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Functional connectivity Magnetic Resonance Imaging (fcMRI) has assumed a central role in 

neuroimaging efforts to understand the changes underlying brain disorders. Current models of 

the spatial and temporal structure of fcMRI based connectivity contain strong a priori 

assumptions. We report that low temporal frequency fMRI signal synchrony within the local (3 

mm radius) neighborhood of a location on the cortical surface strongly predicts the scale of its 

global functional connectivity. This relationship is tested vertex-wise across the cortex using 
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Spearman’s rank order correlation on an individual subject basis. Furthermore, this relationship 

is shown to be dynamically preserved across repeated within session scans. These results 

provide a model free data driven method to visualize and quantitatively analyze patterns of 

connectivity at the imaging voxel resolution across the entire cortex on an individual subject 

basis. The procedure thus provides a tool to check directly the validity of spatial and temporal 

prior assumptions incorporated in the analysis of fcMRI data. 

Corresponding Author: Gregory Kirk, Waisman Laboratory for Brain Imaging and 

Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, USA. 

gkirk@wisc.edu, phone: 608-890-2671. 

 

Since the first report of correlated low frequency blood oxygenation level dependent (BOLD) 

fMRI time series within functional areas 1 resting state functional connectivity MRI (fcMRI)  has 

evolved into a tool used to study distributed networks, termed functional connectivity 

networks, throughout the brain 2,3. These low temporal frequency BOLD correlations have been 

shown to be related to neuronal activity patterns through optical imaging 4, electrophysiology 5, 

axonal tract tracing 6, tractography with diffusion-weighted imaging 7, the abolishment of 

correlations by surgical disconnection 8,9 correlations with FDG-PET glucose measurements 10 

and Transcranial Magnetic Stimulation 11. It is currently unknown whether fcMRI connectivity 

measurements reflect co-activation, the number of axons connecting the areas, strength of 

synaptic connections or dynamic connectivity modulated by the dozens of neuromodulatory 

chemical signals that are known to change neuronal connectivity on the cellular level12 . Most 

likely the connectivity is constrained by the axonal and synaptic connectivity on long time scales 

and gated and modulated by the neuromodulatory influences on faster time scales13,14 . 

Notwithstanding the uncertain biological interpretation of connectivity as measured by fcMRI, 

large efforts are underway to understand the spatial structure of connectivity throughout the 

brain15,16. Functional area parcellations and the network analyses which use node structures 

derived from these parcellations decompose the brain or sub-regions of it into subdivisions 

which are by some measure of functionally connectivity differentiated.  Many procedures have 

been described to perform this subdivision, most  prominently seed clustering approaches 6,17,18 

and subspace projection methods typified by Independent Component Analysis19. All of these 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138966doi: bioRxiv preprint 

https://doi.org/10.1101/138966
http://creativecommons.org/licenses/by-nc-nd/4.0/


are primarily data reduction procedures. They typically operate at a relatively large spatial scale 

and yet there is evidence of much more detailed structure20. These data reduction strategies 

can be compromised by deviations from the modeling assumptions used. One modeling 

assumption is related to temporal variation in functional connectivity. There is evidence that 

the degree of temporal dynamics has been underestimated and the influence of temporal 

changes in connectivity not sufficiently integrated into the analysis and interpretation of fcMRI 

studies 21,22. Group analyses may be affected by the additional unknown individual variability in 

structural and functional anatomy across subjects23–26.  

The question arises as to the fidelity of the approximations afforded by these data reduction 

strategies. In graph analysis of functional connectivity, the brain or cortex is generally 

subdivided into some number of regions, or ‘nodes’, and either the average of all time series 

within the node or a chosen voxel or vertex within the node is used as a seed time series for 

seed correlation based approaches. For a given node definition, to what degree does the time 

series at an arbitrary or average seed within the node represent the time series of all other 

individual locations within the node. For subspace projection methods, to what degree does the 

properly weighted superposition of projected time series corresponding to the spatial 

components overlapping at a given point, reproduce the time series at that point, for all points 

across the cortex or brain gray matter volume.  

