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Parallel single-cell sequencing protocols represent powerful methods for investigating 

regulatory relationships, including epigenome-transcriptome interactions. Here, we 

report the first single-cell method for parallel chromatin accessibility, DNA methylation 

and transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and 

transcription sequencing) uses a GpC methyltransferase to label open chromatin 

followed by bisulfite and RNA sequencing. We validate scNMT-seq by applying it to 

mouse embryonic stem cells, finding links between all three molecular layers and 

revealing strong and widespread associations between chromatin accessibility and 

DNA methylation. 

 
Understanding regulatory associations between the epigenome and the transcriptome 

requires simultaneous profiling of multiple molecular layers. Previously, such multi-omics 

analyses have been limited to bulk assays, which profile ensembles of cells. These studies 

have used variation in the expression of a gene across individuals1 or between cell types2 or 

conditions to assess such linkages. Alternatively, it is also possible to link chromatin state with 
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transcription by exploiting variability between genes within a single sample. However, insights 

from such an approach are limited to the discovery of genome-wide global trends3.  

With rapid advances in single-cell technologies it is increasingly possible to leverage variation 

between single cells in order to probe regulatory associations between molecular layers. 

Existing protocols allow the methylome and the transcriptome or, alternatively, the methylome 

and chromatin accessibility to be assayed in the same cell4–7. However, it is well known that 

DNA methylation and other epigenomic features such as chromatin accessibility do not act 

independently of one another. Consequently, the ability to profile, at single cell resolution, 

multiple epigenetic features in conjunction with gene expression is critical for obtaining a more 

complete understanding of how transcription, and thus cell state, is regulated8. 

To address this, we have developed a method that enables the joint analysis of the 

transcriptome, the methylome and chromatin accessibility. Our approach builds on previous 

parallel protocols such as single-cell methylation and transcriptome sequencing (scM&T-

seq)1, in which physical separation of DNA and RNA is performed first, to enable the cell’s 

transcriptome to be profiled using a conventional Smartseq2 protocol9.  To measure chromatin 

accessibility together with DNA methylation, we adapted the Nucleosome Occupancy and 

Methylation sequencing (NOMe-seq) method7,10, where a methyltransferase (methylase) 

enzyme is used to label accessible (or nucleosome depleted) DNA prior to bisulfite sequencing 

(BS-seq), which distinguishes between the two chromatin states. In mammalian cells, cytosine 

residues in CpG dinucleotides are frequently methylated, whereas cytosines followed by either 

adenine, cytosine or thymine (collectively termed CpH) are methylated at a much lower rate11. 

Consequently, by using a GpC methylase enzyme (M.CviPI) to label accessible chromatin, 

NOMe-seq can recover endogenous CpG methylation information in parallel. NOMe-seq is 

particularly attractive for single-cell applications since, contrary to count-based methods such 

as ATAC-seq or DNase-seq, the GpC accessibility is encoded through the bisulfite conversion 

and hence inaccessible chromatin can be directly discriminated from missing data. 

Additionally, the resolution of the method is determined by the frequency of GpC sites within 

the genome (~1 in 16bp), rather than the size of a library fragment (>100bp) (see Fig. 1a for 

an illustration of the protocol). 

To demonstrate the performance of scNMT-seq, we applied the method to a batch of 70 

serum-grown EL16 mouse embryonic stem cells (ESCs), together with four negative (empty 

wells) and three scM&T-seq controls (cells processed using scM&T-seq, i.e., which did not 

receive M.CviPI enzyme treatment). This facilitates direct comparison with previous methods 

for assaying DNA methylation and transcription in the same cell4,12.  
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We isolated single cells into GpC methylase reaction mixtures by FACS, before physically 

separating the DNA and RNA prior to bisulfite and RNA sequencing library preparation1. See 

Supplementary Table 1 for sequencing summary statistics. Alignment of the BS-seq data and 

other bioinformatics processing can be carried out using established pipelines, with the 

addition of a filter to discard G-C-G positions, for which it is intrinsically not possible to 

distinguish endogenous methylation from in vitro methylated bases (21% genome-wide). 

