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Abstract

Amyloids are fibrillar protein aggregates with simple repeated structural motifs in

their cores, usually β-strands but sometimes α-helices. Identifying the amyloid-prone

regions within protein sequences is important both for understanding the mechanisms

of amyloid-associated diseases and for understanding functional amyloids. Based on

the crystal structures of seven cross-β amyloidogenic peptides with different topolo-

gies and one recently solved cross-α fiber structure, we have developed a computa-

tional approach for identifying amyloidogenic segments in protein sequences using the

Associative memory, Water mediated, Structure and Energy Model. The AWSEM-

Amylometer performs favorably in comparison with other predictors in predicting
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aggregation-prone sequences in multiple datasets. The method also predicts the spe-

cific topologies (the relative arrangement of β-strands in the core) of the amyloid fibrils

well. An important advantage of the AWSEM-Amylometer over other existing methods

is its direct connection with an efficient, optimized protein folding simulation model,

AWSEM. This connection allows one to combine efficient and accurate search of protein

sequences for amyloidogenic segments with the detailed study of the thermodynamic

and kinetic roles that these segments play in folding and aggregation in the context

of the entire protein sequence. We present new simulation results that highlight the

free energy landscapes of peptides that can take on multiple fibril topologies. We also

demonstrate how the Amylometer methodology can be straightforwardly extended to

the study of functional amyloids that have the recently discovered cross-α fibril archi-

tecture.

Introduction

Amyloid formation by proteins and peptides has been the focus of a tremendous amount of

research.1,2 A large and growing body of evidence suggests that amyloid formation plays a

role both in functional3 and in pathological biological processes.4 The amyloid fibril based

on β-strands is a common, though not universal, aggregate architecture. The propensity

of a full-length protein to form amyloid has been linked to the presence of short sequences,

typically five to seven residues in length, within longer protein sequences. In isolation, these

short ”amyloidogenic” segments by themselves oftentimes readily form fibrils, and, therefore,

many in vitro studies have focused on these short peptides.5 Some natural peptides that form

amyloids in vivo are indeed short and largely disordered as monomers, such as Aβ and α-

synuclein,6 though at 40 to 140 residues in length these protein fragments are still long

compared to those parts of the sequences that seem to be primarily responsible for initiating

aggregation.

In the case of amyloid-forming proteins that also fold to a native structure, an even larger
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proportion of the sequence lies outside of the amyloidogenic segment that eventually makes

its way into amyloid fibril cores when the balance between folding and aggregation is upset

by, e.g., a destabilizing mutation, high protein concentration, high temperatures, or a change

in solvent conditions. The entire sequence, including the parts that apparently never become

incorporated into the fibril core, can play a role throughout the aggregation process. Folding

to the native state, in general, is the result of cooperation between a diffuse but structurally

consistent set of stabilizing interactions throughout the folded structure.7 These ‘minimally

frustrated’ interactions predominate in the core of natively folded protein structures, which is

also where the most amyloidogenic segments within a protein sequence typically are buried.8

When a protein unfolds and starts to form oligomers, parts of the sequence outside of the

primary amyloidogenic segment influence the size, shape, and stability of the oligomers.9

Finally, unless extensive proteolytic processing precedes fibril formation, the entire sequence

must also be accommodated in the mature aggregates and disordered parts of the structure

thus may make important entropic contributions to the stability.

In protein aggregation, multiple copies of amyloidogenic segments in close proximity

can recognize each other and become stabilized in a misfolded/aggregated state.10 The self-

recognition of protein domains in repeat proteins with high identity in sequence has been

extensively studied by Jane Clarke and her coworkers.11,12 While domain swapping is a

major contributor to misfolding, simulation studies revealed that I27 domains from titin

initially aggregate by means of an amyloidogenic segment which has a strong tendency to self-

recognize.10,11 In contrast, SH3 dimers, which do not possess any amyloidogenic segments,

don’t aggregate significantly.10,11

In this context, the identification of amyloidogenic segments within protein sequences

using local information alone can be only a first step in elucidating amyloid formation. Most

existing models and algorithms for identifying these segments,5,13–19 however, are poorly

suited for following on to address the mechanistic questions that arise naturally once an

amyloidogenic segment has been identified within a protein sequence. How does a given
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segment contribute to folding, misfolding, oligomerization, and aggregation? And how does

the rest of the sequence affect these same processes? At the same time, even with recent

advances in computer algorithms and hardware, addressing such questions using fully atom-

istic models remains difficult. To overcome this difficulty, here we introduce a method for

detecting amyloidogenic segments that is based on the Associative Memory, Water medi-

ated, Structure and Energy Model (AWSEM), an optimized, coarse-grained, protein folding

simulation model.20 AWSEM has been fruitfully applied in recent years to many different

problems of protein structure prediction,20–22 protein association,23 allosteric mechanism24

and protein aggregation.25–29 The AWSEM-Amylometer is based on the same energy model

that is used in AWSEM molecular dynamics simulations but is able to detect amyloidogenic

segments using a simple and efficient threading scheme over multiple fiber template struc-

tures. This scheme not only allows for the detection of amyloidogenic segments but also the

prediction of the relative orientation of the amyloid β-strands in the fibril core. Moreover,

the efficiency of the AWSEM-Amylometer and its connection to AWSEM allows surveys

of large numbers of protein sequences, including naturally occurring and designed mutants

to be accompanied by selective followup studies using statistical and structural analyses of

dynamic simulations. In the following sections we introduce the AWSEM-Amylometer scan-

ning methodology and discuss its prediction accuracy when tested on databases of peptides

and proteins. We also present some new simulations on amyloidogenic peptide aggregation,

and extend the methodology to the study of amyloids with the recently discovered cross-α

functional fibril architecture.

Method

1: The AWSEM force field.

AWSEM (the Associative Memory, Water Mediated, Structure and Energy Model) is a

predictive, coarse-grained, protein folding force field that represents amino acids using three
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explicit interaction sites per residue. AWSEM’s parameters were optimized using a database

of solved protein structures and the principles of energy landscape theory.7 Interested readers

are encouraged to consult Davtyan et al.20 for detailed information about the AWSEM force

field. The AWSEM Hamiltonian is summarized in Eq. 1. AWSEM includes a fragment-based

associative memory term, VFM , that locally biases the formation of secondary and super-

secondary structures. This bias can be based on using experimentally solved structures from

the Protein Data Bank (PDB) with or without knowledge of global sequence homology as

input. Alternatively this bias can employ structures sampled in atomistic simulations.21,22

The backbone term, Vbackbone, ensures that the peptide backbone stays connected and does

not overlap itself. The many body burial term, Vburial, takes into account the instantaneous

local density around each residue and attempts to sort each residue into its preferred burial

environment - exposed, partially buried, or completely buried. The contact term, Vcontact,

includes a direct contact interaction and a water- or protein-mediated interaction. The

hydrogen bonding term, VHB, favors formation of α-helices or β-sheets.