Critically, very few analyses have been presented that assess the connectivity of every voxel or 

vertex independently across the entire cortex on an individual subject basis.  Parcellations and 

graph models of the entire cortex have at most sampled several thousand locations across the 

cortex 27. The at least implicit assumption in these approaches is that the cortex is 

approximately locally homogenous. Node definition is critical for valid network analyses. As 

elegantly described by Fornito and colleagues,  “An ideal node definition for the human 

connectome should, define functionally homogenous nodes, represent functional 

heterogeneity across nodes, and account for spatial relationships” 27. The common practice in 

seed based fcMRI studies of using Talairach or MNI coordinates, defined from separate 

populations, to specify posited resting state network nodes implies a belief that the spatial 
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homogeneity of resting state networks is high enough to accommodate the large and 

unquantifiable uncertainty in spatial registration using these methods 24. For graph analyses, 

predefined node definitions are often mapped onto the individual subjects in native space or 

normalized onto a template space. For analyses using large numbers of nodes, hundreds or 

thousands, low dimensional parcellations  are either randomly or uniformly subdivided27. The 

random or uniform subdivision procedures are often not guided by any information regarding 

the actual connectivity of the subjects in the study. Therefore, it would be useful to have a 

procedure that indicates the spatial scale of connectivity of every functional voxel or vertex 

independently across the entire cortical surface on an individual subject basis. Such a procedure 

could be used to check the validity of a parcellation or node definition against actual 

connectivity at the individual subject level.  A change in the spatial scale of connectivity 

between two points within a posited parcellation unit or network node would indicate that the 

connectivity is different between the two points and thus the parcellation unit or node is not 

functionally homogenous. Also importantly the same measure could be used to assess the 

degree to which the node boundaries coincide across subjects. In this study, we report evidence 

of a relationship between the synchrony of the local low temporal frequency BOLD signal within 

a 3 mm radius neighborhood of a vertex on the cortical surface and the spatial extent of the 

global functional connectivity of that vertex. The proposed analysis procedure is model free 

assuming no form of spatial prior and also contains no parameters that need to be chosen. The 

calculations performed are also very simple and so easily interpretable, but provide a wealth of 

information on the spatial structure of fcMRI connectivity. 

Results 

The currently proposed measure is based on assessing the synchrony among the time series 

within a region of interest (ROI) as the mean square error between all time series within the ROI 

and the ROI’s mean time series. The ROI is here the set of all vertices within 3 mm of a target 

vertex on the cortical surface, the time series data having been resampled onto the individual 

subjects’ cortical surface model after preprocessing. The cortical surface was constructed using 

the Freesurfer software, an established and accurate method that performs cortical surface 

reconstruction based on the individual subjects structural T1-weighted MRI image data. Thus all 
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locations on the cortical surface are referred to as vertices, a vertex being an element of the 

surface mesh used to model the 2-dimensional cortical surface. The synchrony measure is here 

termed Local Asynchrony (LASY) since larger values of the measure indicate more asynchronous 

time series and 0 indicates perfect synchrony.  We also compute the seed based connectivity 

map of each vertex as the Pearson linear correlation between the time series of the vertex in 

question and the time series associated with all other vertices across both hemispheres of the 

cortical surface. We then threshold the resulting statistical parametric map and count the 

number of vertices with correlations above a specified reference level, thus achieving a measure 

of the connectivity extent (CE) associated with that vertex.  Having obtained both these 

measures for every vertex across the cortical surface we are in a position to assess the 

relationship between LASY and CE.  Note the chosen thresholds are only sampled to establish 

the existence of the inverse relationship between LASY and CE and are not needed to use the 

procedure once it has been established.  

