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ABSTRACT

Huntington’s and Parkinson’s Diseases (HD and PD) are neurodegenerative disorders that share some pathological features
but are disparate in others. For example, while both diseases are marked by aberrant protein aggregation in the brain, the
specific proteins that aggregate and types of neurons affected differ. A better understanding of the molecular similarities and
differences between these two diseases may lead to a more complete mechanistic picture of both the individual diseases and
the neurodegenerative process in general. We sought to characterize the common transcriptional signature of HD and PD
as well as genes uniquely implicated in each of these diseases using mRNA-Seq data from post mortem human brains in
comparison to neuropathologically normal controls. The enriched biological pathways implicated by HD differentially expressed
genes show remarkable consistency with those for PD differentially expressed genes and implicate the common biological
processes of neuroinflammation, apoptosis, transcriptional dysregulation, and neuron-associated functions. Comparison of
the differentially expressed (DE) genes highlights a set of consistently altered genes that span both diseases. In particular,
processes involving nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and transcription factor cAMP
response element-binding protein (CREB) are the most prominent among the genes common to HD and PD. When the
combined HD and PD data are compared to controls, relatively few additional biological processes emerge as significantly
enriched suggesting that most pathways are independently seen within each disorder. Despite showing comparable numbers
of DE genes, DE genes unique to HD are enriched in far more coherent biological processes than the DE genes unique to PD,
suggesting that PD may represent a more heterogeneous disorder.

Introduction

Transcriptional dysregulation has been observed in both Huntington’s disease (HD) and Parkinson’s disease (PD)1, 2. Transcrip-
tion, neuroinflammation, and developmental processes have been shown to be dysregulated in the brains of HD individuals3,
while inflammation and mitochondrial dysfunction were observed to be altered in the brains of PD individuals4. However, a
systematic comparison of the transcriptional signatures of HD and PD has not been performed to date, and those genes and
biological processes common to both diseases, if any, remain to be determined. To address this question, we sought to identify
genes that are consistently differentially expressed (DE) in the post-mortem brains of HD and PD human subjects compared to
neuropathologically normal control brains using mRNA-Seq. We hypothesize that common altered genes and pathways in HD
and PD will elucidate the mechanistic underpinnings of the neurodegenerative process.

This study presents the results of a comparison of DE genes for each of HD and PD versus controls (C) analyzed separately.
In addition, in order to identify consistent effects with lower effect size across diseases, an analysis was performed where the
HD and PD datasets are concatenated as a single category, neurodegenerative disease (ND), and compared with C. DE genes are
determined using a tailored form of logistic regression as described in5, which improves control of type I errors when compared
to negative binomial based DE detection methods.

Materials and Methods

Sample collection, processing, and sequencing
The HD, PD, and C samples used in this study are those previously described in our past work3, 4. Nine additional HD brain
samples were included in this study beyond those in3, including two HD gene positive asymptomatic individuals, obtained
from the Harvard Brain Tissue Resource Center. All samples underwent the same tissue dissection and RNA extraction sample
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Sample type N Mean (SD) Age at Death Mean (SD) PMI Mean (SD) RIN
HD 29 60.5 (11.4) 16.4 (7.8) 7.1 (1.2)
PD 29 77.5 (8.9) 11.1 (9.7) 7.0 (0.7)

Control 49 68.6 (15.8) 14.6 (9.5) 7.8 (0.7)

Table 1. Sample statistics. SD is standard deviation. PMI is Post Mortem Interval. RIN is RNA Integrity Number of the RNA
extracted from each sample as determined by the Agilent Bioanalyzer instrument.

preparation protocol performed by the same individuals. Briefly, RNA was extracted from the prefrontal cortex of post-mortem
brains of HD and PD subjects, as well as neuropathologically normal controls. RNA was poly-A selected and subjected to
mRNA sequencing on the Illumina HiSeq 2000 platform. Sample statistics are contained in Table 1. See3 and4 for more
detailed information about sample preparation.

