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 2 

Although most animal behaviors are associated with some form of heritable genetic variation we do 21 

not yet understand how genes sculpt behavior across evolution, either directly or indirectly. To 22 

address this, I here compile a dataset comprised of over 1,000 genomic loci representing a spectrum 23 

of behavioral variation across animal taxa. Comparative analyses reveal that courtship and feeding 24 

behaviors are associated with genomic regions of significantly greater effect than other traits, on 25 

average three fold greater than other behaviors. Investigations of whole-genome sequencing and 26 

phenotypic data for 87 behavioral traits from the Drosophila Genetics Reference Panel indicate 27 

that courtship and feeding behaviors have significantly greater genetic contributions and that, in 28 

general, behavioral traits overlap little in individual base pairs but increasingly interact at the 29 

levels of genes and traits. These results provide evidence that different types of behavior are 30 

associated with variable genetic bases and suggest that, across animal evolution, the genetic 31 

landscape of behavior is more rugged, yet predictable, than previously thought. 32 
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 3 

Introduction 47 

Nearly all behaviors are associated with some form of heritable genetic variation (Kendler and 48 

Greenspan 2006). This interplay between genetic and other forces that shape behavior is complex and 49 

disentangling it occupies an array of research endeavors, spanning disciplines from evolutionary biology 50 

to psychiatry. Accordingly, recent years have seen reasonable progress toward understanding the genetic 51 

architecture of certain behavioral traits using model systems (Reaume and Sokolowski 2011). The general 52 

conclusion from this research in mice, flies, worms, and humans is that the genetic architectures of 53 

behaviors generally fit an exponential distribution, with a small number of loci of moderate to large effect 54 

and a larger number of loci with small effects (Robertson 1967; Flint and Mackay 2009). However, owing 55 

to limits in data and methods, the extent to which genetic architectures vary across a full spectrum of 56 

behaviors and animal taxa has remained largely unexplored. 57 

 Behaviors can exhibit considerable variation in genetic influence. Comparative analyses reveal 58 

that behaviors vary substantially in heritability estimates, most often ranging between 10% and 50% 59 

(Kendler and Greenspan 2006; Mousseau and Roff 1987; Meffert et al. 2002). Analyses of individual 60 

behaviors reveal even greater diversity. For example, a single retro-element is responsible variation in a 61 

courtship song between Drosophila species (Ding et al. 2016) while other traits, such as deer mouse 62 

burrowing, have modular genetic architectures comprised of multiple interacting loci (Weber et al. 2013). 63 

Furthermore, the structure and effect of genetic architectures may vary with behavioral traits, as suggested 64 

by the preponderance of large effect loci found for insect courtship traits across multiple species 65 

(Arbuthnott 2009). Despite these observations the extent to which behavioral traits may systematically 66 

vary across species and behaviors remains unknown. Understanding this could provide insights into how 67 

behaviors respond to evolutionary processes, the prospects for finding general principles in the genetic 68 

evolution of behavior, and even potentially why there has been such variable success in the mapping of 69 

human neuropsychiatric traits. 70 

Here, using reports associating behavioral variation with the genes for specific traits across 71 

diverse species, I assemble a comparative behavior genetics resource composed of 1,007 significant 72 
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genomic loci from 114 QTL studies conducted in 30 species across 5 taxonomic classes. These data 73 

exploit advances in sequencing and genetic marker design that have accelerated reports using quantitative 74 

trait locus (QTL) mapping to identify genomic regions that are associated with behavioral variation 75 

(Lander and Botstein 1989; Flint and Mackay 2009). With the compiled dataset I compare the genetic 76 

architecture of behavioral types across animal taxa. I then corroborate these observations and assay 77 

genetic processes involved in the early stages of behavioral differentiation in a natural population using 78 

whole genome data from the Drosophila Genetic Resource Panel (DGRP). These analyses provide insight 79 

into the genetic architecture of behavior across animals and the interplay between specific behavioral 80 

traits and their genetic influence through evolutionary history.  81 

Results and Discussion 82 

 I performed a comprehensive analysis of results aggregated from 114 QTL studies conducted in 83 

30 species across 5 taxonomic classes to assemble a comparative behavior genetics resource composed of 84 

1,007 significant genomic loci (Database S1). The species examined represent over 500 million years of 85 

evolutionary divergence and over a broad spectrum of phylogenetic data (Fig 1a). For each locus I 86 

annotated the trait measured and its associated effect size (percent phenotypic variation explained), the 87 

reported measure of significance (e.g., LOD score), genomic locus, and study sample size. I focused the 88 

analyses on the reported effect sizes to allow comparison of the genomic architecture of traits across 89 

studies similar to previous meta-analyses of behavioral QTL in mice and flies (Flint 2003; Flint and 90 