VAWSEM = VFM + Vbackbone + Vcontact + Vburial + VHB (1)

The AWSEM-Amylometer energy function (Eq. 2) used to detect amyloidogenic segments

using threading over template fiber structures does not include the associative memory term,

VFM , because evaluation of VFM requires either homology searches or atomistic simulations to

be performed before carrying out further calculation. These steps would be incompatible with

a rapid threading scheme like that which the AWSEM-Amylometer uses to predict amyloid

propensity. At the same time, amyloid structures are apparently under-represented among

the existing solved structures in the PDB considering how common the amyloid architecture

seems to be. Only 104 fiber structures have been solved to date. Thus, structural constraints

from known structures would artificially disfavor amyloid-compatible conformations. In the

amylometer, secondary structure preferences are thus accounted for solely by the hydrogen
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bonding term, VHB. The backbone term, Vbackbone, is sequence independent and therefore is

also left out of the AWSEM-Amylometer calculations.

The AWSEM-Amylometer works by first threading protein sequences, typically six residues

at a time, over experimentally determined fiber structures and then evaluating the poten-

tial energy of each of those candidate structures. In its simplest instantiation, AWSEM-

Amylometer-Min, a protein sequence segment will be considered to be highly aggrega-

tion/amyloid prone if the energy of that segment in any of the cross-β fibril structures

is below an empirically determined threshold value (-100 kcal/mol).10 Consideration of the

propensity to form cross-α fibers is done separately and will be discussed in Section 6.

VAWSEM−Amylometer = Vcontact + Vburial + VHB (2)

2: Predicting fibril topology using multiple fiber templates.

The idea of a direct structure-based approach to prediction of fibril formation was intro-

duced by Eisenberg and coworkers. They used the crystal structure of the fibril-forming

hexapeptide NNQQNY (PDB ID: 1YJO) from sup35 prion protein from yeast as a tem-

plate.14 They were able to show that threading protein sequences onto this template or a

template ensemble derived from crystal structures could yield reasonably accurate predic-

tions of amyloidogenic regions. Since the publication of the 3D-Profile method, many more

fiber structures, including an α-helical fiber, have been solved. The AWSEM-Amylometer

takes advantage of these multiple fiber structures to predict not only amyloid propensity but

also to predict specific fibril topology.

Cross-β fibril structures can be classified into 8 classes based on the relative orientation

of the β-strands within the β-sheets (parallel or antiparallel) and the relative orientations

of the β-sheets that are further packed together (Fig. 1). A total of 24 hexapeptide crystal

structures, which cover seven of the eight classes (class 3 is missing), are currently available.

We chose 7 structures, one from each available class, over which to thread hexapeptide
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sequences (Figure 1). The energy of a hexapeptide is evaluated on each of the seven templates

separately, and the class corresponding to the template with the lowest energy is then the

predicted fibril topology. To predict whether a hexapeptide will form parallel or anti-parallel

sheets, the lowest score among the parallel cross-β spines (classes 1, 2 and 4) is compared

with the lowest score from the anti-parallel cross-β spines (classes 5, 6, 7 and 8), and the

hexapeptide is predicted to have the orientation corresponding to the template with the

lowest energy. For testing the possibility of favoring an α-helical amyloid, we used the

recently determined fiber structure of PSMα3 (22 residues, PDB ID: 5I55) as the template

(Figure 1). The threshold for predicting that a 22-residue peptide will assume this fibril

structure was determined based on the statistics of 5000 random sequences such that only

5% of the sequences gave energy values below this threshold. The corresponding threshold

value is -205kcal/mol.
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Class1 Class2 Class4 Class5

Class6 Class7 Class8

Lysozyme  IFQINS  (4R0P) β-Amyloid  AIIGLM  (2Y3J) β-Amyloid  GGVVIA  (2ONV) β2-microglobulin  LSFSKD  (3LOZ)

PrP  MMHFGN  (3NVE) β-Amyloid  KLVFFA  (3OW9) PrP  GYMLGS  (3NHC)

α-Helix
PSMα3  MEFVAKLFKFFKDLLGKFLGNN  (5I55)

Figure 1: Templates for the 7 cross-β and one cross-α classes used by the AWSEM-
Amylometer, with views both parallel to the fibril axes (the interdigitation of side chains
is shown) and perpendicular to the fibril axes. The name of the protein that the peptide
is derived from, the sequence of the peptide, and the PDB ID of the template structure
are given above each class. Class 1, class 2 and class 4 structures have parallel, in-register
β-sheets, while class 5 to class 8 have anti-parallel β-sheets. The seven types of steric zip-
pers are organized into symmetry classes depending on the relative orientations of the two
β-sheets the β-strands within the β-sheets. Different sheets are shown in different colors
(yellow and gray). The first, third and fifth residues of the β-strands are colored blue to
clarify the different orientations of the sheets. The cross-α template contains α-helices only.
Abbreviations: PrP, prion protein; PSMα3, phenol-soluble modulin α3.
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3: Metrics used to evaluate prediction capacity of the AWSEM-

Amylometer.

To evaluate and compare the performances of different predictors, we used the following five

classical quantitative evaluation measures: accuracy (Eq. 3), sensitivity (Eq. 4), specificity

(Eq. 5), F1 score (Eq. 6) and Matthews Correlation Coefficient (MCC, Eq. 7).

accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

sensitivity = TP/(TP + FN) (4)

specificity = TN/(TN + FP ) (5)

F1 = 2× TP/(2TP + FP + FN) (6)

MCC = (TP×TN−FP×FN)/
√

(TN + FN)× (TN + FP )× (TP + FN)× (TP + FP )

(7)

In Eqs. 3-7, TP is the number of true positives predicted by the algorithm, TN is the

number of true negatives, FP is the number of false positives, and FN is the number of

false negatives.

Using these evaluation measures, we compared the performance of AWSEM-Amylometer

with the performance characteristics of several other amyloid predictors including the 3D pro-

file method,14 AGGRESCAN,15 FoldAmyloid,18 PAFIG,17 PASTA,19 SALSA,16 TANGO13

and Waltz5 using the amylome dataset.30 We also compared the performance of AWSEM-

Amylometer with that of TANGO and Waltz on the Waltz dataset.
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4: Parameter fitting using linear regression for propensity to form

cross-β structures.

