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—— Abstract

We introduce a novel algorithm for selectively aligning high-throughput sequencing reads to a
transcriptome. This algorithm attempts to bridge the gap between fast “mapping” algorithms
and more traditional alignment procedures. The former of these simply provide the transcripts,
loci and orientations that likely generated a read (or, perhaps, simply the transcripts that are
“compatible” with a read), while the latter produces the optimal edit distance and nucleotide-
level correspondence between the read and reference sequences. We adopt a hybrid approach that
is able to produce accurate alignments while still retaining much of the efficiency of fast map-
ping algorithms. To achieve this, we make fundamental modifications to an existing mapping
algorithm, quasi-mapping, which increases the sensitivity of the procedure. Additionally, unlike
the strategies adopted in most aligners which first align the ends of paired-end reads independ-
ently, we introduce a notion of co-mapping. This procedure exploits relevant information between
the “hits” from the left and right ends of paired-end reads before full alignments or mappings for
each are generated, which improves the efficiency of filtering likely-spurious alignments. Finally,
we demonstrate the utility of selective alignment in improving the accuracy of efficient transcript-
level quantification from RNA-seq reads. Specifically, we show that selective-alignment is able to
resolve certain complex mapping scenarios that can confound existing fast mapping procedures,
while simultaneously eliminating spurious alignments that fast mapping approaches can produce.
Availability and implementation: Selective-alignment is implemented in C++11 as a
part of RapMap, and is available as open source software, under GPL v3, at https://github.
com/COMBINE-lab/RapMap/tree/selective-alignment
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1 Introduction

Since the introduction of high-throughput, short read sequencing technologies, many al-
gorithms and tools have been designed to tackle the problem of aligning short sequenced
reads to a reference genome or transcriptome accurately and efficiently. While there exist
“full-sensitivity” aligners (e.g. RazerS3 [26], Masai [22]) which guarantee to find all reference
positions within a given edit-distance threshold of a read sequence, the most widely-used
tools employ heuristic strategies to enable much faster alignment of reads in the typical case
(i.e., only a small number of easy-to-find candidate locations exist for each alignment). The
common procedure followed by these tools for aligning reads can be divided into two major
steps. The first is finding potential alignment locations for the read using a pre-processed
index that is generated from the reference genome or transcriptome. Then, in the second
step, the potential locations are filtered, and reads are aligned to the positions that pass
the initial filtering, based on a variety of heuristics. The exact method for generating the
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initial index varies for each tool. For example, tools like Bowtie [7], Bowtie2 ([6]), BWA [11],
and BWA-mem [10] use Burrows-Wheeler transformation (BWT) based indices, whereas,
k-mer based indices are used by tools such as Subread-aligner [13], Maq [12], SNAP [29], and
GMAP and GSNAP [27]. Similarly, the heuristic for choosing the most probable locations is
also different. However, each method is based on the principle of trying to find the reference
loci that support the best (or near-best) alignment score between the read and the reference.
Repeating this for a large number of reads comes with a considerable cost, in terms of
computation. Some tools, like STAR [4], considerably speed up the alignment process by
combining efficient heuristics with data structures (like the uncompressed suffix array) that
trade working memory for exact pattern lookup speed. Recently, tools like HISAT [5] have
also demonstrated that cache-friendly compressed indices (the hierarchical FM index in
this case) can provide similarly efficient pattern search, even with a very moderate memory
budget. The alignment of sequenced reads to the reference is the first step in pipelines
leading to various downstream studies, such as estimation of transcript abundances and
differential expression analysis, calculation of splicing rates [21, 25], and detection of fusion
events [16, 3].