Mackay 2009).       91 

 I found that the distribution of effect sizes in the dataset is similar to that found in these previous 92 

studies (Fig 1b). In the majority of loci (89.51%) the effect sizes are less than 20% with a mean effect size 93 

of 9.54%, suggesting that the genetic bases of most behaviors assayed are complex and composed of 94 

many loci of moderate effect.  95 

 Though these results support a model of many loci with small effects for behavior overall, I then 96 

asked whether genetic architecture might vary across types of behavior. I identified ten behavioral 97 

categories for which traits had been measured in at least two species (See supplementary methods). My 98 
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null hypothesis was that individual categories would likely reflect the overall distribution seen across the 99 

dataset, consistent with previous observations that QTL have relatively similar effect sizes across mouse 100 

and fly phenotypes (Flint 2003; Flint and Mackay 2009). Surprisingly, I found instead that behaviors 101 

differed significantly in their effect sizes. Specifically, loci associated with courtship (n=124) explained 102 

significantly more phenotypic variance than all other behaviors combined (Kruskal-Wallis p = 6.7 x 10-29) 103 

and had a mean effect size three times larger than found in all other categories (Fig. 1c). Loci associated 104 

with feeding behaviors (n=11) also explained significantly more phenotypic variance than all other 105 

behaviors combined (p = 6.8x10-13) while emotion and social behaviors explained significantly less (p = 106 

8.6 x 10-33; p = 2.5 x 10-21, respectively). These data suggest that, across species, courtship and feeding 107 

behaviors possess genetic architectures different from those of other traits. 108 

Figure 1: 109 

                        110 

 To assess whether these observations arose from differences in the behavioral traits, as 111 

byproducts or experimental artifacts I controlled for factors that might have contributed bias. I first 112 

considered the effect of intraspecific (within species) compared to interspecific (between species) crosses 113 

used for the QTL mapping, a known source of influence in QTL studies (Broman 2001). I indeed found 114 
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that experiments employing interspecific crosses identified loci of significantly higher effect (p = 4.5 x 115 

10-5). To control for this quantitatively, I estimated phylogenetic divergence and generation times between 116 

the crosses used in each of the 115 studies (Supplementary methods). There was a positive correlation 117 

between evolutionary divergence and effect size (r2 = 0.32, p = 1.9 x 10-20; Fig. 1d; Supplementary 118 

methods). I also considered sample size, a well-known source of bias for which, as might be expected, 119 

there was a negative correlation with effect size (r2 = -0.37, p < 0.0001).   120 

To test the effect of key variables, evolutionary divergence individually, sample size individually, 121 

and both combined, I used three linear models (Supplementary methods).  Strikingly, the overall structure 122 

of the effect size distribution remained largely unaffected after analysis of the residuals from all three 123 

models (Fig S1-3; Supplementary methods). In addition, courtship and feeding behaviors had 124 

significantly larger effect sizes even after accounting for these potential sources of bias (p = 1.4 x 10-14 125 

and p = 5.7 x 10-7, respectively; Fig 2a). 126 

Figure 2: 127 

 128 

 After eliminating sources of potential biases inherent to individual datasets, I next considered the 129 

possibility that the detection of courtship and feeding behaviors as outliers was a trivial outcome of our 130 

own classification method for grouping single behaviors into ten categories. Minimally assuming that the 131 

categorizations of courtship and feeding traits were correct, it is possible that the binning of traits into the 132 

other eight categories may have masked a real signal from some biologically relevant categorization. 133 
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 To test this possibility, I compared the distribution of effect sizes for the courtship and feeding 134 

categories to the distribution for all other behaviors combined (Supplementary methods). I found that 135 

courtship behaviors explained significantly more variation (p <0.05) than 89% of non-courtship behaviors 136 

while feeding behaviors explained more variation than 46% of non-feeding behaviors (Fig 2b; Fig S4b). I 137 

complemented this test with a bootstrap analysis that created a null distribution from 10,000 permutations 138 

of the non-courtship/feeding trait effect sizes. The observed mean adjusted effect size for both courtship 139 

and feeding fell significantly outside the bootstrap null distribution created for each comparison (p < 5 x 140 