mRNA-Seq data processing
Each FASTQ file containing mRNA sequences was first trimmed for sequence quality using the sickle software package6 with
default arguments. The resulting short reads were aligned against the hg38 build of the human reference genome using the STAR
aligner v2.4.0h17 with permissive multimapping parameters (200 maximum alignments –outFilterMultimapNmax 200) and
otherwise parameter values suggested in the STAR manual. Multimapped reads were assigned unique alignment locations using
the ORMAN software package8. Aligned reads were counted against GENCODE v21 annotation9 using the HTSeq package
v0.6.1p110. Read counts for all samples were normalized using the method described in the DESeq2 package v1.10.111 and out-
lier counts were trimmed using the strategy described in3. Since the original mRNAs were poly-A selected, only genes with bio-
types known to be polyadenylated (i.e. protein coding, lincRNA, processed transcript, sense intronic,
sense overlaping, IG V gene, IG D gene, IG J gene, IG C gene, TR V gene, TR D gene, TR J gene, and
TR C gene) as annotated by Ensembl BioMart12 downloaded on May 27th, 2015. To avoid spurious results due to low
abundance, genes were further filtered if more than half of the ND or C samples had zero counts.

Differential expression and assessment of batch effects
DE genes were identified using Firth’s logistic (FL) regression13, 14 applied to mRNA-Seq data as described in5. Briefly, in
contrast to negative binomial regression models like edgeR15 and DESeq211, this method models a binomial status variable
(e.g. case vs control) as a function of gene counts and any other potentially confounding variables (RIN value, PMI, etc.).
Classical logistic regression has historically not been used to determine DE genes because of the so-called “complete separation”
problem, where model parameter estimation fails when there is perfect or nearly perfect separation of a predictor with respect to
a binomial variable (e.g. one condition has extremely high read counts and the other has very low read counts). FL regression
addresses this issue by using a modified likelihood function to enable reliable parameter estimation, and has other statistical
advantages with respect to type I error rates and power. Note the DE statistic from FL regression is log odds ratio (LOR) of case
versus controls, that is, positive LOR indicates greater mRNA abundance in case and negative LOR indicates greater abundance
in control. All reported p-values are Benjamini-Hochberg (BH) adjusted16 unless noted otherwise. See5 for further information
on this method applied to mRNA-Seq data.

The data sets in this study were sequenced in five separate batches. To evaluate whether there was evidence of systemic
batch effects confounding the identification of DE genes, we ran separate Firth DE models with and without a categorical
variable representing batches and compared the beta estimates using Spearman correlation. Beta estimate ranks were highly
correlated for HD vs C (ρ = 0.84, p ≪ 0.001), PD vs C (ρ = 0.99, p ≪ 0.001), and ND vs C (ρ = 0.97, p ≪ 0.001). We
therefore concluded that batch was not a significant confounder of DE between case and control and did not include a batch
variable in the DE models.

Identification of ND DE genes and enriched genesets
DE genes were identified as those with BH adjusted p-values < 0.01 from the Firth’s logistic regression models of HD vs C,
PD vs C, and ND vs C models, yielding three independent DE gene lists. Read counts for each gene were scaled to have a
mean of zero and standard deviation of one to obtain standardized regression coefficients, which makes coefficients comparable
across genes. All controls were used in each model. Gene set enrichment analysis was performed on each gene list ranked by
read counts beta coefficient using the GSEA17 implementation in the DOSE software package18 against the MsigDB Canonical
Pathway (C2) geneset database17. GSEA enrichment was computed using the complete list of genes irrespective of significance
ranked by standardized beta coefficient of the count variable. The robust rank aggregation (RRA) algorithm19 was used to
identify individual genes that were consistently altered across these gene lists. Briefly, RRA is a probabilistic, non-parametric,
rank-based method for detecting genes ranked consistently better than expected under the null hypothesis of uncorrelated inputs
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in the presence of noise and outliers. The genes identified as most significant by RRA are the most likely to be implicated in the
general ND phenotype.

In addition to producing independent HD and PD DE gene lists, we sought to functionally characterize the genes that are
uniquely significant to each disease as well as those in common. To accomplish this, the DE genes from HD and PD were
intersected, partitioning the genes into HD-specific, PD-specific, and DE genes common to the two gene lists. Each of these
partitioned gene lists were then subjected to gene set enrichment on the MsigDB Canonical Pathway (C2), Transcription Factor
Targets (C3), and Gene Ontology (C5) gene set databases17 using a hypergeometric test.

Results
Firth’s logistic (FL) regression identified 2427, 1949, and 4843 significantly DE genes for HD, PD, and ND, respectively, at
q-value < 0.01. Gene set enrichment analysis of MsigDB C2 gene sets identified 226, 199, and 250 gene sets significantly
enriched at q-value < 0.05 for HD, PD, and ND, respectively. Due to the large number of DE genes in each dataset, we focus
exclusively on the GSEA enrichment results here. Complete DE gene list and gene set enrichment statistics for HD, PD, and
ND are included in Supplemental File 1.