For cross-β propensity predictions, the seven different β-spine topologies generate seven dif-

ferent predicted scores. In its simplest version, AWSEM-Amylometer-Min, the algorithm

merely checks whether any of these scores is below a threshold. Apart from the threshold,

the parameters in AWSEM-Amylometer-Min are all obtained from the AWSEM force field

itself. It is possible to improve somewhat the prediction power of the algorithm by training a

composite model wherein all 7 individual predictors are weighted differently by tuning 8 co-

efficients in Eqs. 8. The following enhanced linear regression model yields a composite score,

f(sequence), that is the score used to predict whether a hexapeptide is amyloid/aggregation

prone. EClassN , N = 1− 2, 4− 7 are the amyloidogenic energies on 7 cross-β templates. The

optimized values of the regression coefficients (available in SI) is achieved by maximizing the

likelihood of a logistic model.

f(sequence) = β0 + β1 × EClass1 + β2 × EClass2 + β3 × EClass4

+β4 × EClass5 + β5 × EClass6 + β6 × EClass7 + β7 × EClass8
(8)

To optimize these fine-tuning parameters, as well as the threshold for cross-β amyloid

formation, we split the Waltz dataset (1088 hexa-peptides) into a training set (816 hexa-

peptides) and a test set (272 hexa-peptides). We carried out linear regression on the training

dataset and used the trained parameters to examine the test set, and the cutoff value was

selected as the point with the highest Matthews Correlation Coefficient (MCC) on the test

set. The threshold score, f , of the hexapeptide to be predicted amyloidogenic, after linear

regression of the seven input energy values, is 0.5.

The simpler model, AWSEM-Amylometer-Min, is more directly physical and uses only

the minimal value of the seven individual predictors. Its predictions are also compared in

the result section. In this approach, if the minimal value out of the seven predictors for a

given hexapeptide is below the determined threshold (-100kcal/mol),10 this hexapeptide will
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be considered to be amyloid-prone.

5: Simulation details using the physics-based AWSEM force field.

Detailed molecular dynamics simulations of peptide aggregation for some examples were

performed using the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

software package, in which the AWSEM force field is available in open source format.20 All

the umbrella sampling simulations for multiple peptide chains were performed at 300K for

20 million steps. 20 million steps corresponds to roughly 0.1 ms in laboratory time in the

AWSEM force field. At the simulation concentration, this time is long enough to ensure

the convergence of sampling on this system when using umbrella sampling. The initial

configurations used for the umbrella sampling were ten monomers randomly distributed over

a cubic box of size 100 Angstroms.

6: Order parameter for umbrella sampling and free energy calcu-

lations.

To compute the relative free energy of forming parallel versus anti-parallel topologies for a

set of 10 hexapeptides, we used umbrella sampling along an order parameter, Qdiff (Eq. 10),

to sample structures both near the limits and intermediate between the two topologies.

Qdiff =
q − q1
q1 − q2

(9)

q(rij) =
1

(N − 2)(N − 3)

∑
j>i+2

[e−(rij−r
N1
ij )2/2σ2

ij − e−(rij−r
N2
ij )2/2σ2

ij ] (10)

In Eq. 10, σij = |j − i|0.15, q1 = q(rN1
ij ), and q2 = q(rN2

ij ) where the superscripts N1 and N2

indicate distances evaluated in the anti-parallel and parallel fibril structures.

The harmonic potential used for constant temperature umbrella sampling simulations
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along Qdiff is shown in Eq 11.

VQ−bias =
1

2
kQ−bias(Qdiff −Q0)

2 (11)

In Eq. 11, kQ−bias = 200kcal/mol. The biasing center values Q0 were chosen to be equally

spaced from 0 to 0.98 with a step size 0.02. The unbiased free energy landscapes were

then reconstructed from the umbrella sampling data using the weighted histogram analysis

method (WHAM).31

Results and discussion

1: Performance of the AWSEM-Amylometer on the Waltz peptide

dataset for predicting cross-β amyloid propensity.

To test the ability of the AWSEM-Amylometer to predict the propensity of hexapeptides to

form cross-β amyloid of any topology, we examined the performance of AWSEM-Amylometer-

Min and the complete AWSEM-Amylometer based on a composite score using a subset of

the Waltz dataset (details in Methods). This dataset contains experimental information

about amyloid formation for 1088 hexa-peptides. The composite linear regression model of

the threading energies was obtained with optimized coefficients from a training subset of the

Waltz dataset (716 hexa-peptides) and a threshold score (0.5) was determined based on a

validation subset from the Waltz dataset (272 hexa-peptides). When we applied this fully

optimized model to the whole dataset, in terms of accuracy, the full AWSEM-Amylometer

outperformed the other methods with a correct classification rate of 0.84 (Table 1). To quan-

tify the advantage of the composite model over using only a single topology, we compared

the prediction performances of several variants of the AWSEM-Amylometer: one variant

using the combined score from the linear regression model, one taking only the minimum

score from the seven topologies, and one using the scores of the class 1 topology and class
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8 topology alone. The complete AWSEM-Amylometer using the composite linear model

with optimized parameters has a prediction performance somewhat higher than AWSEM-

Amylometer-Min. Predictions from Waltz and TANGO have accuracies of 0.77 and 0.80

respectively, which are lower than the complete AWSEM-Amylometer models and compara-

ble to AWSEM-Amylometer-Min (Table 1).

Table 1: Evaluation of the performance on the training dataset.

Predictor TP TN FP FN Accuracy (%) Sensitivity (%) Specificity (%) MCC F1

AWSEM-Amylometer 151 760 92 85 83.73 62.14 89.94 0.53 0.63

AWSEM-Amylometer 
(Min) 164 687 158 79 78.22 67.49 81.30 0.45 0.58

AWSEM-Amylometer 
(Class1) 139 752 93 104 82.81 57.20 88.99 0.47 0.59

AWSEM-Amylometer 
(Class8) 148 755 90 95 82.99 60.91 89.35 0.51 0.61

Waltz 166 668 177 77 76.65 68.31 79.05 0.42 0.57

TANGO 59 816 29 184 80.42 24.28 96.57 0.32 0.36

When we examine other evaluation measures, we find the TANGO method has high

specificity but low sensitivity. The AWSEM-Amylometer with a single topology (Class 1

or 8) also sometimes fails to recognize an amyloidogenic segment, perhaps because those

peptides prefer a different topology. Not surprisingly, the AWSEM-Amylometer using the

minimum score across all topologies achieves a somewhat higher sensitivity but a lower

specificity. In comparison, the AWSEM-Amylometer using the regression score has a more

balanced specificity and sensitivity.
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2: Performance of the AWSEM-Amylometer on predicting the

amyloidogenic regions in complete proteins found from an amy-

lome dataset.

An important application of a predictor such as the AWSEM-Amylometer is to identify

the primary fibril-forming segments within full-length proteins so as to provide predictions

that can be useful for guiding experimental studies on natural proteins. We compared the

AWSEM-Amylometer with 9 other tools for detecting amyloid-prone regions in a set of 33

proteins belonging to the amylome.30 This test set was constructed by Tsolis et al who

searched to find data from many published experiments and different experimental methods

that support the amyloidogenicity of specific regions in the 33 proteins of the set.30 In terms of

predicting the amyloidogenic regions in these 33 long sequences, the AWSEM-Amylometer

performs well as judged by the MCC and F1 scores (Table 2). Only PAFIG (0.18) and

AMYLPRED2 (0.20) yield slightly higher MCC scores than does the AWSEM-Amylometer

(0.17).