10-200)(Fig 2c; Fig S4c). These findings reject the notion that there may be another categorization of non-141 

courtship and feeding behaviors missed by our schema that explains substantially more variation of effect. 142 

 My results suggest that courtship behaviors, and to a lesser extent feeding, may respond to 143 

evolutionary pressures differently than other behavioral traits. Consistent with this notion, previous 144 

analyses of the QTL behavior literature in insects found that a majority of courtship traits are associated 145 

with few loci of particularly strong effect that play a potential role in rapid speciation through prezygotic 146 

isolation (Arbuthnott 2009). In addition, theoretical work has suggested that traits controlling local 147 

adaptation during speciation, such as courtship and feeding, evolve more rapidly if they are associated 148 

with a smaller number of loci (Gavrilets et al. 2007). Given the importance of behavior’s role in the early 149 

stages of speciation it may be possible that for the organisms and traits analyzed here, courtship and 150 

feeding traits with simpler genetic components of large effect were selected for during the evolution of 151 

these lineages. These observations led me to hypothesize that, in a naturally interbreeding population, 152 

courtship and feeding behaviors may be associated with more heritable genetic architectures of greater 153 

effect when compared to other behavioral traits. 154 

 To test this idea, I used the Drosophila Genetic Reference Panel (DGRP). The DGRP is 155 

comprised of over 200 inbred, fully sequenced Drosophila melanogaster lines isolated from a farmer’s 156 

market in Raleigh, North Carolina (Mackay et al. 2012). Phenotypic measures for a wide number of 157 

behavioral traits are available for the DGRP lines in addition to full genome sequence and variant 158 

information, making this resource unique in enabling us to ask larger scale questions about variation and 159 
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evolution in behavior. I collected phenotypic measures for 87 behavioral traits spanning 8 categories, 160 

produced in 9 separate GWA studies (Jordan et al. 2012; Weber et al. 2012; Swarup et al. 2013; Arya et 161 

al. 2015; Gaertner et al. 2015; Garlapow et al. 2015; Morozova et al. 2015; Shorter et al. 2015). 162 

 I first used genome-wide complex trait analysis (GCTA) to survey the extent to which the 87 163 

behavioral traits varied in genomic heritability attributable to all autosomal SNPs (Yang et al. 2011). 164 

After running GCTA 20 behavioral traits passed a p-value threshold of 0.05, indicating that autosomal 165 

SNPs could explain more trait variation than by chance in these cases (Fig. 3a; Supplementary methods). 166 

The majority of these traits were enriched for involvement in courtship and feeding: 30% (6/20) were 167 

associated with courtship and 50% (10/20) were either involved in olfactory behavior or feeding. Notably, 168 

for a number of these traits the vast majority of phenotypic variation could be explained by genome-wide 169 

SNPs, including preference for the food odorant ethyl acetate (99.99 +/-38.05%) and courtship transition 170 

9 (89.38 +/- 50.03%). 171 

Figure 3: 172 

                  173 
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 In addition to an increase in genomic heritability, my QTL analyses also showed that the genomic 174 

architectures of courtship and feeding traits may be simpler and of higher effect.  To test this I performed 175 

a separate GWA experiment for each trait across all lines with available phenotypic data and filtered for 176 

SNPs with a nominal p-value of 5 x 10-6 (Supplementary methods). At this threshold I found 25,919 SNPs 177 

(Fig. 3b; Table S1).  178 

 I re-ran GCTA for each trait using only SNPs identified at p < 5 x 10-6 from the GWAS 179 

(supplementary methods). This test is more conservative compared to genome-wide GCTA since it uses 180 

just the fraction of genomic variants significantly associated with each individual trait. After GCTA I 181 

found 16 behavioral traits that passed the p-value threshold of P < 0.05. Half of these significant traits 182 

were courtship behaviors, including the top four traits with the most variation explained by GWAS SNPs 183 

(Fig. S5a). The number of GWAS significant SNPs for these 16 traits varied substantially and was 184 

positively correlated with the amount of phenotypic variance explained (Fig. S5b). For traits with more 185 