Similarly, we remove C-C-G positions to mitigate possible off-target effects of the enzyme10 

(27% genome-wide). In total, 58 out of 70 cells processed using scNMT-seq passed quality 

control for both bisulfite and RNA-seq. 

First, we considered the RNA-seq component, which is directly comparable to scM&T-seq 

transcriptome data. On average, we detected 7,700 genes per cell (CPM ≥1), which is 

comparable with data from the same cell type profiled using scM&T-seq1. We used PCA and 

hierarchical clustering to jointly analyse cells across protocols and studies (using data from 

Angermueller et al. 20164), and found that scM&T-seq and scNMT-seq samples prepared in 

parallel cluster together. This indicates that the enzyme treatment does not adversely affect 

the transcriptome (Supplementary Fig. 1). Larger differences were observed when comparing 

across studies, most likely reflecting differences in the cell lines used (male E14 versus female 

EL1613, Supplementary Fig. 1).  

The need to filter out C-C-G and G-C-G positions from the methylation data reduces the 

number of genome-wide cytosines that can be assayed from 22 million to 11 million. However, 

despite this filter, a large proportion of the loci in genomic regions with important regulatory 

roles, such as promoters and enhancers, can be profiled using scNMT-seq (Fig. 1b). 

Consistent with this theoretical expectation, we observed high empirical coverage: 51% of 

promoters and 78% of gene bodies are captured by at least 5 cytosines (Fig. 1c, Supplemental 

Fig. 2a). We also compared the methylation coverage to data from our previous publication4, 

again finding small differences relative to conventional BS-seq, albeit these differences 

became more pronounced when down-sampling the total sequence coverage (e.g. the 

reduction in gene body coverage increased from 5% to 16% when sampling 1/10th of the 

reads; Supplemental Fig 2b). Due to the higher frequency of GpC compared to CpG 

dinucleotides in the mouse genome, the coverage of GpC accessibility was larger than that 

observed for endogenous CpG methylation (Fig. 1b, c and Supplementary Fig. 2a). We found, 

on average, that 91% of gene bodies and 79% of promoters per cell were assessable, which 

is the highest coverage achieved by any single-cell accessibility protocol to date (9.4% using 

scATAC-seq14, and with scDNase-seq, ~50% of genes >1 RPKM, >80% of genes >3 RPKM15).  

Analogous to the analysis of the RNA-seq data, we compared the CpG methylation profiles 

obtained from scNMT-seq to single-cell libraries profiled using scM&T-seq4, scBS-seq12 and 
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bulk BS-seq16, finding that cells did not cluster by protocol or by study, with most variation 

being attributable to difference in cell type (Supplementary Fig. 3).  

To validate the accuracy of the GpC accessibility measurements, we generated a synthetic 

bulk dataset by merging GpC methylation data from all cells, and compared this with published 

bulk DNase-seq data from the same cell type7. Globally, we observed high consistency 

between datasets (Pearson R = 0.75, weighted by coverage in our merged dataset, 

Supplemental Fig 4). The most notable difference was that the scNMT-seq data showed 

oscillating profiles, with peaks spaced ~180 to ~200bp apart, consistent with the positions of 

nucleosomes (Fig. 1d) and similar to profiles obtained with bulk-cell NOMe-seq2.  

Next, we examined GpC methylation levels at known regulatory regions in single-cells.  Across 

the genome, GpC accessibility was ~30%, with low cell-cell variability. However, we found a 

large increase in GpC accessibility at known DNase hypersensitivity sites (DHS, ~60% GpC 

methylated, Supplemental Fig. 5), as well as transcriptional start sites (~60% GpC methylated, 

Fig. 1e). We observed similar patterns for protein- and transcription factor binding sites (from 

p300, CTCF, Nanog and Oct4 ChIP-seq data), which were accessible at the centre of the 

peaks. Cells processed using the scM&T-seq control were universally low in GpC methylation 

(~2%) with no enrichment at regulatory regions, indicating that our accessibility data are not 

affected by endogenous GpC methylation (Supplementary Fig. 6). To illustrate the high-

resolution GpC accessibility measurements obtained by our method, we profiled the pattern 

and density of nucleosomes around transcription start sites finding characteristic nucleosome 

depleted regions at transcription start sites and variation between cells in the position of 

nucleosomes (see Supplementary Fig. 7 for example plots). 