While alignment is a staple of many genomic analyses, it sometimes represents more
information than is actually necessary to address the analysis at hand. For example, recent
tools like Sadlfish [18] (including its quasi-mapping-based variant [24]), kallisto [2], and
Salmon [17], demonstrate that much of the information provided by aligners is unnecessary
for accurate transcript quantification. By avoiding traditional alignment, these tools are much
faster than their alignment-based counterparts. Furthermore, by building the mapping phase
of the analysis directly into the quantification task, they dispense with the need to write, store,
and read, large intermediate alignment files. However, these “mapping-based” tools, while
highly-efficient, have the disadvantage of potentially losing sensitivity or specificity in certain
adversarial cases where alignment-based methods would perform well. For example, in the
presence of paralogous genes, with high sequence similarity, there is an increased probability
that the mapping strategies employed by such tools, and the efficient heuristics upon which
they rely, will mis-map reads between the paralogs (or return a more ambiguous set of
mapping locations than an aligner, which expends effort to verify the returned alignments,
would have) [1]. Similarly, in the case of de novo assemblies, poorly assembled contigs may
have a larger number of mis-mapped reads due to lower sensitivity (here, the issue would be
primarily due to aberrant exact matches masking the true origin of a read).

In this paper, we present a novel concept, selective-alignment, that extends the quasi-
mapping algorithm to compute and store alignment information where necessary. The reads
for alignment are chosen based on certain criteria calculated using mapping. This strikes a
balance between speed and accuracy; not compromising the superior speed of fast mapping
algorithms, while also addressing some of the challenges mentioned above. Specifically, the
motivation for selective-alignment is to enhance both the sensitivity and specificity of fast
mapping algorithms by reducing or eliminating cases where spurious exact matches mask
true mapping locations as well as cases where small exact matches support otherwise poor
alignments. We build our selective-alignment algorithm atop the framework of RapMap [24],
which uses an index that combines a fixed prefix length hash table and an uncompressed
suffix array [14]. We introduce a coverage-based consensus scheme to identify critical read
candidates for which alignment is necessary. We explore challenging cases where the heuristics
used by fast mapping algorithms fail to locate the correct locations for a read, but where
traditional aligners do not, and show that selective-alignment enables us to reach the accuracy
comparable to an aligner in considerably less time. We also introduce filtering steps based
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Figure 1 Calculation of safe length from the suffix array data structure. The transcripts present in
each suffix array interval determine the relevant transcript sets, and which k-mers will be considered
as intruders. Detection of a k-mer that maps to suffix array interval labeled (¢1, t2,t3) determines
the safe-length here.

on edit distance to further refine probable alignments in order to enhance quantification
estimates (e.g., eliminating situations where the best mapping is still unlikely to represent
the true origin of the read).

2 Methods

The process of selective-alignment builds upon many of the basic data structures and ideas of
quasi-mapping; yet there are a number of fundamental distinctions. Hence, we begin with a
brief summary of the data structures backing the quasi-mapping implementation of RapMap.
To start with, the index built on the transcriptome in selective-alignment is a combination of
a suffix array and a hash table constructed from unique k-mers and suffix array intervals.
Formally, given a suffix array, SA[T], constructed from the transcriptome sequence, T, we
construct a hash table, h, that maps each k-mer, k;, to an interval, I (k;) = [b,e), if and only
if all the suffixes within interval [b, e) contain the k-mer k; as a prefix. In addition to suffix
array intervals, we also store two extra pieces of information for each interval; the longest
common prefix (LCP) and the k-safe-LCP corresponding to the interval. These are detailed
below.

2.1 Safe-length

Here, we formally define the concept of safe-lengths in terms of k-safe-LCPs. The determ-
ination of k-safe-LCPs starts by labeling each suffix array interval with the length of its
corresponding longest common prefix and the associated transcript set it represents. Formally,
|LCP (T [SA[b]],T[SA[e — 1]])) | for an interval [b,e) is the length of the common prefix of the
suffix starting at T [SA [b]] and that starting at T [SA [e — 1]].

Given a k-mer k; and the related interval I (k;) = [b,e), for all p € [b,e), we consider
each transcript ¢; such that SA [p] occurs in transcript ¢; in the concatenated text T'. Then,
we can construct for this interval a set, C* = {t;1,%2, ...}, which denotes the set of distinct
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transcripts that appear in this suffix array
duplicate appearances of the same transcript

interval. We note that this notion discards
in this interval. However, it is also possible to

define k-safe-LCPs in a manner that requires relative transcript positions to be consistent as

well, though we don’t adopt such a definition

here. This defines an equivalence relation over

suffix intervals such that two intervals I (k;) and I (k;) are equivalent if and only if C* = C7.