SNPs, significant portions of the variance could be accounted for. For example, 665 SNPs could account 186 

for 63.52 +/-8.42% of variation in courtship wing movement, 828 accounted for 68.64 +/-6.69% of 187 

genital licking behavior, and 8,013 accounted for 78.45 +/-5.97% of courtship approach behavior. The 188 

results from both GCTA tests in the DGRP lines support the hypothesis that courtship and feeding-related 189 

behaviors are associated with more heritable genetic architectures of large effect, even within less 190 

diverged natural populations.  191 

 I next used the DGRP lines to query the extent to which genes or genomic loci may affect 192 

multiple behavioral traits (pleiotropy) (Greenspan 2004). I exploited the breadth of phenotypic and 193 

genomic data available in the DGRP to empirically address this question at three levels: SNPs, genes, and 194 

traits. To allow for comparisons of behavior and other trait types I also conducted GWA for 26 195 

morphological traits reported in Vonesch et al. 2016 (Supplementary methods; Table S2). SNPs found to 196 

be associated with morphology and behavior at p < 5 x 10-6 were distributed across the Drosophila 197 

melanogaster genome, 80 of which were associated with both behavioral and morphological traits (Fig. 198 

3c).  199 
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 With this list of variants I queried which individual SNPs were associated with multiple 200 

behavioral categories. I identified 169 SNPs associated with at least two behavioral measures. These 201 

variants largely segregated within behavioral categories rather than between categories, suggesting that at 202 

the level of individual SNPs these traits may have largely independent genetic architectures amongst the 203 

DGRP lines (Fig. 3d). Many of these SNPs fell within the same genomic regions. I found 72 genes had at 204 

least 2 SNPs associated with multiple traits, several of which contained a multitude of variants (Fig. S6a). 205 

These genes are enriched for involved in biological processes such as Notch signaling, receptor activity, 206 

and morphogenesis (Supplementary methods; Table S3). In addition, I found 81 intergenic SNPs that 207 

each occurred within 20kb of their nearest gene - 26 genes in total - suggesting potential regulatory roles 208 

for these SNPs (Fig. S6b). 209 

 I then assessed the extent to which behaviorally associated variants may act pleiotropically at the 210 

trait level, using the list of 25,919 variants associated with behavior. With this I correlated the effect sizes 211 

of trait-associated SNPs with the effect sizes of those same variants across all other traits (following ref. 212 

26). The results of this analysis are summarized in the clustered heatmap in Fig. S7. In general I found 213 

extensive correlations between behavioral traits, suggesting widespread pleiotropic genetic effects. I also 214 

observed several large clusters of highly correlated traits, suggesting a higher-level structure for 215 

phenotypic variation based on trait interactions (labeled 1-4 in Fig. S7). The existence of these apparent 216 

clusters suggest that, while behavioral categories in the DGRP overlap little in genomic architecture at the 217 

individual variant level, there may be common molecular pathways through which different behavioral 218 

traits are altered in a correlated fashion.  219 

 Finally, I explored pairs of traits with putative directional relationships given the effect sizes of 220 

their associated variants. I avoid calling these relationships causal since, given the existence of extensive 221 

epistasis and genetic linkage the DGRP lines, it is difficult to identify individual variants of likely causal 222 

effect (Huang et al. 2012). I instead sought to elucidate aspects of a directional relationship by 223 

discriminating between cases in which a genotype effects multiple traits through different mechanisms 224 

versus scenarios where a genotype exerts an effect on a trait through a second, intermediate trait 225 
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(summarized as P1←G→P2  compared to G→P1→P2 ) (Pickrell et al. 2016). In addition to the 87 226 

identified behavioral traits, I included the 26 morphological measures to gather insights into potentially 227 

directional relationships between behavior and morphology in the DGRP.  228 

 I conducted pairwise tests of each trait at which GWAS variants at the p < 5x10-6 level were 229 

identified. Using a permutation based test I found 143 trait pairs that showed directionality wherein the 230 

correlation of effect sizes was strong and significant in one comparison but not the other (Supplementary 231 

methods; Fig. 4a). 232 

 Trait pairs identified as significant showed an uneven distribution of potential directional effect 233 

between behavior and morphology, with the largest amount occurring between pairs of behavioral traits  234 

(Fig. 4b). Figures 4c-f highlight examples of these SNP effect size correlations for different behavioral 235 

and morphological measures. A particularly interesting connection was found between SNPs associated 236 

with EGFR signaling affecting thorax length and the total amount of courtship attempted by male flies 237 

(rho=-0.86, p= 8.6x10-8; supplementary methods).  238 

Figure 4: 239 

 240 
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The connection between male courtship behaviors and body size has long been recognized in laboratory 241 

strains of Drosophila though with little evidence of a molecular basis for this effect (Ewing 1961). In 242 

general I find extensive evidence of both directional (G→P1→P2) and general (P1←G→P2 ) pleiotropic 243 

effects between traits in the DGRP, supporting the notion that the early stages of behavioral 244 

diversification involve the role of genes that can effect multiple types of traits. Furthermore, I observe that 245 

while variation in behavior across trait categories is associated with non-overlapping variants these may 246 

occur in common genes and molecular pathways with pleiotropic effects, reflecting suggestions of the 247 

existence of phenotypic “hotspots” that are recurrently used by evolution to sculpt phenotypes (Stern & 248 

