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Abstract 24 

Given knowledge at the time, the recent 2015-2016 zika virus (ZIKV) epidemic probably could not 25 
have been predicted. Without the prior knowledge of ZIKV being already present in South America, 26 
and given the lack of understanding of key epidemiologic processes and long-term records of ZIKV 27 
cases in the continent, the best related prediction was for potential risk of an Aedes-borne disease 28 
epidemic.  Here we use a recently published two-vector capacity model to assess the predictability of 29 
the conditions conducive to epidemics of diseases like zika, chikungunya or dengue, transmitted by 30 
the independent or concurrent presence of Aedes aegypti and Aedes albopictus. We compare the 31 
potential risk of transmission forcing the model with the observed climate and with state-of-the-art 32 
operational forecasts from the North American Multi Model Ensemble (NMME), finding that the 33 
predictive skill of this new seasonal forecast system is highest for multiple countries in Latin 34 
America and the Caribbean during the December-February and March-May seasons, and slightly 35 
lower –but still of potential use to decision-makers– for the rest of the year. In particular, we find that 36 
above-normal suitable conditions for the occurrence of the zika epidemic at the beginning of 2015 37 
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could have been successfully predicted for several zika hotspots, and in particular for Northeast 38 
Brazil: the heart of the epidemic. Nonetheless, the initiation and spread of an epidemic depends on 39 
the effect of multiple factors beyond climate conditions, and thus this type of approach must be 40 
considered as a guide and not as a formal predictive tool of vector-borne epidemics.  41 

1 Introduction 42 

Zika virus (ZIKV, family Flaviviridae, genus flavivirus) disease, a viral illness transmitted primarily 43 
by the Aedes aegypti and Aedes albopictus mosquitoes (1). ZIKV has recently emerged as a major 44 
epidemic in Latin America and the Caribbean, with 738,783 suspected and confirmed cases reported 45 
to date (2). Prior studies from Yapp Island suggest that the majority of ZIKV infections are 46 
asymptomatic or result in mild disease (3), and initial studies from Latin America suggest that the 47 
ZIKV infections are less severe and less febrile than chikungunya (CHIKV) or dengue (DENV) 48 
infections (4).  The spread of ZIKV has been accompanied by severe neurological complications, 49 
including children born with microcephaly (5,6) and people with Guillain-Barré syndrome (7,8). 50 

In a previous study (9), our team analyzed the potential contribution of climate signals acting at 51 
different timescales in creating the environmental scenario for the current ZIKV epidemic. We found 52 
that suitable climate conditions were present, due to the co-occurrence of anomalously high 53 
temperatures and persistent below-normal rainfall in several regions of South America, especially in 54 
Brazil, the heart of the epidemic.  55 

These suitable conditions are not only favorable for ZIKV, but in general enhance the probability of 56 
both Aedes sp. reproduction and viral replication. Due to the fact that ZIKV, DENV and CHIKV 57 
share the same mosquito vectors and seem to have similar temperature dependence for their extrinsic 58 
incubation periods (10), there are advantages in considering the overall eco-epidemiological 59 
conditions for the potential risk of transmission of Aedes-borne arboviruses rather than focusing on 60 
the risk of transmission of only one disease.  The effect of rainfall on Aedes sp. is more complex than 61 
temperature (e.g., (11,12)), because Aedes vectors breed in domestic water containers which are more 62 
abundant during droughts and water shortages (13). Their presence is also known to increase 63 
following unusually high rainfall when peri-domestic breeding sites (discarded containers, flower 64 
pots, tires, etc.) are filled with water.  65 
 66 
The study of the different environment-virus-vector-human interactions in this field is normally 67 
performed using a diversity of mathematical models, most of them based on the Ross-McDonald 68 
model (14) or its generalizations. These models are commonly referred to as compartmental models, 69 
normally stratifying the human population in susceptible (S), infected (I) and recovered (R) 70 
individuals, which explains why they are also known with the alternative name of SIR models. A set 71 
of coupled differential equations is used to describe the evolution of each compartment (15,16). 72 
These models vary in complexity, and tend to be classified as homogeneous or heterogeneous 73 
models; for details, see for example (17). 74 
 75 
Although these models are most frequently used to diagnose past or present epidemics, they can also 76 
be used in predictive mode, even at seasonal scale (see Thomson et al. (18) and references therein). 77 
Predicting environmental suitability conditions presents a complex problem, but it is indeed less 78 
complex than predicting the occurrence and transmission of the diseases in human populations. The 79 
complexity resides in the non-linear interactions between the different components of the coupled 80 
system in consideration, in which the effects of population immunity and susceptibility, or different 81 
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possible immunological interactions between the diseases (e.g., co-infections of DENV and ZIKV) 82 
are still not well understood.  83 
 84 
In this paper, we develop a new seasonal forecast system for suitable climate conditions conducive to 85 
enhanced transmission risk of Ae. aegypti- and Ae. albopictus-borne diseases. We use a two-vector 86 
model and state-of-the-art climate forecasts to assess its predictive skill, and we discuss the 87 
implications for Latin America and the Caribbean. For brevity, in the following pages we will use 88 
“potential risk of transmission” to refer to potential transmission associated with climate conditions 89 
suitable for transmission of the diseases mentioned earlier in this paper. Data and general methods 90 
are presented in Section 2, the vectorial capacity model is discussed in Section 3, the skill assessment 91 
for different seasons of the year is analyzed in Section 4, and the concluding remarks are presented in 92 
Section 5. 93 