Given a suffix array interval I (k;) = [b,e), we check, sequentially, each of the k-mers
in the suffix T[SA[b,:]]. We define the k-safe-LCP for I (k;) to end if any of the following
conditions is encountered: (1) we reach the end of the LCP of this interval, (2) we encounter a
k-mer k; such that C7 Z C® or (3) we encounter a k-mer k; such that the reverse complement
of k; appears elsewhere in the transcriptome. When we encounter case (2) or (3), we call the
k-mer k; an intruder. That is, this k-mer will potentially alter our belief about the set of
potential transcripts to which a sequence containing this k-mer maps (by strictly expanding
this set), or the orientation with which it maps to the transcriptome. The safe length and
the corresponding prefix are denoted as k-safe-LCPs, and we denote the k-safe-LLCP of a
particular interval I (k;) as a safe-length prefix or SLP(k;).

As shown in Figure 1, the safe length determination for the top suffix array interval starts
with matching k-mers within the longest common prefix. The k-mer “CAACG?” is the last
k-mer that maps to a suffix array interval labeled with (¢1,t2). The next k-mer “AACGG?,
on the other hand, maps to a suffix array interval (shaded in green) labeled with (¢1, o, t3),
thereby determining the safe-length, shown as a dotted line.

For each k-mer in the hash table, we store the length of the LCP and k-safe-LCP along

with the corresponding suffix array interval.
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Figure 2 The three main steps of the selective-alignment process are demonstrated here. First,
suffix array “hits” are collected. Then, in co-mapping, spurious mappings are removed by the
orientation filter and then distance filter. At most a single locus per-transcript is selected based on
the coverage filter. Finally, an edit-distance-based filter is used to select the valid target transcripts.
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2.2 Selective alignment of read sequence
2.2.1 Discovering relevant suffix array intervals

As shown in Figure 2, the selective-alignment approach can be broken into three steps:
collecting suffix array intervals, co-mapping, and selective alignment. Getting the suffix
array intervals for a query read closely follows the quasi-mapping approach. Similar to
quasi-mapping, it involves iterating over the read from left to right and repeating two steps.
First, hashing k-mer from the read sequence and then discovering the corresponding suffix
array intervals. The process of k-mer lookup is aided by the safe-length stored in the index
(discussed in Section 2.1). We make use of the inbuilt lexicographic ordering of the suffixes in
the suffix array by skipping the required k-mer lookup whenever possible. Given a matching
k-mer, k;, from the read sequence, we extend the match and find the longest substring of the
read that matches within SLP(I (k;)). The matched substring can be regarded as maximal
mappable prefix (MMP) [4], that resides within the established safe length. We call this a
maximal mappable safe prefix (MMSP — eliding k& where implied). For a k-mer, k;, and
interval, [b, e), we note that |SLP (T [SA[b]],T[SA[e —1]])) | = mmspi, where {yyspi is the
length of MMSPi, the MMSP starting at position i in the read. The next k-mer lookup
starts from (MMSPi — k + 1)-th position. For a given k-safe MMP, MMSP4, all k-mers, k;,
occurring in the prefix satisfy C7 C C?. Given the construction mechanism described above
we have the following theorem:

» Theorem 1. Querying only k-mers at the beginning and end of each k-safe MMP yields
the same set of transcripts as querying every k-mer on the read.

Proof. Assume that, given a read sequence 7, we have skipped m times to navigate through
all k-mers within the read sequence. The m k-mer lookups encountered in the process are
denoted as {ky,, ..., km,}. Without loss of generality, we must only show that for a given
km; € {kmy,- - km,}, there is no k-mer k,, € r[m;_1 : m;] appearing in a transcript, ¢, for
which we have not considered a suffix array interval encoding ¢.