Orgogozo 2008).  249 

 Taken together these results suggest that behavioral traits may respond to evolutionary processes 250 

with greater variation than previously appreciated. For example, researchers may now anticipate that 251 

assaying a courtship ritual will likely yield a higher genetic effect than, say, variation in a personality 252 

trait. These insights are supported by observations that behavioral categories vary in their heritability and 253 

genomic architecture during even the earliest stages of diversification within populations. Furthermore, 254 

such behaviors are associated with a small number of highly pleiotropic genes and these traits interact, 255 

indicating that there are identifiable molecular and phenotypic patterns that govern behavior.  256 

 These findings suggest several important caveats and prospects for future behavior genetic 257 

studies. First, QTL mapping methods possess inherent limitations in detecting the complete genetic 258 

architecture of certain traits. For example, QTL studies are often insensitive to the detection of loci with 259 

opposing effects on the trait of interest, thus potentially masking important genetic effects from the 260 

researcher’s analysis (Mackay et al. 2009). Future studies of the genetic architecture of behavior will thus 261 

benefit from integrating QTL methods with results from genome-wide sequencing and genetic 262 

interrogations directed by genome editing7. Second, a more complete survey of behavioral categories 263 

within and across a variety of taxa are needed to confidently establish whether or not the patterns 264 

observed in this study are general principles of how behavior evolves. Finally, empirical tests in the field 265 
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and lab may offer a deeper understanding of the extent to which courtship and feeding behaviors respond 266 

uniquely to selective pressures, and which evolutionary and ecological mechanisms may account for this 267 

phenomenon. Expanding on this with the tools and data now becoming available, behavioral biology may 268 

begin to produce a more nuanced and predictive understanding of the interplay of genetic forces 269 

governing the evolution of behavior. 270 

 271 
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Materials and methods 292 

QTL collection 293 

I first identified behavioral QTL through literature search querying online engines (e.g. PUBMED) with 294 

the keywords “QTL”, “behavior”, “quantitative trait locus”, and “behavioral”. I analyzed the results and 295 

collected QTL for each relevant publication identified. In order to gather as many relevant QTL as 296 

possible over time I expanded the search to include more specific terms relating to behaviors and 297 

categories of interest and to those referenced in previously identified papers. I filtered for loci reported as 298 

significant by the original authors, resulting in 1,007 QTL from 115 studies. For each locus I recorded the 299 

reported effect size (percent phenotypic variation explained), significance measure, genomic location, 300 

sample size, and the number of loci reported overall. QTL studies often report other measures in addition 301 

to those that I collected (e.g. broad or narrow sense heritability). While it would be desirable to compare 302 

certain of these across behaviors and taxonomic groups I found that, within the studies assayed, the 303 

reporting of measures other than those I collected was very inconsistent and allowed for only extremely 304 

restricted comparisons. Since the measure used to report significance varied across studies I converted all 305 

LOD scores to Log p-values using the following R function (R.C.team 2013): 306 

  -log(pchisq(x*(2*log(10)),df=1,lower.tail=FALSE)/2) 307 

I next classified behaviors following the six groups used in the meta-analysis of mouse QTL studies done 308 

by Flint 2003. Several categories represented in our data set were not assayed in this original study (e.g. 309 

courtship). In our classification of these I attempted to strike a balance between breadth (to increase the 310 

tractability of our comparisons) and biological specificity. To do so I required that a category be 311 

represented in at least two species or populations and that the classification match either that reported by 312 

the original authors or a reasonable division as reported by the animal behavior literature. The 313 

classification of a range of biological traits into broader categories is of course difficult and can 314 

repeatedly tempt debate; accordingly this is discussed at length in Flint 2003. I offer that it is important to 315 

rigorously test results implicating a broadly defined category as interesting through comparisons of that 316 

category to the overall distribution of effects, with the goal of controlling for bias introduced by the 317 
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original classifications (as is discussed below). All QTL and the associated measures mentioned here are 318 

available in Table S1. 319 

Phylogeny 320 

I used the phylogenetic relationships reported in Ponting 2008 as a template for our phylogeny of species 321 

