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Abstract 

Linear mixed models (LMM) are widely used to estimate narrow sense 

heritability explained by tagged single-nucleotide polymorphisms (SNPs). 

However, those estimates are valid only if large sample sizes are used. We 

propose a Bayesian matrix-variate model that takes into account the genetic 

correlation among phenotypes and genetic correlation among individuals. The 

use of multivariate Bayesian methods allows us to circumvent some issues 

related to small sample sizes, mainly overfitting and boundary estimates. Using 

gene expression pathways, we demonstrate a significant improvement in SNP-

based heritability estimates over univariate and likelihood-based methods, thus 

explaining why recent progress in eQTL identification has been limited. 

 

Keywords: SNP heritability, multiple-phenotype, overfitting, Bayesian 

analysis. 
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Introduction 

For many phenotypes, there is a substantial difference between estimates of 

narrow sense heritability from family studies and variance explained by 

discovered single-nucleotide polymorphisms (SNPs) from genome-wide 

association studies (GWAS) [1,2]. This gap is a key component of the missing 

heritability problem [3]. Existing genotyping technologies have allowed narrow 

sense heritability to be estimated from unrelated individuals using all SNPs in 

the genotyping platform (typically most common with a minor allele frequency 

>0.05) [4]. However, given that we cannot exclude the possibility of existing 

rare variants with large effects that have not been detected by genotyping 

arrays, this SNP-specific heritability is only a lower bound of the true narrow 

sense heritability. Nevertheless, we do not yet fully understand the gap between 

SNP heritability and the variance explained by replicated SNPs.  

      Several hypotheses have been postulated and investigated to explain this 

problem. Recent attempts suggest that previous estimates are biased and that 

large sample sizes are required to obtain accurate results [5,6,7]. Naturally, 

violation of model assumptions can result in biased estimates. For example, 

using a model that does not capture existing epistatic effects will risk biasing 

the SNP heritability estimates [6]. Moreover, LMM implicitly assumes that all 

SNPs have an effect on the phenotype as part of the infinitesimal assumption. 

Violation of this assumption was thought to be a possible source of bias given 
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the widespread belief that the majority of SNPs are null [8]; however, recent 

studies found that the effect of this assumption is negligible on SNP heritability 

estimates [7,9]. Furthermore, in twin studies, the phenotypic variation due to 

any shared environment might be significant. Therefore, a model that accounts 

for only a unique environment can inflate heritability estimates. 

      Biased estimates are not necessarily caused by model assumptions 

violations; they can also be a result of the assumptions of the estimation 

procedure itself. For example, the "set to zero" convention, a numerical 

adjustment used to ensure that variance estimates are positive, will upwardly 

bias the heritability. Additionally, in many cases, when small sample sizes are 

used, the variance components are inaccurately estimated taking boundary 

values. These potential sources of bias are all associated with heritability 

estimates from variance components models. 

         The restricted maximum likelihood method (REML) [10] is the 

mainstream method for estimating variance components. It is implemented in a 

variety of genome-wide software packages, such as the genome-wide complex 

trait analysis GCTA [11], efficient mixed-model association EMMA eXpedited 

[12], FAST LMM [13] and the genome-wide efficient mixed-model association 

GEMMA [14]. All these methods are equivalent in the sense that they are all 

based on the same classical univariate LMM. Indeed, some of these methods—

e.g., EMMA, FAST LMM and GEMMA—even produce identical p-values in 

genetic association testing applications [14]. However, these methods differ in 
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their computational complexity, with GEMMA being the most efficient in this 

regard [14]. 

        REML produces unbiased estimates of the variance components if they are 

allowed to be negative [15]; otherwise, its estimates are very likely to 

degenerate in the boundary of the parameter space when small samples are 

used. When a variance parameter is estimated as zero, this should not imply that 

it is close to zero. Instead, it commonly indicates a large amount of uncertainty 

about it [16,17,18]. In multiple-phenotype models, the problem with estimates 

extends to another class of degeneracy, namely, non-positive definite estimates 

of the covariance matrices. Such estimates not only are uninterpretable but also 

can result in underestimated standard errors for the fixed-effect part of an LMM 

[19]. This feature is misleading in GWAS because an SNP of interest is 

typically tested by modeling its effect as fixed; therefore, an underestimated 

standard error will lead to overconfidence about the estimated effect. 