The AWSEM-Amylometer has a lower sensitivity (31.43%) for finding amyloidogenic

segments in the amylome dataset of full length proteins compared to its performance for the

Waltz dataset of short peptides (62.14%), but it displays a comparable specificity. The Waltz

and TANGO algorithms show similar trends. Most of the 33 proteins experimentally studied

do not have structures determined for the amyloid fiber to confirm the exact amyloidogenic

regions, but the predictions are reasonably accurate for those that do possess well-defined

structural information (Aβ42 protein and α-synuclein, details shown later). Obtaining more

accurate predictions of cross-β fibril formation propensity based only on the local information

contained in hexapeptide sequences may be difficult because the sequence context is not

considered in locally informed algorithms. There is a clear need for models that are capable

of taking the sequence context of amyloidogenic segments into account.
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Table 2: Comparison of prediction performance of the AWSEM-Amylometer on 33 proteins
from the amylome with 10 other predictors.

Predictor TP TN FP FN Sensitivity (%) Specificity (%) MCC F1

AWSEM-Amylometer 396 5541 931 864 31.43 85.61 0.17 0.31

AWSEM-Amylometer 
(Min) 642 4402 2070 618 50.95 68.02 0.15 0.32

AWSEM-Amylometer 
(Class1) 417 5388 1084 843 33.10 83.25 0.15 0.30

AWSEM-Amylometer 
(Class8) 462 4982 1490 798 36.67 76.98 0.12 0.29

MetAmyl 508 5519 1064 740 40.71 83.84 0.23 0.36

Waltz 710 4300 2273 548 56.43 65.42 0.16 0.33

PAFIG 651 4695 1878 607 51.75 71.43 0.18 0.34

PASTA 230 6099 484 1018 18.43 92.65 0.14 0.23

SALSA 869 3123 3460 379 69.63 47.44 0.13 0.31

AGGRESCAN 445 5210 1363 813 35.37 79.26 0.13 0.29

3D profile 224 5762 821 1024 17.95 87.53 0.06 0.20

FoldAmyloid 340 5659 924 908 27.24 85.96 0.13 0.27

TANGO 172 6282 291 1086 13.67 95.57 0.14 0.20

AMYLPRED2 478 5512 1071 770 38.30 83.73 0.20 0.34

3: Favored sequence features for different amyloid topologies.

The group of peptides and proteins that form amyloid fibrils is very diverse but not uni-

versal.9 The propensity of a given short polypeptide to form amyloid fibrils under some

thermodynamic condition depends both on amino acid sequence composition and the order

of the amino acids. In this section we investigate which amino acid types are favored in

which positions for the seven topological classes of cross-β amyloid fibers and for the cross-α

fiber by generating random sequences and then examining the sequence preferences for the

most stable sequences in each topology.
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Figure 2: Statistics of the eight topologies on a set of 5000 random sequences. (A) Class 1.
(B) Class 2. (C) Class 4. (D) Class 5. (E) Class 6. (F) Class 7. (G) Class 8. (H) cross-α.
The left panel is the histogram of the energies for 5000 random sequences and the right panel
is the sequence logo for the 50 lowest-energy sequences for each topology.
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To find out which amino acids are favored at each position for each of the seven topologies,

we generated 5000 random hexapeptide sequences and computed their energies in the seven

template structures. For the cross-α topology, we generated a different set of 5000 22-residue

peptides and computed their energies in the cross-α template. Figure 2 shows the energy

histograms (left panel) and the sequence logo of the lowest energy peptides (right panel)

for each of the eight topologies. For all seven cross-β topologies, there are some patterns

that are predicted to be most amyloid-prone. The parallel topologies have broader energy

distributions. Most amyloid-forming sequence patterns are enriched in Leucines, Isoleucines

and Valines, though there are significant differences between the sequence patterns across

topologies. In the class 1 topology, the frequency of Glycine and Serine is higher; class 2

and class 8 are dominated by Leucines in the middle of the hexapeptide; class 6 has more

charged residues; anti-parallel topology classes 5, 6, and 7 are enriched in valines. Glutamine

residues only appear in class 6, meaning that polyglutamine repeats should adopt an anti-

parallel topology, a result consistent with published in vitro and in silico studies.27,32 Serrano

and coworkers have also identified common patterns among amyloidogenic peptides by using

mutation scanning experiments.33The X1X2V3I4I5X6 pattern found in their experiments

corresponds well with our computed sequence features of the class 7 topology.

4: The AWSEM-Amylometer is able to predict the topology class

of cross-β amyloids fibrils.

The AWSEM-Amylometer, by evaluating the energy of a hexapeptide sequence in structures

with different fibril topologies, not only predicts whether an amyloid should form but also

is able to predict the topology of peptide fibrils from sequence data. To check the perfor-

mance of the AWSEM-Amylometer in predicting fibril topology, we used a dataset of 18

hexapeptides for which well-defined crystal structures have been determined. Among the 18

hexapeptides, the AWSEM-Amylometer successfully predicts the precise topological class of

11 of the peptides, corresponding to an accuracy of 61% (cf. the expected accuracy at ran-
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dom of 1/7 ≈ 14.3%). If we wish only to predict the relative orientation of β-strands within

a β-sheet, we can compare the lowest parallel score (from classes 1, 2 and 4) to the lowest

anti-parallel score (from classes 5, 6, 7 and 8). By doing this, the AWSEM-Amylometer

predicts correctly the parallel/anti-parallel orientation of 15 peptides (87%, cf. the expected

accuracy at random of 1/2 = 50%) (Table 3). For the peptides with apparently incorrect

predictions of topology, fibril polymorphism could be contributing to the false negatives.

For example, NNQQNY is a hexapeptide from the sup35 prion protein of Saccharomyces

cerevisiae. An experimentally determined structure shows that the NNQQNY peptide has

a class 1 cross-β structure. In the AWSEM-Amylometer predictions, although NNQQNY

is predicted to adopt the class 6 anti-parallel topology (with a score of -76.6), its score in

the class 1 topology (-67.7) is comparable in value. In keeping with this ambivalence, fib-

ril polymorphism of NNQQNY has been found in both in vitro and in silico studies.34,35

AIIGLM is the Aβ30−35 segment from Aβ protein, which forms a parallel β-sheet in the

crystal structure with PDB ID 2Y3J. The AWSEM-Amylometer predicts that this peptide

will adopt an anti-parallel orientation based on a score of -115.36, but a parallel orientation

for the segment is predicted to have a nearly equal score of -112.73. The polymorphic ten-

dencies of this peptide have been confirmed by also finding the anti-parallel pattern in the

crystal structure of the full length Aβ40 segment (PDB ID: 2LNQ).36 While the fragment

KLV FFA, corresponding to the Aβ16−21 segment, adopts an anti-parallel topology in all

available hexapeptide crystal structures (PDB ID: 3OW9, 2Y2A and 2Y29), the AWSEM-

Amylometer predicts that this hexapeptide is very amyloidogenic (parallel score: -133.72;

antiparallel score: -112.53), and the determined structures of KLV FFA within the full

length Aβ40 indeed show both parallel (PDB ID: 2LMQ, 2LMP, 2LMN, 2M4J, 2BEG and

2MXU) and anti-parallel topologies (PDB ID: 2LNQ).
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Table 3: Topology prediction performance of AWSEM-Amylometer on 18 hexapeptide fiber
structures.