examined (Fig. 1a). I added unrepresented species and adjusted dates of evolutionary divergence using the 322 

most recent reports available for each specific clade/species. The following sources were used (along with 323 

the associated phylogenetic divergences): 324 

 325 
Ruff/quail and chicken: Jarvis et al. 2014 326 
Quail and chicken: Kayang et al. 2006 327 
Nine spined and three spined stickleback: Guo et al. 2013 328 
Stickleback and teleost: Pfister et al. 2007 329 
Cave fish and teleost divergence: Briggs 2005 330 
Laupala cricket and insect divergence: Misof et al. 2014 331 
Wax moth and insects: Misof et al. 2014 332 
Pea aphids and insects: Misof et al. 2014 333 
Peromyscus and mice/rats: Bedford and Hoekstra 2015 334 
Solenopsis and Apis: Ward 2014 335 
Sheep and cows: Bibi 2013 336 
White fish and teleosts: Betancu-R et al. 2013 337 
 338 

Effect size comparisons 339 

The overall distribution of effect sizes (Fig. 1B) was plotted using the density function in R. Since some 340 

behavioral categories possessed relatively small sample sizes all comparisons of effect size were done 341 

with the non-parametric Kruskal-Wallis test.  342 

 343 

For the analyses plotted in Fig. 2a-2c and Figs. S1-4 I summed the effect sizes of all loci associated with a 344 

specific behavioral measure for each study. This was done to allow for a comparison of the maximum 345 

amount of phenotypic variance explained for each trait in order to allow for conservative test between 346 

courtship and feeding and all other traits. For example, there may have been non-courtship/feeding traits 347 

associated with many loci that, on their own, possessed small effects but when added together explained a 348 

substantial portion of variation. Following this I filtered for loci where sample size information and 349 
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evolutionary divergence information were available, resulting in 773 loci. The rationales for each estimate 350 

of evolutionary divergence are discussed in the next section.  351 

 352 

I used several linear models to test for potential biasing effects from evolutionary divergence and sample 353 

size, both individually and combined.  The resulting residuals from these models are presented in figures 354 

S1-3. I found no significant correlations between the residuals from the models and the original variables 355 

tested. For the model incorporating sample size alone I observed a correlation between the residuals and 356 

sample size itself of -4.06 x 10-17. For the models incorporating evolutionary divergence alone I observed 357 

a correlation between the residuals and divergence of -5.34 x 10-17. Finally for the model incorporating 358 

both there was a correlation of -1.16 x 10-16 with sample size and a correlation of 3.00 x 10-17 for 359 

divergence. Given the lack of correlation with either variable this suggests that the combined model 360 

successfully controlled for both factors. The residuals for this final combined model were then used for a 361 

comparison between all categories (Fig. S1) and between courtship/non-courtship (Fig. 2a) and 362 

feeding/non-feeding (Fig. S4a).  363 

 364 

For the comparison of the observed courtship and feeding residual effect sizes to the quantiles of all non-365 

courtship/feeding traits I used the following R function (where non_courtship and courtship are 366 

vectors of residual effect sizes for these groups): 367 

 368 
quants = data.frame(matrix(nrow=100, ncol=2)); 369 
for (i in 10:nrow(quants)){ 370 
   court_quants[i,1] = i; 371 
   non_court = non_courtship[non_courtship[,10]> 372 
      quantile(non_courtship[,10], 1-i/100),]; 373 
   df = as.data.frame(rbind(courtship, non_court)); 374 
   court_quants[i,2] = kruskal.test(df[,10],     375 
 as.factor(df[,11]))$p.value 376 
} 377 
 378 

The bootstrap comparisons in Figs. 2c and S3c were done using the custom R function 379 

bootstrap.2independent which is available on the Fernald lab website. For these tests I 380 
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permuted the non-courtship/non-feeding residual effect sizes 10,000 times (with replacement) to create a 381 

null distribution against I which I tested the observed median residual effect size for each trait. A p-value 382 

for each test was calculated by dividing the sum of instances in which the permuted medians were greater 383 

than the observed by 10,000. All plots were produced using base graphics in R and adjusted for design in 384 

