the appropriate energy species coefficients) to ATP generation:

E =
wT · αT + wX · αX

∑
j∈RATP

σATP
j w̄j

(10)

αT = 2 · (ATPT + CTPT + GTPT + UTPT) (11)

αX = 2 ·ATPX + GTPX (12)

where αT denotes the energy cost of transcription, αX denotes the energy cost of translation,

RATP denotes the set of ATP-producing reactions, and σATP
j denotes the ATP coefficient

for reaction j. ATPT, CTPT, GTPT, and UTPT denote the stoichiometric coefficients of each

energy species for the transcription of the protein of interest, ATPX and GTPX denote the

stoichiometric coefficients of ATP and GTP for the translation of the protein of interest.

During transcription and tRNA charging, triphosphate molecules are consumed with

monophosphates as byproducts; this is the reason for the factors of 2 on ATPT, CTPT,

GTPT, UTPT, and ATPX

Quantification of uncertainty.

Experimental factors taken from literature, for example macromolecular concentrations or

elongation rates, are uncertain. To quantify the influence of this uncertainty on model per-

formance, we randomly sampled the expected physiological ranges for these parameters as

determined from literature. An ensemble of flux distributions was calculated for the three

different cases we considered: control (with amino acid synthesis and uptake), amino acid

uptake without synthesis, and amino acid synthesis without uptake. The flux ensemble

was calculated by randomly sampling the maximum glucose consumption rate within
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a range of 0 to 30 mM/h (determined from experimental data) and randomly sampling

RNA polymerase levels, ribosome levels, and elongation rates in a physiological range

determined from literature. P70 RNA polymerase levels were sampled between 60 and 80

nM, T70 RNA polymerase levels were sampled between 990 and 1010 nM, ribosome levels

between 1.2 and 1.8 µM, the RNA polymerase elongation rate between 20 and 30 nt/s,

and the ribosome elongation rate between 1.5 and 3 aa/s (11, 37). We generated uniform

random samples between an upper (u) and lower (l) parameter bound of the form:

p∗ = l + (u− l)×U (0, 1) (13)

Global sensitivity analysis.

We conducted a global sensitivity analysis using the variance-based method of Sobol to

estimate which parameters controlled the performance of the cell-free protein synthesis

reaction (51). We computed the total sensitivity index of each parameter relative to two

performance objectives: productivity of the protein of interest and energy efficiency. We

established the sampling bounds for each parameter from literature. We used the sampling

method of Saltelli et al. (52) to compute a family of N (2d + 2) parameter sets which obeyed

our parameter ranges, where N was a parameter proportional to the desired number of

model evaluations and d was the number of parameters in the model. In our case, N = 1000

and d = 7, so the total sensitivity indices were computed from 16,000 model evaluations.

The variance-based sensitivity analysis was conducted using the SALib module encoded

in the Python programming language (53).

Potential alternative optimal metabolic flux solutions.

We identified potential alternative optimal flux distributions by performing single and

pairwise reaction group knockout simulations. Reaction group knockouts were simulated

by setting the flux bounds for all the reactions involved in a group to zero and then
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maximizing the translation rate. We grouped reactions in the cell-free network into

19 subgroups (available in Supporting Information). We computed the difference (l2-

norm) for CAT productivity in the presence and absence of pairwise reaction knockouts.

Simultaneously, we computed the difference in the flux distribution (l2-norm) for each

pairwise reaction knockout compared to the flux distribution with no knockouts. Those

solutions with the same or similar productivity but large changes in the metabolic flux

distribution represent alternative optimal solutions.
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Table 1: Transcription and translation template reactions for protein production. The symbol GP denotes
the gene encoding protein product P , RT denotes the concentration of RNA polymerase, G∗P denotes the
gene bounded by the RNA polymerase (open complex), ηi and αj denote the stoichiometric coefficients
for nucleotide and amino acid, respectively, Pi denotes inorganic phosphate, RX denotes the ribosome
concentration, R∗X denotes bound ribosome, and AAj denotes jth amino acid.

Description Template reaction

Transcription initiation GP + RT −→ G∗P
Transcription (wT) G∗P + ∑

k∈{A,C,G,U}
ηk · ({k} TP + H2O) −→ mRNA + GP + RT + ∑

k∈{A,C,G,U}
ηk · PPi

mRNA degradation mRNA −→ ∑
k∈{A,C,G,U}

ηk · {k}MP

Translation initiation mRNA + RX −→ R∗X
tRNA charging αj ·

(
AAj + tRNA + ATP + H2O

)
−→ αj ·

(
AAj-tRNAj + AMP + PPi

)
j = 1, 2, . . . , 20

Translation (wX) R∗X + ∑
j∈{AA}

αj ·
(

AAj-tRNAj + 2GTP + 2H2O
)
−→ P + RX + mRNA

+∑
j∈{AA}

αj ·
(

tRNA + 2GDP + 2Pi
)
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Table 2: Parameters for sequence specific flux balance analysis

Description Parameter Value Units Reference

T7 RNA polymerase concentration RT 1.0 µM specified
Native RNA polymerase concentration RT 75 nM (11)
Ribosome concentration RX 1.6 µM (11, 37)