We can prove this claim by contradiction. Assume there exists such a k-mer, k,, €
r[m;—_1 : m;], for which we miss at least one correct transcript. According to the definition
given in Section 2.1, we know that there exists a transcript set C"™ corresponding to k-mer
K, . Following the definition of the corresponding transcript sets, the claim further reduces
to existence of a transcript ¢, € C™ such that t, ¢ C™i-1, so C™ ¢ C™i~1. This directly
contradicts the definition of a maximum mappable safe prefix. In other words, Vm, such
that m;_1 < my < m;, C™ C C™i-1, Therefore, no such transcript ¢, can exist. <

Given all the suffix array intervals collected for a read end (i.e. one end of a paired-end
read), we take the union of all the transcripts they encode. Formally, if a read r maps to
suffix array intervals labeled with C™, ..., C™, then we consider all transcripts in the set
{C™UC™U...UC™}, and the associated positions implied by the suffix array intervals.
As shown in Figure 2; this step is done before co-mapping. We note that, in practice, we
actually adopt a hybrid approach to collecting the suffix array intervals. Specifically, when
the k-safe-LCP only has a length of k, instead of moving to the next k-mer, we jump by
|r| /10 nucleotides (where |r| is the read length) before looking up the next k-mer, otherwise
(if the k-safe-LCP is > k), we skip by the MMSP length as described. This prevents us from
performing excessive lookups in low-complexity and repetitive regions of the transcriptome.
We observe that, in practice, the k-safe-LCP, and hence the MMSP lengths tend to be large
(Figure 3).
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Figure 3 The distribution of k-safe-LCP lengths and LCP lengths are similar and tend to be
large in practice (human transcriptome). Here, we truncate all lengths to a maximum value of 100
(so that any LCP or k-safe-LLCP longer than 100 nucleotides is placed in the length 100 bin).

2.3 Co-Mapping

After collecting the suffix array intervals corresponding to left and right ends of the read, we
wish to exploit the paired-end information in determining which potential mapping locations
might be valid. Hence, from this step onwards we use the joint information for determining the
position and target transcripts. Given the suffix array intervals for individual ends of a paired
end read, the problem of aligning both ends of the pair poses a few challenges. First, a single
read can map to multiple transcripts, and we wish to report all equally-best loci. Second,
there can be multiple hits on a single transcript (e.g., if a transcript contains repetitive
sequence), and extra care must be taken to determine the correct mapping location. Finally,
there may be hits that do no yield high-quality alignments (i.e. long exact matches that are
nonetheless spurious). To address the first and third points, we employ an edit distance filter
to discard spurious and sub-optimal alignments. To address the second challenge, we devise
a consensus strategy to choose at most one unique position from each transcript.

Before applying the above mentioned strategy, we remove transcripts that do not contain
hits from both the left and right ends of the read. Formally, given two ends of a read r
as, r°! and r°2, and the corresponding suffix array intervals labeled with cri' e ,Crfb1 and
..., crn respectively, we only consider transcripts present in the set (CTfl u...ucr )n
(Cm* U...UC™ ). We further refine this set by checking the validity of the alignments these
hits might support. Currently, we use two validity checks illustrated in Figure 2. First,
we apply an orientation-based check, and second we employ a distance-based check. The
orientation check removes potential mappings which have an orientation inconsistent with
the underlying sequencing library type (e.g., both ends of a read mapping in the same
orientation). The distance-based check removes potential alignments where the implied
distance between the read ends is larger than a given, user-defined threshold.

2.3.1 Coverage based consensus

In selective-alignment, the potential positions on a transcript are scored by their individual
coverage on the target transcript. RapMap [24] used a simplistic approach of choosing the
first available position irrespective of the coverage profile. We observed that such a scheme


https://doi.org/10.1101/138800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/138800; this version posted May 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Hirak Sarkar, Mohsen Zakeri, Laraib Malik, and Rob Patro?® XX:7
MMSPs with one overlap size
nucleotide skip adjusted position= coverage

(pos on t- MMSPs start pos \ / final score

F ﬁ offset) ) /
CG C, AQG AT N— t220:6+6-4=8 10:6

A A
—T ‘ transcript— {pos : coverage}
_ 1222-2=20 | |TCAAGGT
> 1515-2=13 | [TCAAGGGCAT
start position: 2 ts 15-2=8 TCAAGGA ti — {10:6, 16 : 6} —
tz— {10:6,20: 8}
t; = {23:10}
t; 29-6=23 GGGCAT ts—> {13:6}

start position: 6

» 11 10-0=10 CGTCAAC
start position: 0 ¢, 20-0=20 CGTCAAGGC

t;27-4-03 | |MAGGGCTT
> 4 144-10 | |AAGGGCTT
4

start position: t 20-4=16 AAGGGCAT v
We need to align to
break the tie
I\t
Suffix Array