To assess how differences in gene expression are associated with methylation and GpC 

accessibility, we stratified loci based on the expression level of the nearest gene using the 

RNA-seq profiles from the corresponding cells. We found that highly expressed genes were 

associated with the greatest GpC accessibility at promoters and at nearby regulatory sites, 

whereas the GpC accessibility of lowly-expressed genes was reduced (Fig. 1e; 

Supplementary Fig 8).  

Taken together, these results demonstrate that our method is able to robustly profile gene 

expression, DNA methylation and GpC accessibility within the same single cell.  

Having established the efficacy of our method, we next explored its potential for identifying 

loci with coordinated epigenetic and transcriptional heterogeneity. Globally, we observed a 

clear relationship between average CpG methylation rate and the GpC accessibility across 

cells, where methylated loci were associated with decreased accessibility (Fig. 2a). When 

assessing the heterogeneity of CpG methylation in different genomic contexts, enhancers 
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were most variable (particularly primed enhancers – H3K4me1 marked but lacking H3K27ac), 

followed by non-CGI promoters and inactive promoters (Supplemental Fig. 9), which is in 

agreement with previous data4,12. In contrast, heterogeneity in GpC accessibility was largest 

at known binding sites of transcription factors (Oct4 and Nanog) and regions of active 

chromatin (p300 binding sites and DNase-hypersensitive sites), indicating cell to cell 

differences in the accessibility of the DNA to important regulatory factors (Fig. 2a and 

supplemental Fig. 9).  

We next jointly considered the GpC accessibility and CpG methylation data to test for 

correlated changes between the two layers. Significant associations were observed across all 

genomic contexts, with up to 98 loci showing significant patterns (FDR < 10%; Fig. 2b; 

Supplementary Fig. 10a and 11). The majority of significant correlations were negative, 

reflecting the known relationship between these two layers17. The largest number of individual 

associations was observed in intronic regions (N=98), followed by Super Enhancer regions 

(N=51, Fig. 2b.).  

In addition to coupling between different epigenetic layers, we also considered associations 

between CpG methylation and GpC accessibility and gene expression levels. Because these 

effects were generally weaker than the relationship between accessibility and methylation, we 

used a data-driven approach to optimise the set of promoter proximal regions in which to test 

for such associations (Methods). This analysis identified -100bp to +100bp for accessibility 

and -1kb to +1kb for methylation as suitable parameters for such analyses (Supplementary 

Fig. 12). Notably, the strongest associations between accessibility and expression were 

observed upstream of the TSS, whereas the linkages for DNA methylation were most 

pronounced downstream of the TSS.  We used these regions to assess linkages between 

DNA methylation and accessibility with gene expression. We found 4 significant associations 

between GpC accessibility and gene expression with a greater number of positive (3) 

compared to negative (1) correlations (Fig. 2c and Supplementary Fig. 13a and 14) and for 

CpG methylation and transcription, we found 39 significant associations with an enrichment 

for negative correlations (33/39), confirming the known negative relationship between DNA 

methylation and gene expression (Supplementary Fig. 15a and 16). See Supplementary Table 

2 for a list of all significant correlations. 

As an example, Fig. 2d displays the gene Cth and surrounding region, showing mean 

accessibility and methylation rates across the locus as well as a scatter plot, depicting 

significant associations between GpC accessibility or CpG and methylation at the promoter 

region and Cth expression. Notably, this relationship could also be observed in individual cells, 
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as shown in the zoom-in examples, revealing specific cells with either an accessible promoter 

and expressed transcripts or inaccessible and non-expressed.  