2 Data and Methods 94 

The domain of study includes Latin America and the Caribbean, and is defined by the boundaries 95 
120oW-25oW and 60oS-32oN.  96 
 97 
The observed monthly temperature and rainfall fields for the period 1950-2015 were obtained from 98 
the University of East Anglia Climate Research Unit product version 3.24 (CRUv3.24; (19)), 99 
available at a horizontal resolution of 0.5 degrees. These datasets were selected to be consistent with 100 
our previous study on a similar topic (9). Tests indicated that the results are consistent with other 101 
large scale gridded climate datasets, such as the Climate Anomaly Monitoring System (CAMS, 102 
Global Historical Climatology Network version 2; see (20) for details) used in (21). 103 
 104 
State-of-the-art temperature and rainfall forecasts at monthly timescales were obtained from the 105 
North American Multi-Model Ensemble project (NMME; (22)), at a common horizontal resolution of 106 
1 degree. The total of 116 members available was used for the hindcast1 period of 1982-2010, but 107 
only 104 members were used for the December-February 2014-15 forecast, since those were the ones 108 
available for that year (no members from the NCAR-CESM1 and NASA-GMAO models). Hindcasts 109 
and forecast correspond to the month prior to the target season; for example, for the December-110 
February season, the hindcast and forecast of November was used.  111 
 112 
The vector model used in this work was recently developed by Caminade et al. (21). For the sake of 113 
organization, the vectorial capacity model equations are presented in the next section. The model 114 
requires climate information, and thus the observations and NMME forecasts mentioned above were 115 
used, the first one for diagnostics and the second one for the prognostic set up. The model was coded 116 
and executed in Matlab at a monthly timescale for a total of 792 months when forcing it with 117 
observed data, and 348 months per member when using the NMME hindcasts; each member was run 118 
independently before computing the ensemble and seasonal average. The vectorial capacity model 119 
output, forced with both climate observations and hindcasts, is available online in the Latin American 120 
Observatory’s Datoteca (23–26): http://datoteca.ole2.org/maproom/Sala_de_Salud-121 
Clima/ContexHist-Map-1/index.html.es.  122 
 123 
When analyzing the model forced with observations, standardization was performed with respect to 124 
the 1950-2015 period. Anomalies are defined as the value of the variable being analyzed minus its 125 
                                                