PDB ID Sequence Topology 
Class

Energy 
Class1

Energy 
Class2

Energy 
Class4

Energy 
Class5

Energy 
Class6

Energy 
Class7

Energy 
Class8

Predicted 
Class

Predicted 
Parallism

1YJO NNQQNY Class 1 -67.7 -52.6 -49.3 -72.2 -76.6 -75.6 -67.4 Class 6 AP

3FVA SSTNVG Class 1 -74.8 -56.6 -53.9 -70.4 -71.2 -71.4 -63.4 Class 1 P

4R0P IFQINS Class 1 -85.3 -73.5 -67.0 -77.6 -77.0 -81.0 -73.8 Class 1 P

3NVF IIHFGS Class 1 -96.90 -90.44 -86.29 -80.52 -78.15 -91.17 -94.54 Class 1 P

3NVG MIHFGN Class 1 -89.83 -76.12 -79.27 -73.89 -71.68 -87.37 -87.07 Class 1 P

3PPD GGVLVN Class 1 -96.85 -95.38 -100.07 -79.43 -73.80 -89.87 -95.28 Class 1 P

2Y3J AIIGLM Class 2 -103.49 -108.82 -112.73 -92.28 -80.48 -99.66 -115.36 Class 8 AP

5E5X ANFLVH Class 2 -91.37 -93.98 -103.33 -79.20 -66.04 -78.93 -100.20 Class 4 P

2ONV GGVVIA Class 4 -105.17 -108.44 -115.29 -80.82 -78.24 -93.13 -100.73 Class 4 P

3LOZ LSFSKD Class 5 -67.24 -48.69 -41.62 -74.82 -68.02 -65.74 -60.65 Class 5 AP

3NVE MMHFGN Class 6 -72.00 -61.37 -73.58 -62.57 -55.32 -80.94 -84.16 Class 8 AP

3OW9 KLVFFA Class 7 -105.19 -122.02 -133.72 -76.37 -71.49 -97.91 -112.53 Class 4 P

2OMP LYQLEN Class 7 -66.99 -53.51 -52.53 -55.40 -53.56 -69.27 -69.12 Class 7 AP

2OMQ VEALYL Class 7 -85.84 -90.27 -98.01 -69.87 -62.37 -86.43 -100.50 Class 8 AP

3FR1 NFLVHS Class 7 -90.85 -94.05 -94.52 -81.83 -76.30 -92.53 -100.06 Class 8 AP

3NHC GYMLGS Class 8 -80.79 -80.19 -86.52 -67.47 -64.46 -77.19 -92.87 Class 8 AP

3NHD GYVLGS Class 8 -88.40 -86.07 -89.27 -75.98 -73.35 -89.80 -97.69 Class 8 AP

2ONA MVGGVV Class 8 -97.09 -86.01 -91.68 -79.07 -74.12 -93.00 -99.09 Class 8 AP

We also tested the ability of the AWSEM-Amylometer to predict the relative orienta-

tion of β-strands within a β-sheet on another set of 11 longer peptides where only the

parallel/anti-parallel information was available from experiments. As shown in Table 4,

the AWSEM-Amylometer successfully predicts the orientation even when experimental evi-

dence suggests ambiguity in the preferred orientation (e.g., the peptide Y TIAALLSPY S has

both parallel and antiparallel topologies in crystal structures and the AWSEM-Amylometer

scores both of these configurations as being amyloid prone). In addition to the above pep-

tides exhibiting polymorphism, we also analyzed the conformational preferences of several

poly-amino acid peptides and compared the results of the AWSEM-Amylometer to the pub-

lished information that was available. Polyalanine (A6) is a common motif in silk fiber,

which self-assembles to form antiparallel β-sheets.37,38 The AWSEM-Amylometer predicts
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that this peptide should adopt an anti-parallel conformation. Polyglutamine repeats are

involved in the onset of at least nine neurodegenerative diseases. Fiber structures of polyg-

lutamine repeats show that they prefer an anti-parallel orientation.27,32 Polyasparagine (N6)

is present in multiple prion-like proteins (e.g., sup35). Simulations carried out by Lindquist

and coworkers suggest that this peptide assumes an antiparallel conformation.39 Polyglu-

tamic acid (E6) forms anti-parallel β-sheet according to FTIR experiments.39 All of these

results are in keeping with the AWSEM-Amylometer predictions.

Table 4: Parallelism prediction performance of AWSEM-Amylometer on 11 short peptide
sequences.

Sequence 
ID Sequence Experimental 

Topology
Lowest 
Parallel

Lowest 
Antiparallel

Predicted 
Parallism Data Source

2M5K YTIAALLSPYS AP -108.7 -110.9 AP/P PDB

2M5M YTIAALLSPYS AP -108.7 -110.9 AP/P PDB

2M5N YTIAALLSPYS P -108.7 -110.9 AP/P PDB

3ZPK YTIAALLSPYS AP -108.7 -110.9 AP/P PDB

2NIE VKVKVKVKVPPTK
VKVKVKVX AP -85.77 -93.11 AP PDB

2Y3K MVGGVVIA P -112.11 -100.35 P PDB

2Y3L MVGGVVIA P -112.11 -100.35 P PDB

polyA AAAAAA AP -88.68 -90.67 AP Keten et al

polyQ QQQQQQ AP -64.06 -81.34 AP Buchanan et al

polyN NNNNNN AP -85.49 -106.88 AP Halfmann et al

polyE EEEEEE AP -54.94 -73.54 AP Hernik et al

The AWSEM-Amylometer is based on the AWSEM force field, which was optimized using

principles from energy landscape theory.40 While computational power has been increasing

exponentially over the past decades, the complete folding from scratch of even a moderate

size protein remains challenging using atomistic force fields. The coarse-grained AWSEM

force field has been used to predict the structures of protein monomers and dimers.20–23 We
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have also recently used the AWSEM force field to simulate and characterize the aggregation of

a glutamine-rich mechanical prion CPEB,26 I27,25 Aβ40 protein,28 polyglutamine repeats,27

and Huntingtin-Exon-1 encoded protein fragments.29 These studies show that simulations

with the AWSEM force field can not only be used to characterize structural changes during

protein aggregation efficiently, which are otherwise very difficult to characterize in detail

using biophysical techniques, but also to construct aggregation free energy landscapes that

are useful for understanding aggregation experiments.