The inverse relationship between 𝑳𝑨𝑺𝒀 and 𝑪𝑬 is evident on a per scan basis 

 The data were preprocessed by motion correction, slice timing correction, and were band-pass 

filtered [0.1 - 0.01 hz]. The data were additionally processed to remove the mean white matter 

and CSF signals. Cardiac and respiratory signals collected at scan time were used to model and 

remove these influences (see Methods and supplementary material). The data were then 

projected onto the cortical surface and finally the time series were normalized to have zero 

mean and unit variance.  Figure 1 presents an example of the empirical observation that framed 

our hypothesis of a relationship between LASY and CE. The top left and right figures show the 

cortex overlaid with the LASY measures resulting from two functional fMRI scans within the 

same scan session. These figures indicate the placement of seeds at the same vertex on the 

subject’s cortical surface. The corresponding correlation maps demonstrate the effect of using 

the fMRI time series at the seed vertex to perform seed based correlations analysis. The seed 

point on the left indicates high synchrony (low LASY) at the seed vertex and corresponds to a 

larger CE when compared to the connectivity map generated from the second resting fMRI data 

set now with the same seed vertex in a more asynchronous state (higher LASY).  
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Figure 1. High synchrony implies larger networks Top row displays LASY overlay calculated 
from two eyes closed scans from the same subject acquired during the same scan session. In 
both LASY overlay maps the blue arrow indicates the same vertex chosen as a seed location for 
Pearson linear correlation maps (indicated by red arrow) between the time series located at the 
seed and all other time series from the respective resting fMRI scans across the left medial and 
ventral aspect of the cortical surface. The correlation maps are thresholded at correlation 
coefficient > 0.55; vertices in yellow have correlations coefficients > 0.9.  medial surfaces 
middle row.  ventral surface bottom row.  

The empirical observation that using vertices with synchronous local neighborhood as seed 

locations result in relatively large correlation maps, while vertices having an asynchronous local 

neighborhood correspond to smaller correlation maps forms the basis of our main hypothesis. 

The result is first demonstrated with an intuitive graphical representation of the data from a 

single scan.  
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Given there are approximately 300,000 vertices on both hemispheres of a subject’s cortical 

surface a direct plot of the relationship between LASY and CE is not practical. Therefore the CE 

and LASY data from a scan are partitioned into 100 element segments along the LASY axis. For 

each segment we calculate the mean CE value within the corresponding CE segment. This is 

depicted for an arbitrary 1000 element continuous segment at the top of figure 2. The red dots 

display the mean of the 100 individual vertex CE values (blue dots) within the segment. 

These means (red dots) from the 1000 element segment appear in the plot in figure 2 middle 

row, indicating the portion of the data from which they were taken. Note that the inverse 

relationship between LASY and CE is not apparent when plotting a subset of only 1000 

elements, but when considering the entire data set the large scale trend becomes clearly 

evident. The blue dots in figure 2 middle indicate the means of all of the approximately 3000 

individual 100 element segments from the entire data set. The density plot for the 300,000 

individual LASY,CE pairs is shown in figure 2 bottom panel. For high values of LASY (low 

synchrony) the CE of the individual vertices are clustered in the region of small counts at the 

bottom of the vertical (CE) axis, whereas for low values of LASY (high synchrony) the density at 

the bottom becomes small as the trend toward larger values of CE is evident.  
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Figure 2. graphical representation of relationship between LASY and CE A data reduction 
strategy is used in order to make interpretable the trend in the approximately 300,000 data 
point pairs contained in the CE, LASY data for a scan. In figure 2 top and middle row the data 
are split into non-overlapping 100 element segments on the LASY axis and the mean of the CE 
values is computed for each segment. This is depicted for a representative contiguous subset of 
1000 data points where the individual 100 element segments are represented by the green 
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lines in the top figure. The mean of each 100 element segments is indicated in red. The middle 
figure displays the mean of each 100 element segment for the entire data set as blue dots. The 
position from which the subset of 1000 data points was taken is indicated by the converging red 
lines. Figure 2 bottom provides the density plot of all ~300,000 pairs of the CE ,LASY data with 
each axis comprising a histogram binning with 100 bins on each axis.  