1 A hindcast is a retrospective forecast, made using the same methodology of actual forecasts, but for a past period of 
time. They are usually produced to evaluate forecast skill. 
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1950-2015 average. To analyze inter-annual variability, a 12-month running average was computed. 126 
A linear detrending was used.  127 
 128 
Skill was assessed using both Kendall’s t and the 2AFC score (27), computed using the International 129 
Research Institute for Climate and Society (IRI) Climate Predictability Tool, CPT (28), version 130 
15.4.7. Kendall’s t is a non-parametric rank correlation coefficient used here to measure the overall 131 
association between observations and model output. The 2AFC score indicates the probability of 132 
correctly discriminating an observation in a higher category from one in a lower (e.g., an "above-133 
normal" observation from a "normal" observation) given the forecasts expressed in deterministic 134 
form (i.e., the actual model values, and not the probabilities associated with them). The following 135 
four seasons were considered: December-February, DJF, March-May, MAM, June-August, JJA, and 136 
September-November, SON. A cross-validation window of five years was used, for the 1982-2010 137 
period. For each iteration, five years were left out and the remainder years were used to build the 138 
statistical model, forecasting the middle year of the five-year window. This window is shifted one 139 
year into the future for the next iteration, and so on. The skill reported is the average of the metric 140 
computed for each iteration, and it was assessed after magnitude and spatial biases were corrected 141 
using a simple Model Output Statistics approach involving a Principal Component Regression (PCR; 142 
(29,30)), an option available in the CPT software. For further details see (29).  143 
 144 
Maps showing the 2AFC score computed using this methodology were produced for each of the 145 
seasons considered. Categories for above normal, normal and below normal were identified in the 146 
vector model output using the typical 33.33% and 66.66% thresholds in the corresponding 147 
probability density function. Forecast probabilities for each category were computed using the PCR 148 
model built with the CPT package. 149 

3 Two-vector ento-epidemiological model 150 

Both Ae. aegypti and Ae. albopictus are considered the most important vectors in Latin America and 151 
the Caribbean for the transmission of ZIKV, CHIKV and DENV (e.g., (31–33))  These vectors are 152 
known to have different susceptibilities to these diseases, as well as different feeding characteristics 153 
(21). While Ae. aegypti and Ae. albopictus are considered a domestic mosquito and peri-domestic 154 
mosquito respectively, it is in principle possible to find them co-existing in the same place (34,35), 155 
something that is expected to be even more common in the near future due to global warming 156 
(31,36). Hence, we consider that an actionable seasonal forecast system like the one in consideration 157 
should involve at least these two species for Latin America and the Caribbean. This section presents 158 
the model equations used by the prediction system.  159 
 160 
As it has been shown by other authors (21,37) the equations for the dynamics of a two-vector-one-161 
host capacity model, a generalization of the well-known Ross-McDonald model (14), are 162 
𝒅𝑺𝑯
𝒅𝒕

= −𝛌𝑯𝑺𝑯          (1) 163 

𝒅𝑰𝑯
𝒅𝒕
= λ*𝑆* − 𝒓𝐼*         (2) 164 

 165 
𝒅𝑹𝑯
/0

= 𝒓𝑰𝑯          (3) 166 
𝒅𝑺𝒊
/0
= 𝝆𝒊𝑵𝒊 − 𝛌𝑽𝒊𝑆𝒊 − 𝝁𝒊𝑺𝒊        (4) 167 

 168 
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𝒅𝑳𝒊
/0
= 𝛌𝑽𝒊𝑆𝒊 − (𝝂𝒊 + 𝝁𝒊)𝑳𝒊        (5) 169 

 170 
𝒅𝑰𝒊
/0
= 𝝂𝒊𝑳𝒊 − 𝝁𝒊𝑰𝒊         (6) 171 

 172 
where 𝑺𝑯 , 𝑰𝑯	and 𝑹𝑯 are the number of susceptible, infectious and recovered hosts, respectively, 173 
associated with the Aedes-borne disease of interest. 𝑺𝒊 , 𝑳𝒊	and 𝑰𝒊 are the number of susceptible, latent 174 
and infectious vectors of kind i=1,2 (Ae. aegypti and Ae. albopictus, respectively). In addition, 175 
 176 
𝛌𝑯 =