We additionally analysed associations across genes within each cell (rather than across cells 

within each gene), which is similar to previous approaches used to investigate such linkages 

using a single bulk sample. This approach showed global correlations in different genomic 

contexts (Supplementary Fig. 10b, 13b, 15b), indicating that our method is accurately 

measuring each layer and recapitulates the expected bulk-cell results. 

In conclusion, we describe a method for parallel single-cell DNA methylation, gene expression 

and high resolution chromatin accessibility measurements and report novel associations 

between each molecular layer with a strong enrichment for DNA methylation – chromatin 

accessibility correlations. This method will greatly expand our ability to investigate 

relationships between the epigenome and transcriptome in heterogeneous cell types and 

across developmental transitions.  

 

Methods 

Cell culture 

Mouse embryonic stem cells were derived from a 129xCast/129 embryo previously13 and 

cultured in serum media without feeders as previously4. Single-cells were collected by FACS, 

selecting for live cells and low DNA content (i.e., G0 or G1 phase cells) using ToPro-3 and 

Hoechst 33342 staining as previously described4. The cell line was subjected to routine 

mycoplasma testing using the MycoAlert testing kit (Lonza). 

Library preparation 

Cells were collected directly into 2.5μl methylase reaction mixture which was comprised of 1x 

M.CviPI Reaction buffer (NEB), 2U M.CviPI (NEB), 160 μM S-adenosylmethionine (NEB), 

1U/μl RNAsein (Promega), 0.1% IGEPAL (Sigma) then incubated for 15 minutes at 37°C. The 

reaction was stopped and the RNA preserved with the addition of 5μl RLT plus (Qiagen) prior 

to scM&T-seq library preparation according to the published protocols for G&T-seq19 and 

scBS-seq20 but with the following modifications. Three G&T-seq washes were performed with 

15μl volumes (steps 22 to 24 of the G&T-seq protocol 21) and the reverse transcription reaction 

and PCR were performed using volumes of the published Smart-seq2 protocol22 (i.e. 10 μl for 

reverse transcription and 25 μl for PCR). 

Sequencing 

20 of the BS-seq libraries, including 3 negative controls, were initially sequenced on 50bp 

single-end MiSeq run to assess quality. The negative controls were found to have substantially 
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reduced mapping efficiencies compared to the single cell samples (mean of 2.7% compared 

to 36.8%, see Supplementary Table 1). All single-cell BS-seq libraries were subsequently 

sequenced to a mean depth of 17 million paired-end reads and RNA-seq libraries were 

sequenced to a mean depth of 1.7 million paired-end reads. Both sets of libraries were 

sequenced on HiSeq 2500 instruments using v4 reagents and 125bp read length. 

Data processing 

Bisulfite-seq alignment 

Single-cell bisulfite libraries were processed using Bismark23 as described20 but with the 

additional --NOMe option in the coverage2cytosine script which produces  CpG report files 

containing only A-C-G and T-C-G positions and GpC report files containing only G-C-A, G-C-

C and G-C-T positions.   

RNA-seq alignment  

Single-cell RNA-seq libraries were aligned using HiSat224 using options -O3 -m64 -msse2 -

funroll-loops -g3 -DPOPCNT.  

Allele-sorting 

Since the cell-line used was derived from a hybrid embryo (129 x 129/cast) reads were 

separated by known SNPs between the two strains, using SNPsplit25, however for the 

purposes of this study, genome-specific data was merged and therefore the allelic origin 

ignored. 

Quality control 

From the bisulfite-seq data, we discarded cells that had (1) less than 10% mapping efficiency 

(2) less than 500,000 CpG sites or 5,000,000 GpC sites covered. In total, 64 cells (88%) 

passed the quality control (supplemental Fig. 18). From the RNA-seq data we discarded cells 

that had (1) less than 300,000 reads mapped (2) more than 15% of total reads mapped to 

mitochondrial genes, (3) less than 2,000 genes expressed. In total, 66 cells (90%) passed the 

quality control (supplemental Fig. 17), 61 of which also passed BS-seq QC (84%) comprising 

58 scNMT-seq cells and 3 scM&T-seq cells. 