Figure 4 The MMSPs corresponding to a read, are derived from multiple suffix array intervals.
Here, all MMSPs happen to be of length k. The coverage scheme finds out the exact positions on
each transcript by adjusting the starting position of the matches. The total score takes into account
the positions where matches overlap. A position is chosen by selecting the locus with maximum
coverage.

can sometimes lead to selecting positions that support a suboptimal alignment. One such
situation is depicted in Figure 4. The coverage mechanism employed in selective-alignment
makes use of the MMSP lengths collected during a prior step of the algorithm rather than
simply counting k-mers.

2.3.2 Selecting the best candidate transcript

Once the positional ambiguity within a transcript is resolved, the next step is selecting
the best candidate transcripts from a set of mappings. Since mapping relies on finding
exact matches, the length of the matched subsequence between the read and reference can
sometimes be misguiding when comparing different candidate transcripts. That is, the
transcripts with the longest exact matches do not always support optimal alignments for a
read. At this point in our procedure, we follow the approach taken by many conventional
aligners, and use an existing optimal alignment algorithm to compute the edit distance, by
which we select the best candidate transcripts.

When performing alignment, we assume that a given read aligns starting at the position
computed in the previous steps. This helps us to reduce the search space within the transcript
where we must consider aligning the read, and thereby considerably reduces the cost of
alignment. To align the read at a specific position on the transcript and calculate the edit
distance between them, we use Myer’s bounded edit distance bit-vector algorithm [15], as
implemented in edlib [23]. For a fixed maximum allowable edit distance, this algorithm
is linear in the length of the read. We note that the bounded edit distance algorithm we
employ will automatically terminate an alignment when the required edit distance bound is
not achievable.

We remove all alignments with edit distance greater than a user-provided threshold. This
is similar to the approach used by many existing aligners, and allows us to specify that even
the best alignment for a given read may have too many edits to believe that it reasonably
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originated from a known transcript in the index. An appropriate threshold should be based
on the expected error rate of the instrument generating the sequenced reads, and a very low
threshold can lead to decreased mapping rate.

2.3.3 Enhancement of quantification accuracy based on edit distance
score

We also investigated the effect of incorporating edit distance in downstream quantification.
Since we integrated the selective-alignment scheme into the quantification tool Salmon [17],
the edit distance scores from selective-alignment can be used as a parameter to Salmon’s
inference algorithm.

In the framework of abundance estimation, we define the conditional probability of a
fragment, f;, originating from a transcript, ¢;, as P(f; | t;). Given the edit distance between
the fragment and the transcript, we can incorporate this parameter into this conditional
probability. Soft filtering introduces a term in the probability based on the sum of the edit
distances of the read ends for each fragment, d; ;. We set this probability according to an
exponential function, P(e; ;| fj,t;) = e i, The aggregate of threshold filtering and soft
filtering can be described as follows:

d; j > threshold
d; j < threshold

Pr(f; | dijti) = {0 (1)
The other approach for further refining the set of candidate mappings is strict filtering. Using
this approach, only the hit(s) that have the minimum edit distance in the set of mappings
are stored and the others are discarded. For example, given a fragment f; that maps to
transcripts ¢1, t2, t3 with edit distances e; 1 = 10, e1 2 = 12 and e; 3 = 10, strict filtering will
discard to. Hence, only the mappings to ¢; and t3 will be reported for f;. We can illustrate
the aggregate of threshold filtering and strict filtering in the following equation:

0 dig> min dy;
Pr(f; | di . t;) = be€tilry 2
( ’ | w Z) 1.0 di,j S min dk.j’ ( )
teeQ(ry)
where Q(r;) is the set of all transcripts to which read r; maps.
For all experiments involving selective-alignment in this manuscript, we use soft filtering.