𝟏
𝑵𝒊
𝒂𝒊𝒃𝒊𝒊?𝟏,𝟐 𝝓𝒊𝒎𝒊𝑰𝒊        (7) 177 

 178 
 179 
𝛌𝑽𝒊 =

𝑰𝑯
𝑯
𝒂𝒊𝜷𝒊𝝓𝒊         (8) 180 

 181 
and 𝒂𝒊 is the daily biting rate (a function of temperature),	𝒃𝒊 is the vector-to-host transmission 182 
probability, 𝝓𝒊 quantifies the vector’s preference for humans, 𝒎𝒊 is the vector-to-host ratio (a 183 
function of both temperature and rainfall; see (21) for details), 𝜷𝒊 is the host-to-vector transmission 184 
probability, r is the daily recovery rate, and 𝝂𝒊 and 𝝁𝒊 are the inverse of the extrinsic incubation 185 
period of the virus in days and the mortality rate2, respectively, both a function of temperature. As in 186 
(21), the vector-to-host-ratio  𝒎𝒊 is defined in terms of the probability of occurrence of the vectors 187 
(multiplied by 1000), which was obtained in (34) using maximum and minimum annual rainfall to 188 
account for the presence of water-filled containers, and other environmental variables involving 189 
temperature and urbanization; for details see the Materials and Methods section in (34). 𝑯 and 𝑵𝒊 are 190 
the total number hosts and the total number of the i-th kind of vector, respectively. 191 
 192 
This is a 5-compartment model: infectious human host, latent Ae. aegypti vectors, latent Ae. 193 
albopictus vectors, infectious Ae. aegypti vectors and infectious Ae. albopictus vectors. If 𝚫 and 𝚲 194 
are the new infectious rate appearing in a compartment and the rate at which individuals leave said 195 
compartment, respectively, then 196 
 197 

𝚫 = (𝛌𝑯𝑺𝑯 𝛌𝑽𝟏𝑺𝟏 𝛌𝑽𝟐𝑺𝟐					𝟎 𝟎)𝑻   (9) 198 
 199 

𝚲 = (𝒓𝐼𝑯 (𝝂𝟏 + 𝝁𝟏)𝑳𝟏 (𝝂𝟐 + 𝝁𝟐)𝑳𝟐					−𝝂𝟏𝑳𝟏 + 𝝁𝟏𝑰𝟏 −𝝂𝟐𝑳𝟐 + 𝝁𝟐𝑰𝟐)𝑻 (10) 200 
 201 
The basic reproduction number 𝑹𝟎 is the dominant eigen-value of the next-generation matrix (21) 202 
 203 

𝑲 = 𝝏𝚫𝒎
𝝏𝒙𝒍 𝒙𝟎

𝝏𝚲𝒎
𝝏𝒙𝒍 𝒙𝟎

M𝟏
       (11) 204 

 205 
for m,l=1..5 identifying the different compartments,	𝒙  being a vector with the number of 206 
individuals in each compartment, and 𝒙𝟎 denoting the disease-free equilibrium state. The only non-207 
zero elements 𝑲𝒎𝒍 (new infections in compartment m produced by infectious individuals in 208 
compartment l) of 𝑲 are 209 

                                                
2 We found a typo in Table 1 for the expression of 𝝁𝟏 in (21) : the correct value in the argument of the exponential 
function is 51.4 – 1.3 T. 
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𝑲𝟏𝟐 =
𝒂𝟏𝒃𝟏𝝓𝟏𝝂𝟏
(𝝂𝟏N𝝁𝟏)𝝁𝟏

         (12) 210 
 211 
𝑲𝟏𝟑 =

𝒂𝟐𝒃𝟐𝝓𝟐𝝂𝟐
(𝝂𝟐N𝝁𝟐)𝝁𝟐

         (13) 212 
 213 
𝑲𝟏𝟒 =

𝒂𝟏𝒃𝟏𝝓𝟏
𝝁𝟏

          (14) 214 
 215 
𝑲𝟏𝟓 =

𝒂𝟐𝒃𝟐𝝓𝟐
𝝁𝟐

          (15) 216 
 217 
𝑲𝟐𝟏 =

𝒂𝟏𝜷𝟏𝝓𝟏𝒎𝟏
𝒓

         (16) 218 
 219 
𝑲𝟑𝟏 =

𝒂𝟐𝜷𝟐𝝓𝟐𝒎𝟐
𝒓

         (17) 220 
 221 
𝑹𝟎 is the largest eigen-value solution of the eigen-value problem 𝑲− 𝑹𝟎𝑰 = 𝟎: 222 
 223 
𝑹𝟎	𝟒 − 𝑹𝟎	𝟐 𝑲𝟐𝟏𝑲𝟏𝟐 + 𝑲𝟑𝟏𝑲𝟏𝟑 = 𝟎      (18) 224 
or 225 