         Multivariate linear mixed models have recently emerged as a tool to 

increase statistical power by incorporating correlations among multiple 

phenotypes. Such models can be fitted using, for example, multi-trait mixed-

model MTMM [20] and GCTA [21], both of which are limited to bivariate 

phenotypes. A popular multivariate method that extended the number of 

phenotypes to more than two was recently proposed by Zhou and Stephens and 

implemented in GEMMA software [22]. Both the univariate and multivariate 

versions of GEMMA are widely used in genetic epidemiology. Therefore, we 
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use them as our benchmark given that they have one advantage over the 

aforementioned methods: speed [14, 22]. GEMMA relies on the maximum 

likelihood (ML) method including its restricted version. In this study, however 

we propose that an improved estimation is obtained using a full Bayes 

approach, specifically, the use of inverse Wishart (IW) prior for the covariance 

matrices and a diffuse normal distribution on the covariate coefficients.  

        Two key problems are addressed by our approach. First, it takes into 

account the tendency of the ML or REML estimates of the covariance matrices 

to be non-positive definite even when the number of phenotypes is not very 

large. Our approach overcomes this problem by adding an extra level of 

variability to the model through the assignment of a non-informative IW prior 

that allows the data to dominate while guarding against positive definiteness 

problems. Second, and as a result, the marginal heritability estimates are more 

efficient in terms of certainty than those from existing univariate and likelihood-

based methods. 

        The outline of this article is as follows. First, we provide some definitions 

and notations about the matrix-normal distribution. Second, we discuss the most 

commonly used model for multiple phenotypes and subsequently state the 

definition of marginal SNP heritability. Third, we unravel the equivalence 

between the multivariate model under study and the multivariate ridge 

regression. This equivalence indicates that the model has the advantage of 

including all tagged SNPs while accommodating inevitable correlations among 
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them (linkage disequilibrium). The ridge representation is used further to (1) 

explain the degeneracy problem associated with estimates of the covariance 

matrices in genome-wide studies and (2) provide a fast evaluation of the 

posterior distribution of the SNP effect sizes, which can subsequently be used 

for predictions as model checking. In the last part of the Methods section, we 

present the complete Bayes model and its simplified form, which facilitates the 

use of many "off-the-shelf" Bayesian software programs. To show the benefits 

of the Bayesian multivariate model, we apply it to the expression of genes 

involved in a breast cancer pathway. We perform two types of comparisons: 

Bayesian versus frequentist approaches and univariate versus multivariate 

approaches. Finally, we use a scaled version of the IW to assess for prior 

sensitivity.  

 

Methods 

Definitions and notations 

The matrix-normal distribution is a generalization of the multivariate normal 

distribution, which allows us to model correlations among and within subjects 

[23]. The probability density function for the random matrix X �d×n� that 

follows the matrix-normal distribution with mean matrix M �d×n� column 

covariance matrix A �n×n� and row covariance matrix B �d×d� denoted by 

�∼ MN �,��	, �, �� has the following form: 
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(1) 

Its expected value and second-order expectations are given by E[X]=M, 

E��X � M��X � M��� � B Tr�A� and E��X � M���X � M�� � A Tr�B�, 

respectively.   

      One way to understand how the matrix normal generalizes the multivariate 

normal distribution is to assume we have n 1-dimensional variates that are 

independent and identically distributed as normal with zero mean and variance 

#� i.e., $�~&�0, #��. This can be written equivalently as a multivariate normal 

distribution ��	�~&��0, #�(��. Now, assume we have n d-dimensional variates 

that are independent and identically distributed as multivariate normal with zero 

mean and covariance matrix B, i.e., the vectors ��~&��0, ��. Because these 

variates are independent, concatenating them will result in a vector with a block 

diagonal covariance matrix ���
� , . . . , ��

��~&���0, (�*��, which is itself 

equivalent to ���, . . . , ���~	&�,��0, (�, ��.  