There was a high degree of overlap between the significantly enriched gene sets of HD and PD. 145 gene sets were
significantly enriched in both DE gene lists, while 81 and 54 gene sets were uniquely significant in HD and PD, respectively.
When a pathway was enriched in more than one list, the pathway was always, without exception, enriched in the same direction,
either positively (genes are more abundant in disease) or negatively (genes are less abundant in disease). There were 24 gene
sets uniquely significant in ND. Figure 1 depicts the enriched gene sets grouped by high-level biological category for HD, PD,
and ND.

We make several observations of Figure 1 A. First, the plurality of enriched gene sets across all three data sets are related to
immune processes (IM) and are with few exceptions positively enriched. Pathways related to neuronal processes (NE) are
largely negatively enriched and there is a subset of these gene sets that are exclusively enriched in HD. With the exception of
DNA damage, all remaining biological categories are represented for both HD and PD. DNA damage related pathways (DN) are
unique to the PD dataset and are negatively enriched. Multiple apoptosis (AP), developmental (DE), transcription/translation
(TR), and transcription factor target (TF) gene sets are also enriched in all three gene lists.

There were 83 gene sets that did not fit cleanly into a single category (OT), which notably include pathways related
to endocytosis, signaling, cellular adhesion and extracellular matrix, glycans, and metabolism. A tabular form of the data
underlying Figure 1 A is in Supplemental File 1.

RRA identified 1353 genes with a score < 0.01. The top ten genes identified by RRA as most highly ranked across all three
gene lists are reported in Table 2. The rank of each gene in the individual gene lists are also reported in the table, showing that
most genes are relatively highly ranked across all three studies as expected. The list of all significant genes identified by RRA
analysis is included in Supplemental File 1.

The most consistently ranked gene is RP1-93H18.7 (ENSG00000272403.1), a lncRNA, which was removed from Ensembl
starting at version GRCh38.p2, but shows consistent transcription in these data. This gene is directly downstream of the gene
DSE (dermatan sulfate epimerase) which is also DE in both HD and PD, is involved in embryonic development20, 21, and has
been related to the immune response in cancer patients22. Deficiencies in the second ranked gene, SPR (sepiapterin reductase),
have been linked to DOPA-responsive dystonia23 and previously implicated in PD24. The third gene, DDIT4 (DNA-Damage-
Inducible Transcript 4), is a multi-functional gene which, via its inhibition of the mammalian target of rapamycin complex 1
(mTORC1), regulates in cell growth, proliferation, and survival25, controls p53/TP53-mediated apoptosis in response to DNA
damage26, 27, and plays a role in neurodegeneration, neuronal death and differentiation, and neuron migration during embryonic
brain development28–31. TRIP10 (thyroid hormone receptor interactor 10), another multi-functional gene, is involved in insulin
signaling32, endocytosis33, and structures specific to monocyte-derived cells34. TNFRSF10D (Tumor Necrosis Factor Receptor
Superfamily, Member 10d, Decoy With Truncated Death Domain) inhibits certain types of apoptosis and may play a role in
NfkB pathway35.

Figure 2 illustrates the differences in normalized counts for the top genes identified by RRA. With the exception of (12)
PITX1, which is driven entirely by HD, all top genes demonstrate substantial differences between both disease conditions and
control.

Finally, we examined the significant DE genes from HD and PD for intersection. Figure 3 illustrates the overlap of DE
genes between diseases and describes gene set enrichment results for the intersection. Figure 4 contains the enrichment results
for the HD unique genes.

HD specific enrichments are shown in Figure 4, where a broad spectrum of biological processes are implicated in the
HD-unique DE genes. The most striking enriched gene set is KEGG RIBOSOME, with many other related gene sets involved in
translation and molecular metabolism similarly enriched. Multiple gene sets that share > 20% of their DE genes are associated
with Jun Proto-Oncogene (AP1), BTB And CNC Homology 1, Basic Leucine Zipper Transcription Factor 1 and 2 (BACH1,