𝑹𝟎 	=
𝒂𝟏
𝟐𝝓𝟏

𝟐𝒃𝟏𝜷𝟏𝒎𝟏𝝂𝟏
(𝝂𝟏N𝝁𝟏)𝝁𝟏𝒓

+ 𝒂𝟐
𝟐𝝓𝟐

𝟐𝒃𝟐𝜷𝟐𝒎𝟐𝝂𝟐
(𝝂𝟐N𝝁𝟐)𝝁𝟐𝒓

      (19) 226 

 227 
where, as the indices suggest, the first term in the square root corresponds to Ae. aegypti and the 228 
second one to Ae. albopictus. As in (21), we set 𝑹𝟎=0 in all locations and times for which the total 229 
monthly rainfall has not been at least 80 mm during a minimum of five months, a condition for stable 230 
transmission. 231 
 232 
This model has been reported (21) to reproduce well the observed basic reproduction number 233 
obtained when using the relatively short record of ZIKV cases available in Latin America. Because 234 
of this, we have chosen the same values of the parameters and functional dependence on temperature 235 
and rainfall that was used in a prior study (21). 236 
 237 
The basic reproduction number can be understood as the expected number of new cases generated by 238 
a single (typical) infection in a completely susceptible population. It is a dimensionless number that 239 
can be associated with the potential risk of transmission of the disease (in the sense of the suitable 240 
conditions for transmission, as discussed at the Introduction), considering only basic environmental, 241 
entomological and epidemiological information. Only values of 𝑹𝟎>1 are related to spreading the 242 
infection in the population, and thus we focus on that range of values of R0 in the present study.  243 
 244 
The temperature dependence of certain parameters in the model (for example, the mortality rate 𝝁𝒊; 245 
see Figure 1) strongly controls the spatial and temporal distribution of 𝑹𝟎. Most of Latin America 246 
and the Caribbean typically exhibit high values of the two-vector basic reproduction number (Figure 247 
2). The potential risk of transmission of Aedes-borne diseases is higher for the northern half of South 248 
America, especially in Brazil, most of Colombia, Venezuela, Guyana, Suriname and the French 249 
Guyana, coastal Ecuador and the Ecuadorian and Peruvian Amazon. Central America and the 250 
Caribbean, although to a lesser degree, also exhibit high values of 𝑹𝟎. Furthermore, with the 251 
increasing occurrence of high-temperature records, the frontier is extending farther into southern 252 
South America, in countries like Uruguay, which reported the first cases of autochthonous dengue 253 
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fever in 2016 (38). Nonetheless, places that are too hot decrease the life expectancy of the vectors 254 
(roughly speaking, with temperatures above 40oC, see Figure 1), and thus some regions in the future 255 
could start seeing a relative decrease in vector number if temperatures keep increasing. 256 
 257 
An analysis of the evolution of the suitable conditions for transmission during 2013-2015 (Figure 3) 258 
complements the study on the associated temperature and rainfall anomalies performed previously 259 