The inverse relationship between 𝑳𝑨𝑺𝒀 and 𝑪𝑬 is consistent across subjects and scans 

LASY and CE were generated from the functional data of each of 21 subjects with six resting 

fMRI scans acquired during the same scan session for each subject. The CE measure was 

computed at correlation thresholds of r > 0.75, 0.60, 0.50 and 0.40.  LOESS (local regression) 

curves were calculated from the data points generated for the LASY,CE plots as displayed in 

figure 2 middle row for all 126 scans at the four correlation threshold levels. The LOESS 

regressions were performed in Matlab (see ‘Statistics’ in method for the LOESS plot parameters 

used). Figure 3 presents the LOESS curves derived from the scans separately for each rest 

condition and at the correlation thresholds of 0.75 and 0.60. The results for the correlation 

thresholds r = 0.5 and 0.4 are presented in supplementary material figure 1. The LOESS curves 

clearly indicate that for all scans and correlation threshold levels the largest CE always occurs at 

low LASY. 
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Figure 3.  A consistent relationship across scans LOESS (local regression) curves generated 
from the LASY,CE plots of all 126 scans at the correlation threshold values 0.75 and 0.60. The 
results from 42 scans (2 scans in each rest condition from each of 21 subjects) are presented in 
each plot. The largest CE (count of vertices in thresholded seed based connectivity maps) occur 
at vertices with highly synchronous local neighborhoods. 

In order to quantify this relationship, we computed the Spearman’s rank order correlation 

between LASY and CE independently for each of the 126 scans and at each of the four 

correlation levels. While the data were averaged for visualization purposes, these tests were 

performed on the full set of ~300,000 LASY, CE pairs for each scan. For each of these (126 * 4) 

tests the estimated p-value was < 10e-96. All correlations were negative indicating the inverse 

relation between LASY and CE. The histograms of these correlation values for each correlation 

threshold are displayed in figure 4.  

 

 Figure 4 A strong inverse relationship between LASY and CE for all scans Distribution of the 

Spearman’s linear correlation coefficient between LASY and CE tested independently for each 
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of the 126 scans. This is presented for CE maps thresholded at r = 075, r = 60, r = 50 and r = 40. 

Note: all correlations are negative reflecting the inverse relationship between LASY and CE. The 

estimated p-value for all 4*126 tests was < 10e-96 

The inverse relationship between 𝑳𝑨𝑺𝒀 and 𝑪𝑬 is dynamically preserved across repeated 

within session scans. 

In this section we demonstrate that 𝐿𝐴𝑆𝑌 and 𝐶𝐸 are inversely correlated across time while 

controlling for the temporal SNR (𝑇𝑆𝑁𝑅) of the data. The previous section demonstrated that 

the inverse relationship between LASY and CE holds across vertices (space). Here, for each of 

the 21 subjects we analyze the relationship across the six repeated within session scans on an 

individual vertex level. We first fit a linear model 𝐶𝐸 = 𝛽0 + 𝛽1𝐿𝐴𝑆𝑌 + 𝛽2𝑇𝑆𝑁𝑅 at each of the 

vertices where the dynamic range of 𝐿𝐴𝑆𝑌 > 10−4. The key effect in which we are interested is 

captured by the properties of 𝛽1. For each of the 21 subjects, we take the mean of the 

estimated 𝛽1 across all the vertices. We also measure the percentage of 𝛽1s that are negative. 

The sign of the mean 𝛽1 and the proportion of the negative slopes indicate the type of 

relationship between 𝐿𝐴𝑆𝑌 and 𝐶𝐸. Fig. 5 shows that 𝐿𝐴𝑆𝑌 and 𝐶𝐸 are inversely correlated. 