3/12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2017. ; https://doi.org/10.1101/139451doi: bioRxiv preprint 

https://doi.org/10.1101/139451
http://creativecommons.org/licenses/by/4.0/


Figure 1. A) Significantly enriched MsigDB C2 Canonical Pathway gene sets for HD, PD, and ND identified by GSEA. Each
colored ring segment corresponds to a single enriched gene set. Red (outer), green (middle), and blue (inner) segmented rings
indicate whether the HD, PD, or ND DE gene lists, respectively, were significantly enriched for the gene set. Dark and light
colored segments indicate up and down regulation (positive, negative GSEA normalized enrichment score), respectively. Black
ring around exterior groups gene sets into high level categories as indicated by the two letter code. Gene set name is listed in
interior of rings. A tabular form of the data underlying the figure is in Supplemental File 1. B) Venn diagram illustrating
overlap of significantly enriched gene sets for HD, PD, and ND. All but 24 of the ND significant gene sets were significantly
enriched in either HD, PD, or both.
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Figure 2. Box plots of normalized counts for top RRA genes split by condition, RRA rank is in parenthesis. Whiskers extend
to 25th and 75th percentile counts, white bars are median counts. With the exception of (12) PITX1, which is driven entirely by
HD, all top genes demonstrate substantial differences between both disease conditions and control.
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Symbol Description RRA Rank RRA Score HD Rank PD Rank ND Rank
ENSG00000272403 no description 1 4.39×10−9 25 15 1
SPR sepiapterin reductase 2 1.13×10−7 70 38 5
DDIT4 DNA-damage-inducible tran-

script 4
3 1.27×10−7 74 60 22

TRIP10 thyroid hormone receptor inter-
actor 10

4 1.87×10−7 84 59 7

TNFRSF10D tumor necrosis factor receptor
superfamily, member 10d

5 2.30×10−7 90 55 20

PRMT6 Protein arginine methyltrans-
ferase 6

6 2.54×10−7 29 93 10

GPSM3 G-protein signaling modulator 3 7 2.62×10−7 81 98 11
GPCPD1 Glycerophospohocholine phos-

phodiesterase 1
8 2.79×10−7 13 96 2

GPR4 G-protein-coupled receptor 4 9 2.97×10−7 98 75 24
NFKBIA Nuclear factor of kappa ligh

polypeptide gene enhancer in B-
cells inhibitor, Alpha

10 3.35×10−7 11 103 3

Table 2. Top ranked RRA genes. RRA Score can be thought of as a p-value. The remaining columns contain the rank of the
corresponding gene in each individual gene list.

Figure 3. A) Venn diagram of HD and PD DE gene list intersection for DE genes adjusted p¡0.01. B) Bar chart indicating
number of MsigDB C2 Canonical Pathway (CP), C3 miRNA Targets (miR), C3 Transcription Factor Targets (TF), and C5
Gene Ontology (GO) gene sets enriched for the HD unique (HD \PD), intersection (HD n PD), and PD unique (PD \HD)
genes. For HD \PD enrichment, 17 redundant or uninformative GO gene sets and 7 TF gene sets for motifs with unknown
transcription factors were omitted from the figure results but are included in Supplemental File 1 Table I. C) Gene sets enriched
for the intersection genes (HD n PD). Adjusted p-values are listed beside gene set name and the originating gene set (CP, miR,
TF, or GO) are indicated by color. Gene sets that are grouped into boxes share more than 20% of their DE genes and are
therefore listed together.
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Figure 4. Enriched gene sets for the HD unique (HD PD) genes from Figure 3 A and reported similarly as in Figure 3 C.
Note 17 redundant or uninformative GO gene sets and 7 TF gene sets for motifs with unknown transcription factors were
omitted from the figure results but are included in Supplemental File 1 Table I.

BACH2), and NRF2/TCF11 are also implicated. Other strongly implicated biological processes are ion channel activity,
plasma membrane and signaling, apoptosis, immune system and inflammatory processes, developmental genes, neuron-related
signaling pathways, many transcription factors, and two families of miRNAs.

Discussion
RNA-sequencing was performed in 29 HD, 29 PD and 49 control prefrontal cortex (BA9) samples to assess the common
and unique transcriptional profiles of these two protein aggregation related neurodegenerative diseases. Firth’s logistic (FL)
regression identified 2427, 1949, and 4843 significantly DE genes for HD, PD, and ND, respectively, at q-value < 0.01. Gene
set enrichment analysis of MsigDB C2 gene sets identified 226, 199, and 250 gene sets significantly enriched at q-value < 0.05
for HD, PD, and ND, respectively. Gene sets related to immune processes and inflammatory pathways, were highly enriched
for both diseases. Notably, Figure 1 shows that the overwhelming majority of enriched biological pathways are common to
both diseases and that they are invariably perturbed in the same direction in both diseases. To the authors’ knowledge, this
study presents the first comprehensive comparative analysis of DE gene expression from HD, PD, and ND in post-mortem
human brains assessed with mRNA-Seq. In one previous study, Capurro et al analyzed HD and PD microarray data using a
cell-type deconvolution method to identify cell-type specific differences in gene expression between cases and controls for both
diseases36. Only one gene from the study, doublecortin-like kinase 1 (DCLK1), was found to be differentially expressed in both
HD and PD cortex, and this gene also appears as DE in common between diseases in the analysis presented here.