(9). Standardized positive 𝑹𝟎 anomalies covering regions of northern South America and northern 260 
Brazil in 2013 became dominant in almost everywhere in northern half of South America, Central 261 
America and the Caribbean in 2015, with values exceeding one standard deviation in zones of 262 
Brazilian Amazon, the northern Peruvian coast, all of coastal Ecuador, most of northern Colombia 263 
and western Venezuela. Standardized anomalies of around two standard deviations occurred in the 264 
heart of the Brazilian Amazon.  265 
 266 
The neutral standardized anomalies in the Brazilian Nordeste (Northeast), one of the most impacted 267 
places in terms of the present ZIKV epidemic, are attributed to the buffering role of the Atlantic 268 
Ocean in controlling the local temperatures. Still, neutral standardized anomalies in Nordeste are 269 
associated with  𝑹𝟎 ranging between 3.5-5.5, which indicate a very high potential risk of 270 
transmission.  271 
 272 
The high values of the 2015 standardized anomalies (Figure 3c) are also consistent with the observed 273 
behavior of other diseases like dengue; for example, the reported number of dengue cases for 274 
Ecuador in 2015 (42,667) was about 3 times larger than the average number of cases for 2011-2014 275 
(14,467.5); for details see (39). Nonetheless, work of our team in Machala (coastal Ecuador) suggests 276 
that a high percentage of the 2015 dengue cases reported there are likely to be chikungunya cases. 277 
Even if that is the case, the model was able to capture enhanced conditions leading to a higher 278 
number of Aedes-borne diseases. 279 
 280 
The evolution of the spatially-averaged  𝑹𝟎 standardized anomalies for Latin America and the 281 
Caribbean exhibits a clear trend between 1950 and 2015 (black curve in Figure 3d), as reported by 282 
(21), that we attribute to the persistent increase in temperatures observed in the region. Once the 283 
longer-term signals are filtered-out, the inter-annual component of the 𝑹𝟎 standardized anomalies 284 
(filled curved in Figure 3d), show a peak in 2015 that is the second-highest on record, after the one in 285 
1998. This contrasts with the analysis performed by (21); overall Figure 3d is telling the same story 286 
as Figure 3 in (21), the main differences due to the use of a different dataset and mostly to the use of 287 
a 12-month running average in our case (see Section 2 above). Our interpretation is consistent with 288 
our previous study on the 2015 climate conditions (9): a superposition of long-term, decadal and 289 
inter-annual signals was responsible for the 2015 absolute maximum in the unfiltered time series 290 
(black curve in Figure 3d). Although most likely the 2015 El Niño had an important contribution, the 291 
maximum cannot be explained only by this inter-annual phenomenon.  292 
 293 
 294 