 

Multiple-phenotype model 

We consider the matrix-variate model given by 

 + � ,� - . - /, . 0 	&�,��0, 1, Σ� 345 / 0 	&�,��0, (�, Σ
�, (2) 

where n and d are the number of individuals and phenotypes, respectively. Here, 

Y is a d×n phenotypic matrix; X is a k×n matrix of covariates, such as age and 
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sex; and , is a d×k matrix of corresponding coefficients. . is a d×n matrix of 

random effects that is independent of the d×n matrix of errors /. The random 

effect term is used to model any correlation between and within individuals. 

The n×n relatedness matrix K represents the genetic covariance between 

individuals and is typically estimated in advance using the genotype data of p 

SNPs and n individuals. In other words, it is the sample covariance matrix based 

on the genotype matrix Z �p×n� with rows pre-processed to have zero mean and 

unit variance, 1 � 7�7/
. The d×d matrix Σ represents the genetic covariance 

matrix within individuals. 9
 and (� specify the environmental covariance 

matrices within and between individuals, respectively.  

Below, we state the SNP heritability definition under this model and discuss 

problems hindering its estimation.   

 

Marginal SNP heritability 

SNP heritability is defined as the proportion of additive phenotypic variance 

explained by tagged SNPs. The diagonal elements of the genetic covariance 

matrix Σ represent the polygenic variances of the d phenotypes. Therefore, the 

SNP heritability of the :��  phenotype according to the multivariate model is 

defined as follows: 

 
;�� �

�Σ ���
�Σ ��� - �9
���

 
(3) 
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Estimation of Σ and 9
 requires estimation of 5�5 - 1� different parameters. 

Clearly, this number increases rapidly with the number of phenotypes. Such a 

large number of parameters can make existing algorithms unstable, e.g., by 

producing covariance matrices that are not positive definite and standard error 

matrices with large or sometimes uninterpretable entries (NAN). To explain 

these issues in more detail, it is instructive to first describe the nature of these 

covariance matrices or, in other words, their relation to SNP effect sizes. To this 

end, we proceed by writing the matrix-variate model in equation 2 in terms of 

SNP effect sizes. In statistics, this is referred to as ridge regression.  

 

Generalized Bayesian interpretation of ridge regression 

The Bayesian interpretation of ridge regression assumes that the regression 

coefficients of a multiple regression are independent and identically normally 

distributed [24]. Here, we aim to provide a broader Bayesian interpretation of 

ridge regression in the context of matrix-normal distribution. Consider the 

matrix-normal regression model of p SNP effects on d phenotypes: 

 + � ,�7 - /, / 0 	&�,��0, (�, Σ
�, (4) 

with matrix-normal prior to the effect sizes1 

 ,� 0 	&
,�<0, (
, Σ�/
=, (5) 

                                                 
1Note that , and ,� are different. The first value corresponds to the effect sizes 
of any covariates other than SNP genotypes—e.g., sex and age—whereas the 
second value is specifically for the SNP genotypes, which are stored in Z. 
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where the (
�
 > 
� and Σ��5 > 5� represent the effect size covariances 

between and within SNPs, respectively. Thus, we are assuming that effect sizes 

are correlated within SNPs and independent across SNPs. Exploiting the 

multivariate normal equivalence of matrix-normal distribution, model 4 can be 

rewritten as follows: 

 vec�+� � 7 �*(� vec�,�� - ABC�/�, ABC�/� 0 &���0, (� D Σ
�. (6) 

Similarly, the prior on the effect sizes is written as follows: 

 vec�,�� 0 &�
<0, (
 D Σ�/
=, (7) 

which is itself equivalent to �,��:�~&��0, Σ�/
� j=1, …, p. 

Here, vec refers to matrix vectorization. Now,  

 V �7 �*(� vec�,���  � �



�7�*(���(
*Σ���7�*(��� 

                                   = 
�



<7� * Σ�=�7�*(��� 

                                   = �



<7� * Σ�=�7*(�� 

                                   = 
���



* Σ�. 