CpG Methylation and GpC accessibility quantification 

Following the approach of Smallwood et al7 individual CpG or GpC sites in each cell were 

modelled using a binomial model where the number of successes is the number of reads that 

support methylation and the number of trials is the total number of reads. A CpG methylation 

or GpC accessibility rate for each site and cell was calculated by maximum a posteriori 

assuming a beta prior distribution. Subsequently, CpG methylation and GpC accessibility rates 

were computed for each genomic feature assuming a Normal distribution across cells and 
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accounting for differences in the standard errors of the single site estimates. The coverage 

(number of observed CpG or GpC sites) was recorded and used as weight in subsequent 

analysis. See Supplementary Table 3 for details of genomic contexts used in this study. 

RNA quantification 

Gene expression counts were quantified from the mapped reads using featureCounts26. Gene 

annotations were obtained from Ensembl version 8726. Only protein-coding genes matching 

canonical chromosomes were considered. Following27 the count data was log-transformed 

and size-factor adjusted based on a deconvolution approach that accounts for variation in cell 

size28. 

Statistical analysis 

CpG Methylation and GpC accessibility profiles 

CpG methylation and GpC accessibility profiles were visualised by taking predefined windows 

around the genomic context of interest. For each cell and feature, CpG methylation and GpC 

accessibility values were averaged using running windows of 50 bp. The information from 

multiple cells was combined by calculating the mean and the standard deviation for each 

running window. Profiles were calculated using a subset of 20 cells with similar mean 

methylation rate values. Genes were split into three classes according to a histogram of the 

log2 normalised expression counts (x): Low (x<2), Medium (2<x<6) and High (x>6). For 

genomic features that are not directly linked to genes (i.e. enhancers or transcription factor 

binding sites), all possible relationships between genes and features within 5kb of the gene 

(upstream and downstream of gene start and stop) were considered. 

GpC accessibility profiles around the TSS in a single cell (as displayed in Supplementary Fig. 

9a and Fig. 2e) were generated using a generalised linear model (GLM) of basis function 

regression coupled with a Bernoulli likelihood using BPRMeth29. 

Correlation analysis 

For the correlation analysis across cells, genes with low expression levels and low variability 

were discarded, according to the rationale of independent filtering30. Genomic features 

observed in less than 50% of the cells and with a coverage of less than 3 sites were discarded. 

Furthermore, only the top 50% of the most variable loci were considered for analysis and a 

minimum number of 20 cells was required to compute a correlation. Only genomic contexts 

with more than 100 features that passed the filtering criteria were considered for the analysis. 

A minimum coverage of 3 sites was required per feature. For association tests, all possible 

relationships between genes and genomic features within 8kb of the gene (upstream and 

downstream) were considered. Following our previous approach4, we tested for linear 

associations by computing a weighted Pearson correlation coefficient, thereby accounting for 
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differences in the coverage between cells. When assessing correlations between GpC 

accessibility with CpG methylation, we used the average CpG methylation coverage as a 

weight.  

Two-tailed Student’s t-tests were performed to test for nonzero correlation, and P-values were 

adjusted for multiple testing for each context using the Benjamini-Hochberg procedure.  

To improve the correlations of promoter methylation or accessibility with expression, we 

optimized the genomic window used to define the CpG methylation or GpC accessibility rate 

as follows. First, we selected 20 random cells and we extracted +/-4kb regions around the 

transcription start site of all genes and we divided them into overlapping 200bp windows with 

a stride of 50bp (Supplementary figure 12). Then, for each cell and window, we performed a 

correlation across all genes between the CpG methylation or GpC accessibility rates and the 

corresponding gene expression. Finally, we selected the regions for which the correlation is 

maximized, in the case of accessibility being +/-100bp and in the case of methylation +/- 1kb. 
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Fig. 1. Coverage and accuracy of scNMT-seq.  