To further demonstrate the capability of the AWSEM-Amylometer in predicting fiber

topology, as well as the power of the AWSEM force field to characterize further the aggre-

gation process efficiently, we used molecular dynamics simulations with AWSEM to con-

struct the aggregation free energy landscapes of three different hexapeptides (GGV V IA,

GYMLGS and Q6). The number of parallel hydrogen bonds and antiparallel hydrogen

bonds were used to evaluate the topology of the simulated fiber structures. Figure 3 shows

free energy landscapes of the three hexapeptides (GGV V IA, GYMLGS and Q6) computed

with AWSEM. The preference for these hexapeptides to adopt parallel versus anti-parallel

topologies is reflected in the free energy minima on the computed free energy landscapes.

These minima correspond to the experimentally determined preferences for all three of the

peptides.
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Figure 3: Free energy landscapes of hexapeptides. The number of anti-parallel hydrogen
bonds and the number of parallel hydrogen bonds are used as order parameters to show if
the peptides prefer to adopt a parallel or anti-parallel topology. The free energy surfaces
of (A) GGV V IA, which favors a parallel topology, (B) GYMLGS, which favors an anti-
parallel topology, and (C) Q6, which favors an anti-parallel topology. Examples of parallel
and anti-parallel topologies are shown in (D).

5: Prediction ambiguity and amyloid polymorphism of β steric zip-

pers.

Amyloid fibril polymorphism has multiple causes, including the sequence context and the

solvent conditions. Fibril topology may not be exclusively determined by the local sequence.

One of the most intriguing features of sequence-encoded polymorphism is that the same

peptide can adopt distinct chain-folding patterns that give rise to a variety of cross-β struc-

tures.41,42 This type of polymorphism can lead to different amyloid strains. There is often a
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barrier of propagation or transmission between different strains (e.g. in Sup35, Aβ), which

makes cross seeding impossible or at least inefficient. Understanding how polymorphism is

encoded by protein sequence is key to understanding the species barriers that arise from

these molecular-level structural details. In addition to the predicted polymorphisms in the

peptides mentioned above, the AWSEM-Amylometer is also able to predict the possibility

of polymorphism for longer protein sequences and, therefore, should be useful in predicting

species barriers.

Amyloid polymorphism for Aβ has been studied extensively by Eisenberg and coworkers.

These studies have not pinpointed why Aβ can assume both parallel and anti-parallel ori-

entations.36 In the case of Aβ fibers, the AWSEM-Amylometer suggests that Aβ can adopt

both parallel and anti-parallel conformations (Cyan lines in Figure 4 A, B). As shown in the

previous section, Aβ16−21 and Aβ30−35, the two core-regions for fiber formation as revealed

by crystal structures, both demonstrate strong ambiguity in their preferred orientation, thus

leading to the polymorphism in full-length fiber structures. Zheng et al. demonstrated that

there is a profound change in amyloidogenicity even from point mutations using only the

NNQQNY topology.28 Our results show that these point mutations can generate similar

changes in an antiparallel topology (Figure 4B): increased hydrophobicity at site 22 elevates

the amyloidogenicity of the hexapeptides that contain this site, and E22V is more amy-

loidogenic compared to E22G and E22Q in both parallel topology and antiparallel topology.

Similarly, the AWSEM-Amylometer predicts that α-synuclein should exhibit both parallel

and anti-parallel structures (Figure S1). This result is consistent with the diversity of ex-

perimental results that have been reported regarding the relative orientation of β-strands

within α-synuclein fibers.43,44

One has to admit that a model that is only locally informed and that focuses on hexapep-

tides by themselves must be limited in its capability to elucidate the topology of amyloids

formed by full-length proteins. The problem of locality intrinsic to the AWSEM-Amylometer

is shared by other predictors. The connection to the AWSEM force field, which is optimized
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for globular protein folding and native structure prediction, however, has enabled us to go

beyond the purely local characterization to conduct direct protein aggregation studies in

silico, such as those we have carried out for the aggregation of I27,10 Aβ40,
28 polyglutamine

repeats27 and HTT-exon1 encoded protein fragments.29 Simulations using the AWSEM force

field not only capture the local signatures seen from the AWSEM-Amylometer calculations

(i.e. that Aβ40 could have both parallel and antiparallel structures in simulations28), but

also allow one to find the most favorable structure that lies in the ”amyloid funnel”.27,28

0 5 10 15 20 25 30 35 40

Index

-150

-100

-50

En
er

gy
(k

ca
l/m

ol
)

A2T
A2V
E22G
E22Q
E22V
WT

0 5 10 15 20 25 30 35 40
-150

-100

-50

A2T
A2V
E22G
E22Q
E22V
WT

En
er

gy
(k

ca
l/m

ol
)

A

B

Figure 4: Calculated propensity of Aβ42 to form parallel (A) and anti-parallel (B) steric
zippers.

6: The AWSEM-Amylometer can be used to predict the propensity

for forming α-helical amyloid fibers.

Previously, the cross-β spine, in which stacked β-strands run perpendicular to the fibril axis,

was believed to be the universal architecture for all amyloid structures that bind thioflavin T
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.2 Tayeb-Fligelman et al. recently showed that phenol-soluble modulin α-3 (PSMα3) whose

aggregates pass the standard laboratory amyloid criteria (e.g. binding thioflavin T) actually

forms amphipathic α-helices that pack together to form an unusual cross-α fiber topology.45

In order to understand the propensity of this 22-residue peptide to form a cross-α fiber and

compare it to other sequences without experimentally solved fiber structures, we used the

AWSEM-Amylometer to compute the energy of the PSMα3 sequence and related sequences

when taking on this structure. The PSMα3 sequence is highly favored in the cross-α topology

(score: -214.49) compared to the distribution of energies for 5000 random sequences threaded

on this topology (Figure 2H). According to the cross-β AWSEM-Amylometer, PSMα3 is

unlikely to form cross-β fibers (Figure 5A). PSMα3 mutants K9P/F11P and F3A signif-

icantly reduce fiber formation and its related toxicity according to experiments, while the

G16A mutation was found to enhance toxicity.45 The AWSEM-Amylometer calculations for

these mutants correspond well with these experiments in that they show the K9P/F11P

and F3A variants have higher energies than the wild type (less favorable in the cross-α tem-

plate), while the G16A mutation significantly lowers the energy. The AWSEM-Amylometer

suggests that other PSMs like PSMα1, PSMα2 and PSMα4, are also very likely to form

cross-α amyloids (Table 5). The PSMβ1-2 peptides show relatively weak signals, indicat-

ing that, if the PSMβ1-2 peptides form cross-α fibers, the core structure may be somewhat

different from that of PSMα3.
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Figure 5: Calculated propensity to form cross-β and cross-α fibrils for PSMs and synthetic
peptides (hSAFAAA and hSAFQQQ). A: Calculated propensity of PSMα-3 to form paral-
lel (upper, solid line) and anti-parallel (lower, dashed line) β-sheet structures. B: Calcu-
lated propensity of PSMα-3 and its mutants to form α-helical amyloid. The F3A mutant
and the K9P/F11P double mutant, which do not form fibrils, exhibited lower propensity
to form cross-α fibers compared to wildtype PSMα-3, while G16A is predicted to have a
higher propensity to form cross-α fibers. C: Calculated propensity of the synthetic peptides
hSAFAAA (red line) and hSAFQQQ (blue line) to form cross-α fibers.