The multivariate normal equivalence of model 2 without βX is given as follows: 

 vec��� � vec��� 	 vec�
�,   

vec��� 
 ���
�0, ��Σ� and vec�
� 
 ���

�0, ���Σ��. 

(8) 

Noting that both vec��� and 7 �*(� vec�,�� have the same probability model, 

namely ���
�0, ��Σ�, it becomes clear that when the relatedness matrix is 

estimated using 1 � ���



, the multivariate ridge regression (equation 4 with 5) is 
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equivalent to the multiple-phenotype model in equation 2. This equivalence 

shows that the multiple-phenotype model has the advantage of handling linkage 

disequilibrium in an integrative manner, i.e., without the need for an initial LD 

pruning step (see [25] for relevant discussion on how ridge regression handles 

LD). 

Boundary estimation problem 

To understand the causes of non-positive definite estimates of the genetic 

covariance matrix Σ, it is easier to think of model 2 using its equivalent form 

from the ridge regression representation as follows: 

 + � ,�7 - /,   �,��:�~&��0, 
��Σ�,  �/�:�~&��0, Σ
�, 

 E � 1, … , 
 and H � 1, … , 4, 

(9) 

where ,� is the d×p matrix of effect sizes for the d phenotypes and p SNPs. A 

natural estimator of the genetic covariance matrix would be ΣI � ,� ,�
�. An 

estimate of this form that is not positive definite may signal a phenotype with 

zero genetic variance. This occurs when all SNP effect sizes for a particular 

phenotype are equal. Another common cause is the existence of perfect linear 

dependency between the SNP effect sizes of different phenotypes. However, 

given that we know that these conditions are implausible a priori, we address 

the non-positive definiteness problem that corresponds to these factors by 

taking a Bayesian approach via the assignment of an IW prior to the covariance 

matrix.  
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      The scaling matrix V of the IW distribution ((J �K, A�) and its degrees of 

freedom v determine how informative the prior is. For example, the least 

informative IW is formed by taking the scaling matrix to be the identity matrix 

and the degrees of freedom to be the least such that the distribution remains 

proper. Assigning an IW to the covariance matrix is equivalent to assigning an 

inverse gamma distribution to the variances. To show the effect of the choice of 

the degrees of freedom on the correlations, 50,000 d-dimensional matrices from 

the (J �(�, A� with v=d, d+1 and d+2 were randomly generated (supplementary 

note)). The least informative IW corresponds to v=d+1, and use of this 

parameter combination has the effect of setting an approximate uniform 

distribution on the genetic correlations.  

 

Simplified full Bayes model 

Using univariate LMM, Lippert et al. [13] showed that a spectrally transformed 

model using a spectral decomposition of the relatedness matrix significantly 

reduces computational complexity. Similar approaches were subsequently 

adopted by [26,22,14]. Following these developments, we spectrally decompose 

the relatedness matrix, which allows us to write the matrix-variate model in 

equation 2 as a multivariate normal model on the transformed data for each 

individual independently as follows: 
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 �+L�:� � ,��L�:� - �.�:� - �/�:�, 

 �.�:�~&�<0, ��Σ= and �/�:�~&��0, Σ
�, 

(10) 

where U is an n×n orthogonal matrix of normalised eigenvectors, and �� are the 

corresponding n eigenvalues. Here, ���:� is the E�� column of the matrix A. 

Eventually, the full Bayes model will have the following hierarchical structure: 

 �+L�:� � ,��L�:� - M�� N� - �/�:�, 

 N�~&��0, Σ�,  

 �/�:�~&��0, Σ
�, 

 �,��:~&��0, diag�10,000, k��, 

Σ~(J �(�, 5 - 1�, 

Σ
~(J �(�, 5 - 1�. 

 

Here, diag �10,000, k� is a k×k diagonal matrix. A BUGS implementation of 

this model is provided in the supplementary note. 