Adobe Illustrator. 385 

Data collection of the DGRP lines 386 

I downloaded the DGRP freeze 2.0 variant calls and plink files from the Drosophila genetics reference 387 

panel website (http://dgrp2.gnets.ncsu.edu). Raw data for phenotypic measures were downloaded from 388 

the following sources:  389 

Starvation resistance: Mackay et al. 2012 390 
Startle response: Mackay et al. 2012 391 
Chill coma recovery time: Mackay et al. 2012 392 
Startle response under oxidative stress: Jordan et al. 2012 393 
Negative geotaxis under oxidative stress: Jordan et al. 2012 394 
Olfactory behavior (benzaldehyde): Swarup et al. 2013 395 
Courtship behavior: Gaertner et al. 2015 396 
Olfactory behavior (multiple measures): Arya et al. 2015 397 
Aggressive behavior: Shorter et al. 2015 398 
Food intake: Garlapow et al. 2015 399 
Alcohol sensitivity: Morozova et al. 2015 400 
Morphology: Vonesch et al. 2016 401 
 402 

I compiled the raw data into two tables for use in genome-wide analyses of SNP variation, one composed 403 

of the 87 behavioral traits obtained and another of the 26 morphological traits. For traits in which multiple 404 

measurements were reported I calculated the mean trait measurement and used this for subsequent 405 

analyses. I classified traits into behavioral categories in the same fashion as for the evolutionary QTL 406 

analyses. 407 

Heritability analyses 408 

I first employed genome-wide complex trait analysis (GCTA) to survey genomic heritability across the 87 409 

behavioral traits (Yang et al. 2011). For each trait I used greml v1.26.0 to obtain estimates of 410 

heritability from genome-wide SNP variation across all DGRP lines for which phenotypic measures were 411 
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available. Using the plink files obtained from the DGRP website (base file name dgrp2) I first created a 412 

genotype relatedness matrix for all DGRP lines: 413 

gcta64 --bfile dgrp2 --autosome --autosome-num 3 --maf 0.01     --414 
make-grm --out dgrp2  415 

 416 
Inidividual phenotype files (*.phen) were created for each trait, including fam and individual IDs and the 417 

associate phenotypic measures for each DGRP line. I ran GREML for each phenotype separately: 418 

subjects=$(ls | grep ".phen") 419 
for s in $subjects 420 
 do 421 
    gcta64 --grm dgrp2 –pheno $s --reml --out "${s}"  422 
 done 423 
I then filtered for traits in which the reported p-value from GREML was <0.05, resulting in 20 traits. Fig 424 

3a. shows the distribution of phenotypic variance explained by genome-wide SNPs as measured by the 425 

genotypic variance divided by phenotypic variance (Vg/Vp).  426 

 427 

For the GCTA analyses of just GWAS significant SNPs I compiled a list of associated SNPs for each trait 428 

and built a separate genotype relatedness matrix for each by extracting just those SNPs from the plink bed 429 

files. I then reran GREML for each trait using the corresponding genotype relatedness matrix and testing 430 

only for the SNPs that it contained. Like above I then filtered for traits in which the reported p-value from 431 

GREML was <0.05, resulting in 16 traits. 432 

Genome-wide association analyses 433 

The plink and phenotype files from the GCTA analyses were used to conduct separate genome-wide 434 

association studies (GWAS) for each trait. I used plink v1.90 to conduct these tests on the combined 435 

phenotype matrix (“dgrp_phenos.txt”): 436 

plink --bfile dgrp2 --pheno dgrp_phenos.txt --assoc --out 437 
plink_GWAS/dgrp_all_traits --all-pheno 438 

 439 
Associations were then filtered for a p-value < 5 x 10-6. SNPs associated with multiple traits were 440 

identified and plotted using a binary heatmap with the heatmap2 function in R. Genes associated with 441 

multiple SNPs were identified using the variant annotation file available on the DGRP website.  442 
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 443 

I next assayed relationships between SNPs and multiple traits using the effect sizes (betas) in the 444 

*.qassoc files outputted by plink. To do so I compiled a matrix of the effect sizes for all traits at 445 

each of the 25,919 significant SNPs (Table S4). This matrix could then be directly queried for comparison 446 

of the effect sizes associated with a certain set of SNPs across traits of interest. In order to assess the 447 

overall structure of this data set I used Spearman rank correlations to test the associations between all 448 

possible trait pairs. The results of this test were visualized using the clustering functionality of 449 

heatmap2 in R (Fig. S7).  450 

Tests for trait pair directionality 451 

Directionality in the relationships between trait pairs was tested by first obtaining pairwise rank 452 

correlations for each trait pair in which both traits were associated with >3 significant SNPs (60 traits). 453 