2.4 Shared LCPs prevents redundant alignments

Exploiting the common subsequences in the transcriptome is instrumental to the superior
speed of fast mapping tools. Reads generated from exonic sequences common to multiple
transcripts from the same gene or paralogous genes are the main source of ambiguous mapping.
As we rely on the suffix array data structure to obtain the initial set of transcripts to which
a read maps, there are cases where exactly identical reference sequences all act as mapping
targets for the read. For a suffix array interval [b, e), we identify such common subsequences
by examining the longest common prefiz (LCP) of the interval. If the length of the LCP is
equal or greater than the length of the read, then the actual alignment to the underlying
reference at these positions will be identical.

Given the computationally intensive nature of alignment, this approach can be exploited
to avoid the process altogether for some set of reference positions by simply reusing the
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alignment information from one read transcript pair and then passing it to other transcripts
that share the LCP. As a proof of concept, we profiled the specific cases where such redundant
alignments have been skipped in our algorithm. We observed (Table 4) that for almost
half of the read-transcript pairs, the alignment process can be avoided. Note that if the
read sequence shares a complete match with the common prefix, meaning that maximum
mappable prefix length (MMP length [24]) is equal to read length (i.e., the read matches the
reference exactly at some set of positions), we can bypass the Meyer’s edit distance algorithm
call completely.

3 Results

To evaluate the effectiveness of selective-alignment, we coupled it with the state-of-the-art
quantification tool Salmon. This enables us to measure the effect of different mapping/a-
lignment algorithms on transcript-level quantification results directly, holding the statistical
estimation procedure fixed. We also include kallisto in our benchmarks, which provides a
perspective on pseudoalignment-based quantification. We measure the Spearman correlation
and Mean Absolute Relative Differences (MARD) of read counts as performance metrics
when comparing the different methods. We adopt the MARD definition from [17].

3.1 Adversarial Synthetic Data

Genes with multiple isoforms are among the most challenging cases for aligning/mapping
reads, since isoforms of the same gene share exonic sequences and are prone to a high degree
of multi-mapping. Particularly complex regions of the transcriptome can pose a challenge to
fast mapping algorithms, since many exact matches may occur at loci other than those which
generate an optimal alignment. This can cause spurious mappings to mask true alignment
locations, harming both sensitivity and specificity. Here, we generate an adversarial synthetic
dataset which highlights potential mis-mapping problems. We restrict both the generation
and assessment to multi-isoform genes. From the set of all multi-isoform genes in the
human transcriptome (referred to as ground set), we selected a subset of transcript isoforms
from which to generate reads. Through this mechanism, we ensure that only a fraction of
the ground set of transcripts are truly expressed. Since the unexpressed transcripts share
considerable sequence with the expressed transcripts, we expect a high rate of ambiguous
multi-mapping.

The simulation procedure is randomized, and can be described as a two-step process. In
the first step, we select a set of target transcripts (the foreground set) and quantify their
abundances using reads from an experimental RNA-seq sample. In the second step, we
generate synthetic reads from this set of estimated abundances and quantify the resulting
data using the entire background set.

To select the foreground set, we first examine each multi-isoform gene in the background
set, and select it with probability p. Then, given this gene, we look at each isoform in turn
and select it with probability . Therefore, the number of truly expressed transcripts never
exceeds 100 x pg percent of the number of transcripts in the ground set. For the two simulated
datasets used here, 100 x pq is 30 and 60, respectively (p = 0.6,¢ = 0.5 and p = 1.0,¢ = 0.6).
The motivation for this experimental set up comes from a previous analysis of the effect of
different quantification procedures on expression “bleed through”*.

4 https://cgatoxford.wordpress.com/2016,/08 /17 /why-you-should-stop-using-featurecounts-htseg-or-
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Table 1 Performance of methods in terms of quantification accuracy on two foreground sets, 30%
and 60%. quasi-mapping is the mapping approach used by RapMap, all alignments/mappings are
quantified with Salmon or kallisto.