Fig. 5(a) shows the kernel density plots28  of the mean 𝛽1s  using all the 21 subjects. Fig. 5(b) 

shows the density plots of the proportion of the negative 𝛽1s. We can observe that the mean 

slopes are always negative and the proportion of negative slopes is greater than 60% for all the 

different thresholds used in deriving 𝐶𝐸. Here it is not essential to quantify the magnitude of 

the relationship but to show that it consistently indicates an inverse relationship between LASY 

and CE across time.  
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Fig. 5. Relationship between LASY and CE is dynamically preserved across scans The figures 

show that the inverse relationship between LASY and CE is dynamically preserved across 

repeated within session scans. Data at the individual vertex level are pooled across all 21 

subjects. Kernel density plots of the (a) mean slopes (𝛽1s) and (b) percentage of negative slopes 

for different thresholds used in deriving 𝐶𝐸. The vertical axis is the density as the area under 

the curve is one. 

 4.0 Discussion 

Our results establish a consistent inverse relationship between local low temporal frequency 

fMRI signal synchrony (LASY) and the spatial extent of functional connectivity (CE) as measured 

by seed time series correlation based fcMRI. The LOESS plots of the relationship between CE 

and LASY (figure 3) indicate that vertices with high local synchrony are engaged in the largest 

and most highly correlated functional connectivity networks. The calculation of Spearman’s rho 

between LASY and CE confirm the inverse relationship (figure 4). The assessment of the 

relationship across repeated within session scans demonstrates that the relationship is also 

dynamically preserved across time(figure 5). We present in the supplementary material a 

detailed analysis of the influence of bulk motion, white matter average signal, cerebro-spinal 

fluid average signal and cardiac and respiratory induced motion. We demonstrate that the 

relationship is preserved after controlling for these influences. Especially for scans having high 

Spearmann’s rho after controlling for artifacts, the additional control measures are seen to 

increase the strength of the relationship.  We also show that the correlations between LASY and 

a number of other possible confounding influences including temporal SNR, local curvature and 

vertex-wise area are also negligible in relation to the magnitude of the relation between CE and 

LASY (supplementary material). Given the number of subjects and scans tested and the 

consistency of the relationship, we conclude that the result generalizes to healthy young 

subjects.  

One previous study showing evidence in support of a relationship between regional 

homogeneity (REHO) and global functional connectivity only demonstrated such a relationship 

for data averaged across subjects, and no individual subjects level data were presented29. This 

is not equivalent to the result we have presented, which is that LASY consistently shows a 
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strong inverse relationship with seed-based global functional connectivity on an individual 

subject basis for each of the 126 scans tested.  

There is always concern that the analysis may be affected by undetected and unaccounted for 

sources of artifact. We have however applied an extensive processing scheme to control for the 

influence of artifacts. We also demonstrate that the inverse relationship is consistent both 

before and after the artifact control scheme (supplementary material). Though there is a 

perception that group studies of resting state fMRI are less affected by “noise”, data averaging 

only provides an increase in SNR if the data represent repeated measurements of a single value 

with additive noise. There is no assumption in group studies of resting state fMRI that 

measurements of the correlation metric at the same location across subjects represent the 

same value, rather it is considered that the measurements represent a range of values of 

connectivity across subjects and the purpose of the analysis is to show the mean of one group is 

different from the mean of the second group.  

Given the relationship demonstrated, the cortical surface with LASY overlain presents a map of 

the spatial variations in the scale of connectivity. These maps are essentially functional 

parcellations as a change in the color/intensity indicates a change in the scale of connectivity. 

The local asynchrony maps presented in figure 1 and supplementary material figures 2 and 3 

indicate an intricate pattern of high connectivity vertices (vertices with low LASY), embedded in 

a cortex composed of much lower connectivity vertices.  

The LASY maps do not depict functional connectivity that is smoothly varying or approximately 

locally homogenous. On the contrary, they point to a much more fine scale and irregular 

structure than the one represented by graph nodes and parcellations commonly defined in 

fcMRI studies 17,18,30,31. The spatial pattern of functional connectivity presented here seem to 

indicate that the functional architecture of the cortex may be better characterized by a 

collectivist model of many interacting structural elements than by a connectionist model of a 

relatively small number of spatio-temporally static nodes32.  Differences in the spatial 

resolution of nodes in graph analysis of fcMRI connectomics result in large changes in graph 