For traits x and y, s1 is the vector of SNPs significantly associated with trait x and s2 is the vector of SNPs 454 

significantly associated with trait y. xx is the vector of effect sizes at s1 for trait x and xy is the vector of 455 

effect sizes at s1 for trait y. Similarily yy is the vector of effect sizes at s2 for trait y and yx is the vector of 456 

effect sizes at s2 for trait x. Rank correlations can then be obtained for each in R:  457 

x_cor = cor(xx, xy , method="spearman") 458 
y_cor = cor(yy, yx , method="spearman") 459 

Since the strongest signal of directionality would be cases in which the absolute value of x_cor/y_cor 460 

equals 1 and the other is equal 0, I assessed directionality as a function of how close to 1 the absolute 461 

difference between the correlations was: 462 

D = abs(1-abs(x_cor-y_cor))  463 

I filtered for trait pairs in which rho for one correlation was >0.5 and for the other was <0.1. I then tested 464 

the directional significance of each trait pair by permuting xx, xy, yy, and yx 1,000 times and 465 

recomputed x_cor, y_cor, and D for each permutation. I then calculated a p-value for each trait pair 466 

by comparing the vector of permuted D values (pseudo) to the observed D: 467 

pseudo = c(); 468 
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  for (trial in 1:1000) {   469 
    pxx = sample(xx, length(xx), replace = F); 470 
    Bxy = sample(xy, length(xy), replace = F); 471 
    Byy = sample(yy, length(yy), replace = F); 472 
    Byx = sample(yx, length(yx), replace = F); 473 
    p_x_cor = cor(pxx, pxy, method="spearman", 474 
 use="pairwise.complete.obs") 475 
    p_y_cor = cor(pyy, pyx, method="spearman", 476 
 use="pairwise.complete.obs") 477 
    d = abs(p_x_cor-p_y_cor) 478 
    pD = abs(1-d) 479 
    pseudo[trial] = pD 480 
} 481 
p_value = sum(D > pD)/1000 482 
 483 

The resulting p-values were adjusted using Bonferroni correction. 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 
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Fig. 1. The genomic landscape of animal behavior | (A) Phylogeny of all species studied in which 519 

genomic loci were collected for the meta-analysis. (B) Density plot of the distribution of effect sizes for 520 

all behavioral traits studied. (C) Boxplot of effect sizes (% variation explained) by behavioral category. 521 

(D) Scatterplot of the relationship between evolutionary divergence (represented by the log10 of years 522 

since divergence) and effect size. 523 

Fig. 2 Assaying the genetic architecture of courtship | (A) Boxplot of the comparison between the 524 

residual effect sizes of courtship and non-courtship behaviors that resulted from a linear model controlling 525 

for sample size and evolutionary divergence. (B) Quantile-based –log10(p-values) comparing the residual 526 

effect sizes of courtship and non-courtship behaviors at each quantile cutoff. The blue line corresponds to 527 

the comparison in Fig 2a. (C) The null distribution resulting from bootstrapping all non-courtship residual 528 

effect sizes for 10,000 permutations and the observed median residual effect size for courtship (dashed 529 

red line). 530 

Figure 3 Comparative genome-wide analyses of the Drosophila Genetic Resource Panel | (A) 531 

Heritability estimates (V(G)/Vp) from GCTA for the 20 measures identified as significant (p-value < 532 

0.05), colored by behavioral category. (B) Barplot summarizing the number of SNPs with p < 5 x 10-6 533 

collected for each behavioral category from GWAS on 87 traits. (C) The distribution of SNPs with p < 5 534 

x 10-6 across the Drosophila melanogaster genome for morphological (blue) behavioral traits (red) and 535 

SNPs that associate with measures of both (orange) (D) Heatmap representing the distribution of shared 536 

SNPs with p < 5 x 10-6 across all behavioral traits. Plotted are SNPs that possess associations with at least 537 

two behavioral traits, colored by the categories highlighted in (A). 538 

Figure 4 Directional relationships between trait pairs in the DGRP | (A) Directional trait pairs 539 

identified as significant by permutation testing. Plotted are traits where the significant correlation 540 

possesses a rho > 0.85. The significant correlation is represented by a red circle. (B) Barplot summarizing 541 

the number of significant trait pairs identified where the focal trait is either behavioral or morphological 542 

with a correlation one of these two domains. Behavioral focal traits are colored red, morphological traits 543 
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are colored blue. (C-F) Scatterplots of the effect sizes for the focal SNPs of example significant trait 544 

pairs. Standard errors are plotted as grey lines. Positive correlations are represented by red arrows and 545 

negative correlations are represented by blue arrows. 546 
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