The comparison of HD and PD in particular is motivated by the fact that these diseases can be viewed as mirror-images of
each other. GABAergic medium spiny interneurons, which compose most of the neurons in the striatum and selectively die
in HD but are spared in PD, project directly into the substantia nigra and coordinate motor activity throughout the brain via
dopamine-induced signaling37. Dopaminergic neurons in the substantia nigra, on the other hand, which also are important in
coordinating motor activity as well as arousal, reinforcement, and reward38, selectively degenerate in PD but are spared in
HD. It was observed in a study of 523 HD subjects that the incidence of PD in this cohort was lower than that of the general
population, though both HD and PD individuals develop Alzheimer’s disease at the same rate39, suggesting the selective
death of medium spiny neurons might be neuroprotective of dopaminergic neuron death. Given the intimate neurological link
between the affected neurons in HD and PD, and the mutual exclusivity of their degeneration, this comparison poses a very
interesting contrast to identify common responses to neurodegeneration that are not confounded by neuron type. Unfortunately,
a direct comparison of neurons in these regions of post-mortem human brains is not possible, precisely due to this mirror-image
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pathology. The choice of the BA9 brain region is motivated by the fact that, due to degeneration, the affected neurons are largely
missing from the striatum and substantia nigra in HD and PD, respectively, whereas BA9 is generally free of involvement
in both diseases39–41. Because the primarily affected neurons in HD and PD do not exist in BA9, the biological processes
implicated by this analysis may likely represent the response to, rather than direct cause of, the respective diseases. Nonetheless,
the remarkable consistency between HD and PD observed in this analysis points to important mechanisms that further our
understanding of neurodegenerative disease as a general process.

The biological processes implicated by DE gene lists identified from each condition separately are compellingly similar.
From Figure 1, we see that the majority of enriched biological pathways are common and that they are invariably perturbed
in the same direction in both diseases. Furthermore, combining HD and PD data into an ND condition does not yield
significantly more novel biological insights. This remarkable consistency between the pathway enrichment results suggest
that the underlying molecular responses to neurodegeneration in HD and PD may be more similar than they are different,
despite their different pathological underpinnings. Of particular significance is the strong positive enrichment of immune and
inflammatory pathways, which have been convincingly implicated in both diseases separately3, 42–45, 45–48, but the compelling
similarity of these signatures between HD and PD revealed by this analysis has not been illustrated to date.

The negative regulation of neuron-related pathways is also noteworthy, since the BA9 brain region, from which these
samples are derived, is not known to be heavily involved in either of these diseases. Despite the lack of clear and consistent
neurodegeneration in this brain region, the widespread biological pathways shown to be affected in this analysis strongly
suggest neurons in BA9 do indeed experience a common set of effects in the neuropathology for HD and PD.

Many of the individual genes identified by RRA as most consistently different in HD, PD, and ND have previously been the
focus of studies in neurodegeneration. The second highest ranked gene SPR has been the focus of significant study in PD and is
related to the PARK3 gene locus24, 49, but has not been previously implicated in HD. Inhibition of DNA-damage inducible
transcript 4 (DDIT4/RTP801/REDD1) has been associated with neuroprotection in PD models and patients31 and is involved
with mutant Huntingtin-induced cell death50. Thyroid hormone receptor interactor 10 (TRIP10) has been shown to interact
directly with mutant huntingtin51, and while it is not known to play a role in PD pathology, its elevated mRNA abundance
in these PD samples suggest it may indeed be implicated. Other top genes have also been implicated in neurodegeneration:
tumor necrosis factor receptor superfamily 10D (TNFRSF10D)52, 53, protein arginine methyltransferase 6 (PRMT6)54, and
toll-like receptor 5 (TLR5)55. Further investigation of this list of genes is likely to yield novel insights into the mechanisms of
neurodegeneration.