(a) Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC 

methylase. RNA is then separated and sequenced using Smart-seq2, whilst DNA 

undergoes scBS-seq library preparation and sequencing. Methylation and chromatin 

accessibility data are separated bioinformatically (splitting). 

(b) Theoretical maximum coverage of representative genome contexts used in this study. 

Shown is the proportion of loci in different contexts that can be covered by at least 5 

cytosines. All CpG considers any C-G dinucleotides (e.g. as in scBS-seq), NOMe-seq 

CpG considers A-C-G and T-C-G trinucleotides and NOMe-seq GpC considers G-C-

A, G-C-C and G-C-T trinucleotides. 

(c) Empirical coverage of individual loci, considering the same contexts as in b. Shown is 

the coverage across each of 58 single-cells (after QC); box plots show median 

coverage and the first and third quartile, whiskers show 1.5 x the interquartile range 

above and below the box.  

(d)  GpC accessibility profiles at gene promoters compared to published DNase-seq data. 

GpC accessibility is the mean rate of all cells in 25bp windows, DNase-seq is the 

number of reads within the same 25bp windows. Both were scaled to the fraction of 

the maximum in all windows to enable a comparison of the two different data types. 

(e) CpG methylation and GpC accessibility profiles at gene promoters. Promoters are 

stratified by expression of the corresponding gene (low = logCPM < 2, medium = 2 < 

logCPM < 6 , high = logCPM > 6) within the same cell. The profile is generated by 

computing a running mean and standard deviation in 50bp windows across 20 random 

cells. 
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Fig. 2. Linking heterogeneity in GpC accessibility, DNA methylation and gene 

expression using scNMT-seq. 

(a) Left: Scatter plots between average CpG methylation and GpC accessibility for 

different genomic contexts. Shown are, for each context, averages across cells and 

loci, revealing a negative association between both layers. Right: Box plots of the cell-

to-cell variance of GC chromatin accessibility for the corresponding contexts. Boxplots 

highlight the median accessibility across loci and the lower and upper hinges 

correspond to the first and third quartiles, respectively. 

(b) Associations between GpC accessibility and CpG methylation across cells, for different 

genomic contexts. Left: Boxplots of Pearson r-values for individual loci and for different 

contexts (shown are medians and first and third quartiles). Right: Pearson correlation 

coefficients versus P-values for loci in the super enhancer context (N=685). Significant 

associations (FDR<0.1, Benjamini-Hochberg correction), are highlighted in red. The 

top panel shows the number of significant positive (+) and negative (−) correlations 

(FDR < 0.1). 

(c) Associations between GpC accessibility gene expression across cells, for gene 

promoters. Left: Pearson correlation coefficients versus P-values for individual loci 

(N=1,067). Right: Q-Q plot, showing observed p-values versus the random 

expectation. Solid points correspond to actual P-values from 1,067 promoter 

associations, with significant association (FDR<0.1, Benjamini Hochberg adjusted) 

highlighted in red. Blue ‘+’ symbols show analogous results from permuted data, 

revealing no association.  

(d) Zoom-in view for the gene Cth. Shown from top to bottom are: Pairwise Pearson 

correlation coefficients between each of the three layers. CpG methylation (red) and 

GpC accessibility (blue) profiles; mean rates (solid line) and standard deviation (shade) 

were calculated using a running window of 4kb with a step size of 500bp; to show 

relative instead of absolute changes and to bring the two layers into the same scale,  

CpG methylation and GpC accessibility rates were separately scaled to 0 and 100. 

Track with genomic annotations, highlighting the position of several regulatory 

elements: promoters, enhancers, Nanog binding sites and p300 binding sites. The 

scatter plots show the correlation between accessibility and gene expression as well 

as methylation and accessibility around the transcription start site. Finally, two cells 

were selected to display the actual methylation (red) and accessibility (blue) profile 

around the transcription start site, dots display empirical data points, lines represent 

fitted profiles (see online methods). 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2017. ; https://doi.org/10.1101/138685doi: bioRxiv preprint 

https://doi.org/10.1101/138685
http://creativecommons.org/licenses/by/4.0/