Method Foreground set Spearman MARD time (s)
HISAT 2 30% 0.849 0.077 1,180
kallisto 30% 0.856 0.075 25
quasi-mapping 30% 0.857 0.074 48
selective-alignment 30% 0.907 0.044 92
Bouwtie 2 30% 0.911 0.042 1,344
HISAT 2 60% 0.860 0.137 1,451
kallisto 60% 0.876 0.128 28
quasi-mapping 60% 0.875 0.127 48
selective-alignment 60% 0.904 0.096 90
Bouwtie 2 60% 0.906 0.094 1,351

To simulate data, RSEM [9] was run on sample N12716_7 of the Geuvadis study [8], with
the selected foreground set of transcripts (30% and 60% respectively) used as a reference to
learn the model parameters and estimate true expression. The learned model is then used to
generate 15 million, 75bp paired-end reads. These reads generated from this foreground set
are then aligned/mapped to the ground set (i.e., all multi-isoform transcripts taken from
protein coding transcripts of GRCh38.p10) using Bowtie 2, HISAT 2, RapMap, kallisto
and selective-alignment. Subsequently, transcripts are quantified by Salmon using the
relevant alignments/mappings as input (except in the case of kallisto). The alignment
mode of Salmon enables us to use HISAT 2 and Bowtie 2 output as a direct input to the
quantification module — thereby reducing variability due to differences in the underlying
model. To achieve the most sensitive alignment, Bowtie 2 and HISAT 2 are run with
the Bowtie 2 alignment options used by RSEM. When processing alignments, Salmon
was run with --useRangeClusterEqClasses [30] and --useErrorModel. With selective-
alignment, Salmon was run using --useRangeClusterEqClasses, --softFilter (discussed
in Section 2.3.3) and an edit distance threshold of 7. kallisto was run with default parameters.
Both the Salmon and kallisto indices were built with k = 25.

As displayed in Table 1, for the dataset where at most 30% of transcripts are truly
expressed, the Bowtie 2-based (and selective-alignment-based) methods perform better than
the fast mapping approaches. We note that HISAT 2, presumably, is not optimized for
mapping directly to the transcriptome (i.e., it is developed primarily as a genome-based
spliced-read aligner), and a different set of parameters might lead to a more accurate result.

In the experiment where at most 60% of transcripts are truly expressed, the accuracy of
all methods begins to converge. Though we have designed these experiments to be adversarial
in nature, they nonetheless raise an interesting point about how divergence between the
true set of expressed transcripts and those considered during quantification might affect
accuracy. Specifically, aligning/mapping against a larger and more comprehensive set of
potential isoforms need not always yield superior results. When unexpressed isoforms share
considerable sequence with those that are truly expressed, the probability of mis-assigning
ambiguously mapping reads can increase. Though this is true regardless of how reads are

cufflinks2-and-start-using-kallisto-salmon-or-sailfish /
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Table 2 Quantification results with different methods for aligning/mapping reads on transcriptome
wide synthetic data. All quantifications are computed with Salmon or kallisto.

Method Spearman MARD  time (s)
HISAT 2 0.788 0.242 2,353
kallisto 0.808 0.231 96
quasi-mapping 0.813 0.227 107
selective-alignment 0.823 0.215 202
Bowtie 2 0.825 0.214 2,860

aligned /mapped, alignment-based methods (and selective-alignment) seem less prone to
mis-assignment in such cases.

3.2 Synthetic reads from human transcriptome

We have also explored the performance of different alignment-based and non-alignment-based
methods on the full human transcriptome. We follow the procedure described in [2] to
generate 30M, 75bp paired end reads using the RSEM simulator. Reads are mapped/aligned
to the human transcriptome (Ensembl release 80 [28]) with different methods, and then
quantified by Salmon (or kallisto). The Spearman correlation and MARD values for different
methods in Table 2 demonstrates that the performance of both alignment-based and non-
alignment-based methods are similar to each other at the transcriptome-wide scale (and when
not focusing on adversarial situations). Bowtie 2-based quantification seems to marginally
outperform the mapping-based methods. Selective-alignment’s accuracy is very similar to
that of Bowtie 2, but it requires considerably less time (it is similar to the fast mapping-based
methods in this respect).