theoretic measures 27. One study indicated that the most serious confound for accurate 
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network measure estimation was inaccurate functional node specification 33. The requirement 

for a node to have homogenous functional connectivity would imply that regions defined as 

nodes be constant in the LASY measure to some level of approximation. Simply put, if a node 

contains both a high synchrony and low synchrony area then the connectivity is not 

homogenous within the node. Since the local synchrony only predicts the scale of connectivity 

and not the actual connectivity pattern it would be possible that within a node that is 

homogenous in LASY the spatial pattern of connectivity changes but the size of networks 

remains the same. This implies that the requirement for constant LASY is a necessary but not 

sufficient condition for functional homogeneity of the node. 

There is a seeming contradiction in resting state networks research. On the one hand, a fairly 

large number of test-retest reliability results has been published34–36. On the other hand there a 

growing literature describing changes in network configurations related to tasks 37,38 and also a 

growing literature devoted to dynamic functional connectivity39–41. The networks cannot be 

both highly replicable and also highly dynamic. This inconsistency is possibly obscured by the 

practice of averaging across subjects and space. However, it is a simple statistical fact that the 

average of a population quantity may in fact represent none of the individual measurements. 

On reflection the true nature of the spatial patterns of connectivity can in the end only be 

resolved by an analysis of the patterns of connectivity expressed by individual subjects42 and 

the degree of temporal dynamics manifest at the individual subject level. The topic of inter-

individual differences in functional architecture has been little explored43 and may be especially 

important in the area of psychiatric disorders44. Though the issue of poor replication of 

neuroimaging results has received a great deal of attention, questions related to the lack of 

anatomical accuracy and inter individual differences have been largely avoided45. In light of 

these issues the individual level connectivity analysis must be performed without the bias of 

prior spatial models of connectivity patterns. The main contribution of the present work is to 

provide an analysis methodology that indicates changes in connectivity across the entire cortex 

at the imaging voxel resolution and on an individual subject basis. This analysis is data driven 

and requires no prior spatial model of connectivity. 
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Material and Methods 

Participants and fMRI Data Acquisition 

Written informed consent was obtained from subjects prior to each scanning session in 

accordance with an approved University of Wisconsin-Madison IRB protocol. Twenty-one 

healthy adults (mean age 23.6, 12 Female) with no prior history of neurological or psychological 

disorders were studied. Six resting fMRI scans and a T1-weighted image were acquired from 

each subject during a single acquisition session. All scans were acquired using a 3 T GE scanner 

(MR750, General Electric Healthcare, Waukesha, WI) using the product 8-channel receive-only 

radio frequency (RF) coil. Each fMRI scan was 10 minutes in length and acquired with the same 

echo planar imaging (EPI) sequence (TR = 2.6 s, TE = 25 ms, flip angle = 60 degrees, FOV = 224 

mm x 224 mm, matrix size = 64 x 64, slice thickness = 3.5 mm, number of slices = 40). Two eyes 

open resting conditions, two eyes closed resting conditions, and two passive fixation scans 

were acquired from each subject during one scan session. The participants were instructed to 

relax and lie still in the scanner while remaining “calm, still, and awake”. For the passive fixation 

scans subjects were instructed to keep their eyes open with their gaze fixated on a cross back-

projected onto a screen via an LCD projector (Avotec, Inc., Stuart, FL). Subjects were instructed 

to keep their eyes open/closed for the EO/EC conditions and were allowed to blink if necessary. 

T1-weighted structural images were acquired before the functional images using a 3D BRAVO 

inversion-recovery prepped fast gradient echo sequence with the following parameters: TR = 

8.13 ms, TE = 3.18 ms, TI = 450 ms, flip angle = 12 degrees, FOV = 256 mm x 256 mm, matrix 

size = 256 x 256, slice thickness = 1 mm, number of slices = 156.  