In addition to the naturally occurring PSMs, synthetic systems have been found that form

α-helical fibrils. Banwell et al. have used the synthetic peptide hSAFAAA to form hydrogels

that contain α-helical fibrils.46 hSAFAAA turns out to be very amyloid-prone in the cross-α

topology according to the AWSEM-Amylometer, while another peptide, hSAFQQQ, does

not favor this topology (Figure 5C). This result agrees well with the experiments showing

that hSAFQQQ formed β-sheet containing structures.46

26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138842doi: bioRxiv preprint 

https://doi.org/10.1101/138842
http://creativecommons.org/licenses/by-nc/4.0/


Table 5: List of sequences and AWSEM-Amylometer scores for 9 proteins in the cross-α
topology.

Peptides Amino acid sequence Lowest cross-  energy of 
22-residue segment

Sequence with lowest cross-  
energy Lowest cross-  energy Sequence with lowest 

cross-  energy

PSM Delta MAQDIISTISDLVKWIIDTVNKFTKK -191.51 QDIISTISDLVKWIIDTVNKFT -102.377333 LVKWII

PSM 1 MGIIAGIIKVIKSLIEQFTGK- -208.91 MGIIAGIIKVIKSLIEQFTGK- -113.110648 IIAGII

PSM 2 MGIIAGIIKFIKGLIEKFTGK- -208.98 MGIIAGIIKFIKGLIEKFTGK- -113.110648 FVAKLF 

PSM 3 MEFVAKLFKFFKDLLGKFLGNN -214.49 MEFVAKLFKFFKDLLGKFLGNN -96.706783 FVAKLF 

PSM 4 MAIVGTIIKIIKAIIDIFAK- - -230.36 MAIVGTIIKIIKAIIDIFAK- - -109.308535 IIDIFA 

PSM 1 MEGLFNAIKDTVTAAINNDGAKLGTSIVSIVENGVGLLGKLFG -183.05 EGLFNAIKDTVTAAINNDGAKL -103.493994 SIVSIV

PSM 2 MTGLAEAIANTVQAAQQHDSVKLGTSIVDIVANGVGLLGKLFGF -187.19 TGLAEAIANTVQAAQQHDSVKL -104.378831 IVDIVA

hSAFAAAP IAALKAKIAALKAEIAALEAENAALEA -227.64 IAALKAKIAALKAEIAALEAEN -96.295456 AKIAAL

hSAFQQQP IQQLKQKIQQLKQEIQQLEQENQQLEQ -162.10 KQKIQQLKQEIQQLEQENQQLE -85.975638 EQENQQ

Conclusion

In conclusion, we have explored the power of the AWSEM-Amylometer to scan for the amy-

loidogenic segments and assign their topologies in the fibers that form. The present study

on the Waltz dataset of peptides documents the prediction capabilities of the AWSEM-

Amylometer for peptides. In contrast to other predictors, the AWSEM-Amylometer also

provides accurate predictions of the topologies of amyloids. Simulations and structure pre-

dictions using the AWSEM force field can be used to further characterize the topological

preferences efficiently for multiple hexapeptides. As we have evidenced in previous work

on I27, Aβ, polyglutamine repeats and HTT-exon1 encoded protein fragments, the AWSEM

force field can also capture nonlocal effects that go beyond the reach of other locally informed

prediction approaches.

Acknowledgement

This work was supported by Grant R01 GM44557 from the National Institute of General

Medical Sciences. Additional support was also provided by the D.R. Bullard-Welch Chair

27

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138842doi: bioRxiv preprint 

https://doi.org/10.1101/138842
http://creativecommons.org/licenses/by-nc/4.0/


at Rice University, Grant C-0016. We thank the Data Analysis and Visualization Cyberin-

frastructure funded by National Science Foundation Grant OCI-0959097.

References

(1) Morriss-Andrews, A.; Shea, J.-E. Annual Review of Physical Chemistry 2015, 66, 643–

666.

(2) Riek, R.; Eisenberg, D. S. Nature 2016, 539, 227–235, 00003.

(3) Blanco, L. P.; Evans, M. L.; Smith, D. R.; Badtke, M. P.; Chapman, M. R. Trends in

Microbiology 2012, 20, 66–73, 00153.

(4) Aguzzi, A.; O’Connor, T. Nature Reviews Drug Discovery 2010, 9, 237–248, 00353.

(5) Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; de la Paz, M. L.; Martins, I. C.;

Reumers, J.; Morris, K. L.; Copland, A.; Serpell, L.; Serrano, L.; Schymkowitz, J.

W. H.; Rousseau, F. Nature Methods 2010, 7, 237–242, 00303.

(6) Acharya, S.; Srivastava, K. R.; Nagarajan, S.; Lapidus, L. J. Chemphyschem: A Euro-

pean Journal of Chemical Physics and Physical Chemistry 2016, 17, 3470–3479, 00000.

(7) Bryngelson, J. D.; Onuchic, J. N.; Socci, N. D.; Wolynes, P. G. Proteins 1995, 21,

167–195, 02258.

(8) Ferreiro, D. U.; Komives, E. A.; Wolynes, P. G. Quarterly Reviews of Biophysics 2014,

47, 285–363, 00048.

(9) Goldschmidt, L.; Teng, P. K.; Riek, R.; Eisenberg, D. Proceedings of the National

Academy of Sciences 2010, 107, 3487–3492, 00405.

(10) Zheng, W.; Schafer, N. P.; Wolynes, P. G. Proceedings of the National Academy of

Sciences 2013, 110, 1680–1685, 00036.

28

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138842doi: bioRxiv preprint 

https://doi.org/10.1101/138842
http://creativecommons.org/licenses/by-nc/4.0/


(11) Wright, C. F.; Teichmann, S. A.; Clarke, J.; Dobson, C. M. Nature 2005, 438, 878–881,

00243.

(12) Borgia, M. B.; Borgia, A.; Best, R. B.; Steward, A.; Nettels, D.; Wunderlich, B.;

Schuler, B.; Clarke, J. Nature 2011, 474, 662–665, 00084.

(13) Fernandez-Escamilla, A.-M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Nature

Biotechnology 2004, 22, 1302–1306, 00923.