Transcription elongation rate v̇T 25 nt/s (11)
Translation elongation rate v̇X 2 aa/s/ribosome (11, 37)
T7 transcription saturation coefficient KT7,T 116 nM estimated
P70 transcription saturation coefficient KP70,T 3.5 nM estimated
Translation saturation coefficient KX 45.0 µM estimated
Polysome number KP 10 ribosome number estimated
mRNA degradation rate constant λ 5.2 h−1 (11)

T7 promoter weight KT7 10 constant estimated
Weight RNA polymerase binding alone P70a K1 0.014 constant estimated
Weight bound RNAP-σ70 P70a K2 10 constant estimated
σ70 concentration σ70 35 nM (11)
σ70 dissociation constant KD 130 nM (54)
σ70 hill coefficient n 1 constant (54)
Gene concentration GP 5 nM (11)

ATP transcription coefficient (CAT) ATPT 176 constant calculated
CTP transcription coefficient (CAT) CTPT 144 constant calculated
GTP transcription coefficient (CAT) GTPT 151 constant calculated
UTP transcription coefficient (CAT) UTPT 189 constant calculated
ATP tRNA charging coefficient (CAT) ATPX 219 constant calculated
GTP translation coefficient (CAT) GTPX 438 constant calculated
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Figure 1: Sequence specific flux balance analysis. A. Schematic of the core metabolic network describing
glycolysis, pentose phosphate pathway, the TCA cycle and the Entner-Doudoroff pathway. Thick gray
arrows indicate withdrawal of precursors for amino acid synthesis.
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Figure 2: Experimentally constrained simulation of CAT production. CAT was produced under a T7
promoter in CFPS E. coli extract for 1 h using glucose as a carbon and energy source. Error bars denote the
standard deviation of experimental measurements. The blue region denotes the 95% CI over an ensemble of
N = 100 sets, the black line denotes the mean of the ensemble, and dots denote experimental measurements.
A. Metabolic flux distribution for CAT production in the presence of experimental constraints for glucose,
organic acid and amino acid consumption and production rates. Mean flux across the ensemble, normalized
to glucose uptake flux. Thick arrows indicate flux to or from amino acids. B. Central carbon metabolite and
CAT measurements versus simulations over a 1 hour time course. The blue region denotes the 95% CI over
an ensemble of N = 100 sets, the black line denotes the mean of the ensemble, and dots denote experimental
measurements.
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Figure 3: Optimal metabolic flux distribution for CAT production. A. Optimal flux distribution in the
presence of amino acid supplementation and de novo synthesis. B. Optimal flux distribution in the presence
of amino acid supplementation without de novo synthesis. C. Optimal flux distribution with de novo amino
acid synthesis in the absence of supplementation. Mean flux across the ensemble (N = 100), normalized to
glucose uptake flux. Thick arrows indicate flux to or from amino acid biosynthesis pathways.
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Figure 4: The CFPS performance for eight model proteins with and without amino acid supplementation. A.
Mean CFPS productivity for a panel of model proteins with and without amino acid supplementation. B.
Mean CFPS productivity versus carbon number for a panel of model proteins with and without amino acid
supplementation. Trendline (black dotted line) was calculated across all cases for a P70a promoter (R2 =
0.99) and maximum productivity trendline assumed u (κ) = 1 (grey dotted line; R2 = 0.99). C. Mean CFPS
energy efficiency for a panel of model proteins with and without amino acid supplementation. D. Mean
CFPS energy efficiency versus carbon number for a panel of model proteins with and without amino acid
supplementation. Trendline for cases with amino acids (black dotted line) and trendline for without amino
acids (grey dotted line; R2 = 0.81). Error bars: 95% CI calculated by sampling; asterisk: protein excluded
from trendline; dagger: constrained by experimental measurements and excluded from trendline; triangles:
first principle prediction and excluded from trendline.
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Figure 5: Sensitivity analysis of the cell-free production of CAT. A. Total order sensitivity of the optimal CAT
productivity with respect to metabolic and transcription/translation parameters. B. Total order sensitivity
of the optimal CAT energy efficiency. Metabolic and transcription/translation parameters were varied for
amino acid supplementation and synthesis (black), amino acid supplementation without synthesis (dark
grey) and amino acid synthesis without supplementation (light gray). Error bars represent the 95% CI of the
total order sensitivity index.
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Figure 6: Optimal CAT energy efficiency versus oxidative phosphorylation flux calculated across an ensemble
(N = 1000) of flux balance solutions (points). Energy efficiency versus oxidative phosphorylation flux for
amino acid supplementation and de novo synthesis (black), amino acid supplementation without de novo
synthesis (dark grey), and de novo amino acid synthesis without supplementation (light gray). The ensemble
was generated by randomly varying the oxygen consumption rate from 0.1 to 10 mM/h and randomly
sampling the transcription and translation parameters within 10% of their literature values. Each point
represents one solution of the model equations.
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Figure 7: Pairwise knockouts of reaction subgroups in the cell-free network. A. Difference in the CAT produc-
tivity in the presence of reaction knockouts compared with no knockouts for experimentally constrained CAT
production. B. Difference in the optimal flux distribution in the presence of reaction knockouts compared
with no knockouts for experimentally constrained CAT production. The difference between perturbed and
wild-type productivity and flux distributions was quantified by the l2 norm, and then normalized so the
maximum change was 1.0. Red boxes indicate potential alternative optimal flux distributions.
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