The intersection of DE genes between HD and PD also affords important insight into genes relevant to fundamental
neurodegenerative processes. Most notably, pathways related to NFkB and transcriptional targets of CREB are prominent
in the enrichment results. The NFkB pathway is prominent in both HD56, 57 and PD pathology58, 59 through its central role
in inflammatory signaling. CREB is directly targeted by brain derived-neurotrophic factor (BDNF)60, an important trophic
factor in the brain. Both BDNF61, and CREB5, 62 have been directly implicated in HD pathology, while CREB is also believed
to play a critical role in dopamine receptor-mediated nuclear signaling63, and disruption of the protein’s function leads to
neurodegeneration64, 65. The specific inflammation-related gene sets (HSF1 transcription factor targets, CXCR4, IL12) suggests
there is some specificity in the aspects of the pan-neurodegenerative neuroimmune response. Recent studies in both HD and PD
have focused on the role of insulin sensitivity and metabolism in patients66–68, supporting the role of insulin synthesis as an
enriched biological pathway in the common gene list. While the enrichment of apoptosis-related pathways was not surprising,
pathways related to angiopoietin, ephrin, and axon guidance suggest that biological processes related to neuronal plasticity are
active in both of these diseases and may even indicate that neuroprotective or neuroregenerative processes are a component of
the neurodegenerative response.

These data also point to compelling differences between HD and PD. Interestingly, two groups of genes, DNA damage
and repair and tRNA related processes, seem to be uniquely perturbed and negatively enriched in PD. The DNA damage and
repair gene set enrichment may be a reflection of mitochondrial DNA damage. In PD, dopaminergic neurons of the substantia
nigra (though not cortical neurons) were found to be particularly vulnerable to mitochondrial DNA damage69, and Lewy body
pathology, the histological hallmark of PD, is associated with mitochondrial DNA damage70. More generally, mitochondrial
DNA damage and oxidative stress are associated with several neurodegenerative diseases including PD, Alzheimer’s disease71,
and ALS72. There is evidence supporting the involvement of aminoacyl tRNA synthetases in neurological disease, including
ALS, leukoencephalopathy, and PD73.

In HD, a number of uniquely perturbed gene sets related to glycan biosynthesis and metabolism are negatively regulated,
and these pathways have not been previously implicated in HD. The 1687 HD-unique DE genes are enriched for many gene
sets across a broad spectrum of biological processes, including mRNA and protein metabolism, ion channel activity, signaling
and kinase activity, apoptosis, immune response, and development. Other, more specific gene sets related to a large number of
transcription factors further support the observation of transcriptional dysregulation in HD3, 74. The specificity of these enriched
TF gene sets is quite striking, as the targeted DE genes appear to be largely disjoint between them, suggesting potential, specific
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causes of the dysregulated transcriptional effects in HD. The enrichment of two miRNA families are also particularly relevant
in light of recent reports of miRNA dysregulation in HD75, 76.

It is interesting to note the disparity in enrichment between the HD and PD unique DE genes. Though the numbers of
unique DE genes are comparable, the large number of enriched gene sets in HD stands in sharp contrast to the almost total
absence of enrichment in PD. This result implies that the DE genes in HD are more consistently related to one another than in
PD. One possible, and potentially important explanation for this is that HD is a much more homogeneous disease than PD. It
is well established that PD has a significant sporadic component77, caused by a combination of genetic and environmental
factors. The relative heterogeneity of PD may make finding consistently effective treatments difficult, and the absence of
biological enrichment in specific pathways, other than those common to both diseases, from this analysis may be a reflection of
an underlying molecular basis for this effect. It may be that, given sufficient sample size, coherent subgroups of patients may be
identified by examining patterns in their gene expression using datasets such as those analyzed here. On the other hand, despite
extensive molecular characterization of HD, effective, widely available therapies for HD have remained elusive despite the
relative homogeneity of the disease process among HD patients.

These findings have important implications on our understanding of the neurodegenerative disease process. The significant
involvement of the inflammatory pathways in both diseases in an area not thought to be directly involved in disease pathogenesis
suggests the response to neurodegeneration is widespread throughout the brain. NFkB in particular appears to be a major
player, which is well supported in the HD and PD literature. It is unclear whether the neuroinflammatory response is protective,
deleterious, or both from these data, but investigation into the role these processes play, and the potential therapeutic value of
modulating them, should be made a high priority.
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