Preprocessing, Registration and Resampling 

All functional images were preprocessed by performing motion correction, slice timing 

correction and band pass filtering [0.01, 0.1] Hz using AFNI 46. Two sets of functional data were 

prepared for comparison. A first set was prepared by performing in addition to the previously 

stated preprocessing a stringent motion censoring rejecting all time points with more than 0.25 

mm motion, measured from the Euclidean norm of the frame-to-frame difference in the 6 

estimated realignment parameters 47,48. 
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The second set of functional data was prepared by first reducing the influence of physiological 

noise using RETROICOR 49 between the motion correction and slice timing correction steps 50, 

and then regressing out the average white matter (WM) signal (over an eroded white matter 

mask), the average CSF signal (over an eroded CSF mask), the derivatives of the average WM 

and CSF signals, and the 6 realignment parameters. All scans used in the study had high quality 

cardiac and respiratory signals. Time points where frame-to-frame motion exceeded 0.25 mm 

were censored and not included in this nuisance regression.  

Surface reconstruction was performed on each subjects T1 weighted image using Freesurfer 51. 

The functional MRI data were registered to the subjects cortical surface using boundary-based 

linear registration 52 and that registration was used to resample each functional time point 

volume onto the cortical surface using nearest neighbor interpolation. The fMRI data were 

sampled from the midpoint between the pial and grey/white surface, thus minimizing the 

partial volume averaging of cerebrospinal fluid (CSF) and white matter. The cortical fMRI data 

were reordered to produce a matrix with one column for each vertex on both hemispheres of 

the cortical surface containing the functional time series resampled to the vertices location. 

Finally, each time series was normalized to zero mean and unit variance. The number of 

vertices comprising both hemispheres of an individual subject’s cortical reconstruction averages 

roughly 300,000 and varies by +/- 30,000 due to variations in brain size and cortical folding 

pattern. The area of the medial wall of the Freesurfer cortical surfaces, which is not cortex and 

is a computational convenience of the reconstruction, was not included in any analyses. 

Local asynchrony calculation 

The local asynchrony (LASY) is computed as outlined in Blumensath et al. 17, and was termed 

stability map in that study.  To calculate LASY at a vertex v we first construct the set of spatially 

connected vertices on the cortical surface within 3 mm Euclidean distance of v by a region 

growing procedure (additional details provided in the supporting material). The region growing 

procedure used prevents cortex which is within 3 mm Euclidian distance of v but significantly 

more distant in geodesic distance on the surface from being included. Such cases arise for 

example when sulci are very thin and opposite banks of sulci are very close. Euclidean distance 
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in the volume rather than geodesic distance on the surface was used due to the extensive 

computation required to produce approximate geodesic distance measures.  

The number of vertices within 3 mm of a selected vertex will vary as it depends on the folding 

pattern of the cortex near v. The surface area of cortex represented by a single vertex varies 

slightly but the distribution of area of a vertex is sharply peaked at a value slightly smaller than 

1 mm2. The choice of 3 mm radius for the neighborhood calculation was motivated by the 

largest EPI voxel spatial dimension, which is 3.5 mm. We need to sample from at least 2 

functional time series in each dimension when calculating LASY (synchrony cannot be estimated 

by sampling a single time series). We also wished to obtain the highest possible resolution, 

which motivated not choosing a larger and thus lower resolution/higher radius neighborhood. 

The 3 mm radius is the same as used in the parcellation procedure from which the 

implementation of the algorithm was taken 17. We remind the reader that the functional data 

were resampled using nearest neighborhood interpolation which introduces no smoothing and 

no additional smoothing was performed. 

Having obtained the list of vertices to be included in the neighborhood, we construct an MxN 

matrix where M is the number of time points in the fMRI time series and N is the number of 

vertices within the 3 mm neighborhood of v, including v. 

We calculate LASY at v as the mean square error between all time-series in the neighborhood of 

v and the mean time series in the neighborhood of v. In the methods section we reserve the 

lower case lasy for a single value and upper case LASY for a vector of values. 

For each vertex v, lasyv is thus the scalar corresponding to the variance of the set of numbers in 

the entire matrix Av, not the vector of row-wise or column-wise variances.  

We generate the vector LASY = [lasyv] of local asynchrony measures at each vertex on both 

hemispheres of the cortical surface. 