(14) Thompson, M. J.; Sievers, S. A.; Karanicolas, J.; Ivanova, M. I.; Baker, D.; Eisen-

berg, D. Proceedings of the National Academy of Sciences 2006, 103, 4074–4078, 00264.

(15) Conchillo-Sol, O.; de Groot, N. S.; Avils, F. X.; Vendrell, J.; Daura, X.; Ventura, S.

BMC Bioinformatics 2007, 8, 65, 00410.

(16) Zibaee, S.; Makin, O. S.; Goedert, M.; Serpell, L. C. Protein Science 2007, 16, 906–918,

00069.

(17) Tian, J.; Wu, N.; Guo, J.; Fan, Y. BMC Bioinformatics 2009, 10, S45, 00053.

(18) Garbuzynskiy, S. O.; Lobanov, M. Y.; Galzitskaya, O. V. Bioinformatics 2010, 26,

326–332, 00137.

(19) Walsh, I.; Seno, F.; Tosatto, S. C. E.; Trovato, A. Nucleic Acids Research 2014, 42,

W301–W307, 00045.

(20) Davtyan, A.; Schafer, N. P.; Zheng, W.; Clementi, C.; Wolynes, P. G.; Papoian, G. A.

The Journal of Physical Chemistry B 2012, 116, 8494–8503.

(21) Chen, M.; Lin, X.; Zheng, W.; Onuchic, J. N.; Wolynes, P. G. The Journal of Physical

Chemistry B 2016, 120, 8557–8565.

(22) Chen, M.; Lin, X.; Lu, W.; Onuchic, J. N.; Wolynes, P. G. The Journal of Physical

Chemistry. B 2016, 00000.

29

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138842doi: bioRxiv preprint 

https://doi.org/10.1101/138842
http://creativecommons.org/licenses/by-nc/4.0/


(23) Zheng, W.; Schafer, N. P.; Davtyan, A.; Papoian, G. A.; Wolynes, P. G. Proceedings of

the National Academy of Sciences 2012, 109, 19244–19249, 00050.

(24) Potoyan, D. A.; Zheng, W.; Komives, E. A.; Wolynes, P. G. Proceedings of the National

Academy of Sciences of the United States of America 2016, 113, 110–115, 00014.

(25) Zheng, W.; Schafer, N. P.; Wolynes, P. G. Proceedings of the National Academy of

Sciences 2013, 110, 20515–20520, 00020.

(26) Chen, M.; Zheng, W.; Wolynes, P. G. Proceedings of the National Academy of Sciences

of the United States of America 2016, 113, 5006–5011.

(27) Chen, M.; Tsai, M.; Zheng, W.; Wolynes, P. G. Journal of the American Chemical

Society 2016, 138, 15197–15203, 00000.

(28) Zheng, W.; Tsai, M.-Y.; Chen, M.; Wolynes, P. G. Proceedings of the National Academy

of Sciences 2016, 113, 11835–11840.

(29) Chen, M.; Wolynes, P. G. Proceedings of the National Academy of Sciences of the United

States of America 2017, 00000.

(30) Tsolis, A. C.; Papandreou, N. C.; Iconomidou, V. A.; Hamodrakas, S. J. PLoS ONE

2013, 8, e54175, 00081.

(31) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A. Journal

of Computational Chemistry 1992, 13, 1011–1021, 03508.

(32) Buchanan, L. E.; Carr, J. K.; Fluitt, A. M.; Hoganson, A. J.; Moran, S. D.;

de Pablo, J. J.; Skinner, J. L.; Zanni, M. T. Proceedings of the National Academy

of Sciences of the United States of America 2014, 111, 5796–5801.

(33) Lopez de la Paz, M.; Serrano, L. Proceedings of the National Academy of Sciences 2004,

101, 87–92, 00287.

30

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138842doi: bioRxiv preprint 

https://doi.org/10.1101/138842
http://creativecommons.org/licenses/by-nc/4.0/


(34) Vitagliano, L.; Esposito, L.; Pedone, C.; De Simone, A. Biochemical and Biophysical

Research Communications 2008, 377, 1036–1041, 00026.

(35) Guo, Z.; Eisenberg, D. Protein Science 2008, 17, 1617–1623, 00014.

(36) Qiang, W.; Yau, W.-M.; Luo, Y.; Mattson, M. P.; Tycko, R. Proceedings of the National

Academy of Sciences 2012, 109, 4443–4448, 00000.

(37) Keten, S.; Xu, Z.; Ihle, B.; Buehler, M. J. Nature Materials 2010, 9, 359–367, 00000.

(38) Giesa, T.; Perry, C. C.; Buehler, M. J. Biomacromolecules 2016, 17, 427–436, 00009.

(39) Halfmann, R.; Alberti, S.; Krishnan, R.; Lyle, N.; O’Donnell, C.; King, O.; Berger, B.;

Pappu, R.; Lindquist, S. Molecular Cell 2011, 43, 72–84, 00092.

(40) Schafer, N. P.; Kim, B. L.; Zheng, W.; Wolynes, P. G. Israel Journal of Chemistry

2014, 54, 1311–1337, 00015.

(41) Petkova, A. T.; Leapman, R. D.; Guo, Z.; Yau, W.-M.; Mattson, M. P.; Tycko, R.

Science (New York, N.Y.) 2005, 307, 262–265, 00000.

(42) Colletier, J.-P.; Laganowsky, A.; Landau, M.; Zhao, M.; Soriaga, A. B.; Goldschmidt, L.;

Flot, D.; Cascio, D.; Sawaya, M. R.; Eisenberg, D. Proceedings of the National Academy

of Sciences 2011, 108, 16938–16943, 00180.

(43) Tuttle, M. D. et al. Nature Structural & Molecular Biology 2016, 23, 409–415, 00000.

(44) Roeters, S. J.; Iyer, A.; Pletikapi, G.; Kogan, V.; Subramaniam, V.; Woutersen, S.

Scientific Reports 2017, 7, 41051, 00001.

(45) Tayeb-Fligelman, E.; Tabachnikov, O.; Moshe, A.; Goldshmidt-Tran, O.;

Sawaya, M. R.; Coquelle, N.; Colletier, J.-P.; Landau, M. Science 2017, 355, 831–

833, 00000.

31

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138842doi: bioRxiv preprint 

https://doi.org/10.1101/138842
http://creativecommons.org/licenses/by-nc/4.0/


(46) Banwell, E. F.; Abelardo, E. S.; Adams, D. J.; Birchall, M. A.; Corrigan, A.; Don-

ald, A. M.; Kirkland, M.; Serpell, L. C.; Butler, M. F.; Woolfson, D. N. Nature Materials

2009, 8, 596–600, 00286.

32

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138842doi: bioRxiv preprint 

https://doi.org/10.1101/138842
http://creativecommons.org/licenses/by-nc/4.0/