 

Results 

The MuTHER study 

One of the main aims of the MuTHER consortium [27] is to quantify the 

variation in gene expression that is due to genetic factors and ultimately 

provides insights into the mechanisms underlying the disease susceptibility of 

associated SNPs. To this end, genome-wide expression profiles (Illumina HT-

12v3 Chip) and genome-wide association data (Illumina 610k or 1M chip) were 
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obtained from three tissues adipose, skin and lymphoblastoid cell lines (LCL) 

from blood samples of 856 Caucasian female twins aged 38.7 to 86.6 years and 

living throughout the United Kingdom. All recruited females were from the 

TwinsUK adult registry [28,29]. 

     We used the SNPs from the original study, which were filtered at a MAF 

>0.01 and IMPUTE info value >0.6, resulting in a total number of SNPs 

p=2,238,276. We also used the filtered list of probes given by [27], which 

excluded polymorphic probes and probes mapping to multiple genes or to genes 

of uncertain function given that these data are difficult to interpret.  

       Our model is not tailored for twins in the sense that it does not consider the 

shared environment, which can result in inflated heritability estimates. 

Accordingly, we chose to analyze one individual of each twin pair in addition to 

the available singletons, resulting in a number of individuals suitable for the 

analysis (N=446). There were no differences in batch effects after removing the 

twin structure; therefore, only age was included as a non-genotype covariate.   

    The expressions were downloaded directly from ArrayExpress, and access to 

the genotypes and covariates was granted from the TwinsUK Steering 

Committee.  

Heritability estimation 

To illustrate the benefits of our Bayesian multivariate approach, we applied it to 

a pre-defined gene set from the MuTHER project, namely, genes in a breast 

cancer pathway [30]. We chose 20 filtered genes comprising d=30 filtered 
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probes. We implemented the simplified full Bayes model as a module for the 

existing and widely used Bayesian analysis software rjags and coda [31,32]. We 

performed two types of comparisons to characterize the variability in the 

heritability estimates: Bayesian versus frequentist approaches and univariate 

versus multivariate approaches. In each scenario, confidence and credible 

intervals of the heritability estimates were inspected to assess their uncertainty. 

     For univariate likelihood-based analysis, GEMMA software was used to 

obtain heritability estimates, which also facilitates the use of Wald's method to 

compute confidence intervals. The model was separately fitted to each probe 

when d=1 using its gene expression as a response variable and the genotypes as 

explanatory variables modeled via a random term. Figure 1 presents the Wald's 

confidence intervals for the univariate likelihood-based heritability of each 

probe. The confidence intervals are wide. In many cases, the intervals spread 

beyond the parameter space (e.g., including negative values for heritability), 

which make them difficult to interpret.  

     For a better characterization of the variability in the heritability estimates, a 

Bayesian univariate model was used. The model is based on a diffuse gamma 

prior for the scalar precisions: G(0.001,0.001) with a unity mean and variance 

of 1000. The Bayesian estimates from the univariate analysis differ significantly 

from their REML counterparts (figures 1 and 2) as both remain susceptible to 

variability. Thus, the variance/uncertainty remained large despite the very large 
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number of iterations (see [33] for relevant discussion). Convergence is further 

discussed below. 

       Although GEMMA can theoretically be applied to any number of 

phenotypes, when we attempted to fit 5 probes from the breast cancer pathway 

using the filtered set of individuals (N=446), the numerical algorithm failed to 

produce valid standard error matrices. In addition, the covariance matrices were 

not positive definite because of the small sample size and large covariance 

matrices. We overcame this problem by assigning the IW prior, as described 

above. 

       The credible intervals of the heritability of each probe are much narrower 

under the Bayesian multivariate model (figure 3) than under its univariate 

counterpart (figure 2), suggesting very little uncertainty regarding the 

heritability estimates. Our examination of convergence (supplementary note) 

showed that convergence is not only satisfactorily achieved under the 

multivariate analysis but also achieved with a shorter MCMC run than under the 

univariate model. We argue that this significant enhancement in convergence 

pertains to the extra amount of information used in the Bayesian multivariate 

model. The genetic correlation matrix does possess useful information. 