Note that while the local asynchrony, lasy, is derived by computing the variance within a local 

neighborhood, it provides a measure of synchrony because the mean signal across vertices 

within the local neighborhood at each time point has been subtracted prior to computing the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138966doi: bioRxiv preprint 

https://doi.org/10.1101/138966
http://creativecommons.org/licenses/by-nc-nd/4.0/


variance. An example matrix D consisting of N copies of the same time series in the columns, 

that is perfectly synchronous data, would result in all entries of A be equal to 0 and lasyv = 0. 

Also time points where all time series values are equal would result in a zero row in the A 

matrix and contribute nothing to lasyv. NOTE: lasy = 0 indicates perfect synchrony and larger 

lasy values indicate lower synchrony.  This asynchrony calculation and the prerequisite 

neighborhood information were generated using the Matlab code implemented for a functional 

parcellation procedure published earlier 17. The measure we term lasy was used as a regional 

homogeneity measure in the initial computational steps of the parcellation algorithm published 

by Blumensath and colleagues. The remaining steps of the parcellation scheme are unrelated to 

the analysis presented here.   

Relationship between global connectivity and local synchrony 

In order to investigate the relationship between local synchrony and global functional 

connectivity we first generate fcMRI correlation maps (statistical parametric maps) for each 

vertex on the cortical surface.  Specifically, we compute the vector cv = corr(X,seedv ). Here X is 

the matrix of time series across all vertices of both hemispheres of the cortical surface and is on 

the order of 300 time points * 300,000 vertices for our data. The exact number of time points in 

the matrix for a scan will vary somewhat from one subject to another as the motion censoring 

procedure may have removed some time points. Note that the time series in the matrix X are 

not normalized to unit energy and zero mean as are the data used to calculate lasy. The vector 

seedv contains the fMRI time series at the vertex v and is taken from the matrix X; corr is the 

Pearson linear correlation coefficient.   

The number of vertices with correlation coefficients in cv above a specified threshold r is 

defined to be the connectivity extent for the vertex v, or cer,v and CEr  is the vector of values of 

cer,v  for all vertices across both hemispheres of the cortical surface, excluding the medial wall. 

 At this point in the procedure the ordering of the values comprising LASY and CEr is that of 

vertices on the cortical surface as implemented internally in the Freesurfer software.  
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In determining the relationship between two variables it is desirable to have the independent 

variable ordered in increasing order. To achieve this, we sort LASY in ascending order. 

[ LASYsort , I ]  = sort(LASY);  

where I is the reordering. In order to maintain the correspondence between lasyv and cer,v  pairs 

we apply the reordering to the correlation count vector to get CEsortI = reorder(CEr,I), where we 

have for brevity omitted the subscript indicating the correlation threshold r. 

 We now have obtained F = (CEsortI,LASYsort), the mathematical relationship between the size of 

the thresholded connectivity maps and local synchrony.  The calculation of CEsortI and LASYsort 

was performed for all 126 scans at each of four correlation thresholds, 0.75, 0.60, 0.50 and 0.40 

used for thresholding the CE. 

Statistics 

The LOESS plots were generated to provide a graphical representation of the relationship between LASY 

and CE using locally weighted linear regression to smooth the data. The LOESS method was used to fit a 

quadratic model using a window size of 5% of the range of LASY. 

The Spearman’s rank order correlation or Spearman’s rho was used to quantitatively assess the 

relationship between LASY and CE. It is a nonparametric measure of rank correlation that assesses how 

well the relationship between two variables can be described using a monotonic function. 

General linear models were used to establish that the inverse relationship between LASY and CE was 

dynamically preserved across repeated within session scans. Kernel density estimates of the 

distributions of the mean as well as the percentage of negative model coefficients were used to provide 

graphical representation of this inverse relationship. 

Data and Code availability 

The code used to perform these calculations is available for download, as well as a subset of the data 

used for this study (NITRC fcon 1000 (CoRR) website, 

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/). 
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