4 Skill Assessment and DJF 2014-2015 Forecast 295 

A new seasonal forecast system for potential risk of transmission of Aedes-borne diseases can be 296 
developed using the ento-epidemiological model discussed in the previous section and multi-model 297 
ensemble climate predictions at seasonal scale. For this purpose, we have selected the set of coupled 298 
global models participating in the North American Multi-Model Ensemble project (22). Although our 299 
focus is Latin America and the Caribbean, the same system can be used for other regions of the 300 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/139253doi: bioRxiv preprint 

https://doi.org/10.1101/139253
http://creativecommons.org/licenses/by-nc-nd/4.0/


Muñoz et al (under review) - Could the recent zika epidemic have been predicted? 

 
8 

world, and a subset of the NMME models or a completely different seasonal climate forecast system 301 
can be used straightforwardly if that provides higher skill for the particular region of interest.  302 
 303 
In brief, the system uses the monthly climate information from each one of the 116 (or 104, if the 304 
target period is between 2010 and 2015) realizations of the NMME models to compute the associated 305 
value of the basic reproduction number for each grid box in our geographical domain. Although the 306 
forecast horizon is typically 9 months after the initialization month, skill is normally higher for the 307 
first few seasons; to illustrate the approach here we focus on the first season starting immediately 308 
after the initialization month (e.g., JJA for forecasts initialized in May). After the multi-model 309 
ensemble and the seasonal average is computed, the output is corrected using a simple Principal 310 
Component Regression, which provided better results than other methods like Canonical Correlation 311 
Analysis or the use of the raw model output. For additional details, see Section 2.  312 
 313 
The cross-validated analysis shows that there is relatively high skill (> 60%, as measured by the 314 
2AFC metric) for 𝑹𝟎  for all the seasons considered in most of northern half of South America and 315 
several regions of Central and North America, and some Caribbean nations (Figure 4). Overall, the 316 
skill is higher in DJF and MAM (with Kendall’s t of 0.199 and 0.191, respectively), and minimum in 317 
JJA (0.123), SON being in the middle (0.146). These values of Kendall’s t are typical for rainfall 318 
predictions in the region, as can be seen in the Validation Maproom of the Latin American 319 
Observatory’s Datoteca (23,24,26): http://datoteca.ole2.org/maproom/Sala_de_Validacion/  320 
 321 
Regionally speaking, skill is higher in Mexico in JJA, especially in the south (Figure 4). Central 322 
American countries exhibit high skill (above 70% for most of them) for DJF and MAM, with the 323 
lowest values (<50%) occurring in JJA and SON for Panama and Costa Rica. The western Caribbean 324 
tends to show higher skill during JJA, while the Central Caribbean and Lesser Antilles during MAM. 325 
 326 
Northern South America shows relatively high skill (>70%) all year around, with some regions —327 
like Ecuador, northern Peru, southwestern Colombia, northeastern Venezuela and northern Guyana— 328 
showing no skill during JJA and SON (Figure 4).  The forecast system has in general low skill or no 329 
skill at all for southern South America, with some exceptions, e.g., the Bolivian Amazon in DJF, 330 
Paraguay and northern Argentina in SON, and northwestern Uruguay in DJF. Most of Brazil exhibits 331 
values of the 2AFC metric that are above 50% in all seasons, although southern Brazil has very low 332 
skill in MAM. In general, Chile and central and southern Argentina, do not show potential risk of 333 
transmission with this model, and thus those regions appear in white in our skill maps (Figure 4). 334 
 335 
To illustrate an example of the bias-corrected probabilistic forecasts produced by our system, we now 336 
consider the season prior to the first ZIKV case reported in Brazil (May 2015 (40)): DJF 2014-2015. 337 
The probabilistic prediction indicates that there were mostly conditions for above-normal risk of 338 
transmission in eastern Brazil, which is similar to the observed conditions (Figure 5). Of course, no 339 
model is perfect and although, overall, there are similarities between the forecast and observed basic 340 
reproduction number for that season —especially in South America—  there are also differences. 341 
Nonetheless, below-normal conditions were in general no forecast in the ZIKV hotspot places (in 342 
Brazil, for example), and as discussed above, the normal category the northern half of South America 343 
is already conducive to epidemic conditions. Hence, we claim that this particular forecast, even if not 344 
perfect, could have been useful for decision-makers at the time (November 2014), assuming that they 345 
already knew there was ZIKV in the region, which was of course not the case. 346 
 347 
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The previous example also illustrates why this tool can only be used as a guide for the local and 348 
international experts, as these diseases involve complex interactions beyond the presence or not of 349 
enhanced environmental (climatic) conditions suitable for the occurrence and transmission of Aedes-350 
borne epidemics.  351 