Although 50% of pairwise correlations lie between 0.05 and 0.25, there are 

pairs of genes with high genetic correlation reaching -0.5 and 0.8 

(supplementary note). 
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     Finally, in contrast to both types of univariate analysis, the multivariate full 

Bayes approach provided an insight into the SNP relevancy in explaining the 

variation in expression. Specifically, most tested breast cancer genes have 

negligible heritability (average ~ 0.03). The exception is CHURC1, which has a 

relatively high heritability of 0.27 with a credible interval (0.2, 0.36)2.  

 

Model assessment 

Based on credible intervals, the results from the BC pathway support the idea 

that Bayesian multivariate models produce more accurate estimates of SNP 

heritability than classical multivariate and univariate models. It is also clear that 

the genetic architectures of complex phenotypes are miscellaneous, and no 

single method will be the most efficient in capturing all of them. The "gold 

standard" for model assessment and comparison is therefore an improved 

phenotype prediction using a new data set. This method can be performed first 

by estimating the effect sizes using the computationally efficient formula for the 

mode of their posterior distribution 

 QI � �7*	����(�� - 7�7*	�����R, (11) 

then incorporating the formula to obtain the predicted phenotypic values of the 

new sample based on its genotypes 7���: 

 y
��� � �7���� *(��QI . (12) 

                                                 
2
 These results were recorded after a 150,000 burn-in period using a sample of 

5000 resulting from 25,000 iterations with a thinning interval of 5. 
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Here, y=vec(Y) and the effect sizes Q � vec�,�� are the values estimated from 

the original data. The prediction algorithm is delineated in the supplementary 

note. 

     In our example, phenotype prediction as a model checking technique has its 

pitfalls. In the breast cancer pathway, our method produced expression 

heritability estimates that are close to zero. The exception was CHURC1, with a 

relatively higher heritability. Therefore, any attempt to predict the expression 

using SNPs is expected to fail because the heritability (variance explained by 

genotyped SNPs) is very low. Accordingly, we had to resort to alternative 

approaches in an attempt to provide evidence in support of our SNP heritability 

estimates. The approaches were (1) finding literature that could support or 

refute the results and (2) using more flexible prior specifications. 

Literature support 

To trace back the heritability estimates, we looked at previously reported cis 

eQTLs for the 20 genes from the MuTHER study tested here. According to 

Grundberg et al. [27], there are 196 SNPs associated with CHURC1 expression, 

i.e., with p-values T 10��; however, the other 19 had no reported eQTL, 

supporting the finding that their expression has limited SNP heritability. To 

determine whether the same conclusion can be drawn using a different analysis, 

we used univariate GEMMA to scan chromosome 14 for association with 

CHURC1 expression and identified 180 SNPs with p-values T 10��. Given that 

GEMMA fits an LMM with the fixed-effect part being the genotypes of the 
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tested SNP, proximal contamination [34]; that is the situation when the tested 

SNP is assumed both fixed and random, can incur power loss. To eliminate this 

issue, we followed the GCTA approach and excluded chromosome 14 from the 

computations of the relatedness matrix. In addition to the 180 SNPs identified 

before the exclusion, only one additional significant SNP was detected because 

of a slight decrease in most of the p-values after the exclusion. Overall, there is 

a significant overlap between the SNPs from our analysis and those obtained by 

Grundberg et al. [27]. 

      It would be interesting to determine what effect excluding the detected 

eQTLs would have on the heritability estimates. To this end, we repeated the 

analysis, excluding the SNPs previously associated with CHURC1 expression 

from the model, and the trace plots for its heritability appeared unstable using 

the same burn-in period and thinning interval that was used before the 

exclusion. We therefore explored additional convergence diagnostics, leading to 

the choice of a million iterations with a thinning interval of 1000 after a similar 

burn-in period of 150,000. Nevertheless, convergence remained an issue for the 

heritability of CHURC1. However, the heritability of each of the remaining 

genes remained close to zero with acceptable convergence. 