Transcriptome-wide assessments on synthetic data, like that explored in this experi-
ment, suggest that fast mapping-based methods generally perform well (and similar to
alignment-based methods). However, small global differences in quantification accuracy at
the transcriptome-wide scale tend to arise from larger differences in the quantification of
particular transcripts (e.g., those where accurate mapping tends to be difficult, and where
additional modeling fidelity is required to obtain accurate estimates [30]). Such differences
also arise, and tend to be somewhat larger, when analyzing experimentally-derived data, as
we do in Section 3.3.

3.3 Experimental reads from human transcriptome

We have also benchmarked our proposed method selective-alignment method, on experi-
mental data from SEQC(MAQC-III) consortium [20] (NCBI GEO accession SRR1215996 -
SRR1217000). Each of five technical replicates consists of ~11M, 100bp, paired-end reads,
sequenced on an Illumina Hiseq 2000 platform. The options used for all methods are the
same as those mentioned in Section 3.1. In Table 3, we compare the quantification results
produced by different methods. Here, we note that we do not know the ground truth, and so
we instead measure the overall concordance between different approaches. Each individual
cell contains the average obtained across all five samples. High Spearman correlation and
low MARD value between Bowtie 2 and selective-alignment show that selective-alignment
produces results more similar to Bowtie 2 than to the non-alignment-based methods.

Table 4 demonstrates how extension by the maximum mappable prefix, and also knowledge
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Table 3 The Spearman correlation and MARDS between transcript abundances computed by all
methods on experimental data. Each number is the mean on 5 different samples; the numbers in the
lower left triangle of the matrix are the Spearman correlations and the ones in upper right are the
MARD values.

Method HISAT 2 kallisto quasi- selective- Bowtie 2
mapping alignment

HISAT 2 1 0] 0.173 0.173 0.087 0.082

kallisto 0.868 1 0| 0.018 0.137 0.152

quasi-mapping 0.870 0.990 1 0| 0.137 0.151

selective-alignment | 0.932 0.900 0.901 1 0| 0.057

Bowtie 2 0.937 0.886 0.889 0.958 N

Table 4 The percentage of hits that skip the full alignment process due to extension by the
maximum mappable prefix (MMP), or projection of duplicate alignments given the longest common
prefix (LCP) sequences.

Sample MMP skip LCP skip

SRR1215996 44.661% 5.788%
SRR1215997 46.986% 7.854%
SRR1215998 40.614% 7.305%
SRR1215999 41.182% 6.884%
SRR1216000 45.321% 5.485%

of the longest common prefixes from the RapMap index, help to avoid performing independent
alignment calls a considerable fraction of the time. The numbers in Table 4 show the
percentage of hits for which no alignment is needed to obtain the edit distance values. For
about half of the hits in each sample, we can skip alignment by considering the MMP and
LCP information.

4 Conclusion

Recently, fast mapping approaches such as psuedoalignment [2] and quasi-mapping [24] have
been developed for mapping RNA-seq reads to transcriptomes. Rather than generating
full alignments, these approaches compute “mapping” information that is often sufficient
for a number of given analysis tasks (e.g., transcript quantification [17, 2] or metagenomic
abundance estimation [19]). Yet, there exist scenarios where such mapping approaches can
go awry; either failing, by the greedy nature of their procedures, to find the true target of
origin of a read, or by allowing spurious mappings to targets supported by exact matches
that would nonetheless fail reasonable alignment scoring filters. Moreover, it is sometimes
desirable to be able to produce, on demand, the edit distance or alignment that would
result from a given mapping location. In this paper, we introduce a selective alignment
algorithm that attempts to bridge the gap between these fast mapping algorithms and more
traditional alignment algorithms. Selective alignment improves upon both the sensitivity and
specificity of these mapping algorithms while making very moderate concessions with respect
to the computational budget. To achieve this level of efficiency, a number of algorithmic
innovations were required, some of which may be of general interest. In the future, we
hope to expand upon the notion of selective alignment even further, both by improving the
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algorithm and implementation, and by exploring use cases where selective alignment applies.
Such situations are those where fast mapping approaches are inappropriate and traditional
alignment approaches are too slow.
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