5 Concluding remarks 352 

We have discussed the development and predictive skill of new probabilistic forecast system for 353 
above-normal, normal and below-normal environmental conditions associated with potential risk of 354 
transmission of diseases like ZIKV, DENV and CHKV. To the best of our knowledge this is the first 355 
seasonal forecast system of this type for Latin America and the Caribbean, although it is conceptually 356 
similar to a malaria forecast system developed for Africa years ago (18).  357 
 358 
From the regional perspective, this forecast system has the potential to help the Pan-American Health 359 
Organization (PAHO), the World Health Organization (WHO) and other decision-makers to prepare 360 
more detailed epidemiological alerts and guides for zika's surveillance and other arboviruses; to 361 
calculate different levels of population at risk and incidence rates for regional assessment, to prepare 362 
vector control guidelines for a more integrated management; to plan and support vector control 363 
resources an equipment; to organize and program activities and resource mobilization, as well as 364 
improve risk communication materials. One of the co-authors (PN) has already started to explore 365 
ways to take advantage of this forecast system at PAHO/WHO. 366 
 367 
Our system is a first attempt to provide predictive tools for health practitioners and decision-makers 368 
interested in Aedes-borne diseases in Latin America and the Caribbean, and can be considered an 369 
additional step in the direction followed by previous research groups (21,34,36,41–44).  370 
 371 
Indeed, forecasts of health events are designed to change human behavior. Nonetheless, as with the 372 
practice of medicine, there are ethical issues to consider. It is possible that there might be negative 373 
consequences from an epidemic risk forecast (i.e., incidence, or cases), even if the prediction is 374 
skillful. To illustrate this idea, consider that a forecast for ZIKV is provided to the community, 375 
indicating that there is above 80% probability of acquiring the disease in Rio de Janeiro during a 376 
certain season, but less than 10% probability of infection in Montevideo. People —some of whom 377 
could already be infected with ZIKV, or even with a different disease—  might decide to travel to 378 
Montevideo instead of Rio de Janeiro because of that forecast, thus igniting or being part of a new 379 
focus of an epidemic there, that was not predicted and that is partially caused by the original 380 
prediction itself. This is an important caveat to be considered by the decision-makers. Another 381 
consideration is that a ZIKV forecast may have negative consequences for tourism, leading to 382 
livelihood impacts that may have negative health consequences. 383 
 384 
There are a number of important limitations related to our forecast system. As indicated earlier in this 385 
paper, by itself this kind of system cannot forecast the occurrence and spread of new epidemics, but 386 
only partial conditions for that to happen. The model employed here only considers the effect of 387 
climatic conditions, through temperature and rainfall, on disease transmission via the vectors and 388 
viruses of interest. Direct human to human transmission via sexual intercourse and blood transfusion 389 
are outside the scope of this modelling approach. Also, the present version of the model cannot 390 
simulate co-infections or mixed states (e.g., a fraction of the population that is recovered from 391 
dengue but it is susceptible to zika). 392 
 393 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/139253doi: bioRxiv preprint 

https://doi.org/10.1101/139253
http://creativecommons.org/licenses/by-nc-nd/4.0/


Muñoz et al (under review) - Could the recent zika epidemic have been predicted? 

 
10 

One particular way in which the model needs to be improved involves how rainfall is considered. 394 
The present version of the model only uses rainfall in a rather simplistic way, without really 395 
considering its seasonal characteristics. There are examples in the scientific literature that could be 396 
used to improve the representation of rainfall in this type of model (see for example, (45–47)). In 397 
addition, there is room to consider a better set of realizations in the ensemble of simulations, varying 398 
the ento-epidemiological parameters of the model. This will be explored in the future. 399 
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FIGURE CAPTIONS 562 

Figure 1. Daily vector mortality rate as a function of mean temperature (in Celsius). 563 
 564 
Figure 2. Observed climatology of 𝑹𝟎 considering all months in the period 1982-2010. Only 𝑹𝟎 > 𝟏 565 
values are plotted. There is no data over the oceans. 566 
 567 
Figure 3. Spatial evolution of standardized 𝑹𝟎 yearly anomalies for (a) 2013, (b) 2014 and (c) 2015. 568 
(d) Average evolution of standardized 𝑹𝟎  anomalies (in units of standard deviations, s) for Latin 569 
America and the Caribbean (domain in panel (a)) for the 1950-2015 period. Black empty curve and 570 
filled curve show the raw and linearly detrended standardized anomalies, respectively. A 12-month 571 
running average filter was applied to both curves to better capture the inter-annual variability. There 572 
is no data over the oceans. 573 
 574 
Figure 4. 2AFC skill score for the seasonal forecast system for each one of the four seasons selected: 575 
(a) DJF, (b) MAM, (c) JJA and (d) SON. Units in %. The 2AFC score is an indication of how often 576 
the forecasts are correct; it also measures how well the system can distinguish between the above-577 
normal, normal and below-normal categories. 578 
 579 
Figure 5. (a) Observed terciles (above normal, normal, below normal) for the basic reproduction 580 
number (𝑹𝟎), computed using observed climate data for DJF 2014-2015 and the model presented in 581 
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section 3. (b) Forecast probabilities (in %) for 𝑹𝟎 for the same DJF season, computed using predicted 582 
climate data, the vector model presented in section 3 and the probabilistic Principal Component 583 
Regression model described in section 2. 584 
 585 
 586 

 587 
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a) Observed R0 (DJF 2014-2015 categories) b) Probabilistic forecast for R0 (DJF 2014-2015 categories)
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