     The lack of convergence for the heritability of CHURC1 after excluding its 

eQTLs recapitulates the boundary estimation problem: the expected polygenic 

variance is zero (assuming neither epistatic nor very small effects). However, 

given that we are sampling from a family of positive definite matrices, the 
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resulting estimate will not be zero, which probably caused the lack of 

convergence. See the supplementary note for convergence diagnostics.  

Prior sensitivity analysis 

Possible arguments against the use of the IW are (1) the uncertainty for all 

variance parameters are controlled by a single degree of freedom, namely 

v=d+1, and (2) the lack of independence between the variances and the 

correlations. To overcome the first issue and alleviate the second, we used a 

scaled version of the IW.  

     The scaled IW was first introduced by O’Malley and Zaslavsky [35], and its 

relative advantage over the unscaled IW was discussed by Gelman and Hill 

[36]. The basic idea is to decompose the covariance matrix into a diagonal 

matrix � � 5:3U�√3�, √3�, . . . , M3�� and a matrix V distributed as J �(�, 5 -

1�; Σ � � K �. This idea implies that Σ~(J ��(��, 5 - 1�, �(�� �

5:3U�3�, … , 3��. This prior will not shrink the correlations, so their marginal 

prior will remain uniform when v= d+1. However, the variances now can be 

estimated more freely from the data. To determine the scaling needed, we added 

another level of variability by assigning a uniform prior U(0, 100) for each 

scaling parameter (see supplementary for the relevant BUGS code). The SNP 

heritability estimates using the SIW are very similar to those obtained using the 

unscaled method (figure 4), implying that the above concerns that plague the 

IW do not affect the posterior distributions of the heritability.  
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Discussion 

In conclusion, we developed a multivariate Bayesian approach for SNP 

heritability estimation. Our approach can be seen as an extension of existing 

multiple-phenotype models, adding an extra level of variability to ensure 

positive definite estimates of the covariance matrices and ultimately improving 

estimates of the SNP heritability that can determine how fruitful eQTL mapping 

strategies can be. From a computational perspective, the simplified form 

allowed the posterior distribution to be determined at a feasible computational 

cost using rjags. This feature is advantageous because it saves users from 

having to write their own MCMC code. However, it should be noted that 

although rjags performs efficiently for SNP heritability estimation, alternative 

software might be needed for genome-wide association testing because rjags 

will be intrinsically slow owing to the number of iterations required by MCMC 

for the chain to converge. In addition, the multivariate model used herein is 

based on the infinitesimal assumption; however, the genetic architectures of 

complex phenotypes are unknown. Therefore, a more flexible prior that fits a 

wide range of settings may be desirable. A mixture of matrix-variate normal 

distributions for the effect size matrix is likely to provide a gain in the 

estimation accuracy and ultimately in the phenotype prediction, representing a 

promising avenue for future research.  

     Finally, the results from the SNP heritability estimation of the expression of 

the tested BC pathway genes, specifically CHURC1, and its eQTLs are 
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provocative and underscore the need to investigate CHURC1 effect on breast 

cancer status. We have made the first promising steps toward designing a 

method orthogonal to the one in this paper to investigate the extent to which 

significant heritability estimates of the expression of BC-related genes will 

translate into improved predictive accuracy of BC status. 

 

 

 

Figure 1. Interval plot of the heritability of 20 BC genes (30 filtered probes) in the LCL tissue using Bayesian univariate 

analysis with a diffuse gamma prior on the variance components. 
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Figure 2. Interval plot of the heritability of 20 BC genes (30 filtered probes) in the LCL tissue using Bayesian univariate 

analysis with a diffuse gamma prior on the variance components. 
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Figure 3. Interval plot of the heritability of 20 BC genes (30 filtered probes) in the LCL tissue using Bayesian multivariate 

analysis with a non-informative IW prior on the covariance components. 

 

Figure 4. Interval plot of the heritability of 20 BC genes (30 filtered probes) in the LCL tissue using Bayesian multivariate 

analysis with a non-informative SIW prior on the covariance components and a uniform prior on its scale parameters. 
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