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Abstract 20 

The 2H/1H ratio in microbial fatty acids can record information 21 

about the energy metabolism of microbes and about the isotopic 22 

composition of environmental water. However, the mechanisms 23 

involved in the fractionation of hydrogen isotopes between water 24 

and lipid are not fully resolved. We provide data aimed at 25 

understanding this fractionation in the Gram-positive obligately 26 

thermophilic anaerobe, Thermoanaerobacterium saccharolyticum, 27 

by comparing a wild-type strain to a deletion mutant in which the 28 

nfnAB genes encoding electron-bifurcating transhydrogenase have 29 

been removed. The wild-type strain showed faster growth rates and 30 

larger overall fractionation (2•total -319±4 ‰) than the mutant strain 31 

(2•total -298±4 ‰). The overall trend in growth rate and fractionation, 32 

along with the isotopic ordering of individual lipids, is consistent 33 
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with results reported for the Gram-negative sulfate reducer, 34 

Desulfovibrio alaskensis G20.  35 

 36 

1. Introduction 37 

The fractionation of hydrogen isotopes between environmental water 38 

and microbial biomass lipids correlates with central energy metabolism in 39 

many aerobic and some anaerobic bacteria (Dawson et al., 2015; 40 

Heinzelmann et al., 2015; Osburn et al., 2016; Zhang et al., 2009). The 41 

correlation has been inferred to relate to the mechanisms controlling the 42 

production of intracellular electron carriers such as NADPH and NADH. In 43 

some anaerobic bacteria the pattern of fractionation is more complicated, 44 

and does not strongly correlate with central carbon metabolism (Dawson et 45 

al., 2015; Leavitt et al., 2016; Osburn et al., 2016). One potential 46 

explanation for this complexity relates to the importance of flavin-based 47 

electron bifurcation by transhydrogenase in anaerobes (Demmer et al., 48 

2015). These enzymes may impose a large isotope effect, which could 49 

overprint signals that relate primarily to carbon metabolism. Examination 50 

of transhydrogenase mutants in Desulfovibrio alaskensis G20 showed that 51 

on substrates such as malate and fumarate, perturbed transhydrogenase 52 

significantly affected the •2H values of lipids (Leavitt et al., 2016).  53 

 A more complete understanding of factors that impact •2Hlipid might be 54 

achieved by examination of microbial strains with different strategies for 55 

NAD(P)H regulation. The production of NADPH is critical for lipid 56 
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biosynthesis. This cellular metabolite can derive from multiple sources, 57 

including reactions of central carbon metabolism, production from NADH 58 

via transhydrogenase, and production from NADH by NAD kinases. Three 59 

types of NAD kinases have been described (Kawai and Murata, 2008), with 60 

subcategories found in (i) Gram positive (+) bacteria and archaea, (ii) 61 

eukaryotes, and (iii) Gram negative (-) bacteria. In Gram(+) bacteria such as 62 

Thermoanaerobacterium saccharolyticum, NAD kinase can use ATP or 63 

polyphosphate as a P source. Few data exist on hydrogen isotopic 64 

fractionation in Gram(+) bacteria (Valentine et al., 2004). In this study, we 65 

apply a molecular genetic approach to examine hydrogen isotopic 66 

fractionation in a model Gram(+) organism, T. saccharolyticum. We compare 67 

the wild-type strain to a transhydrogenase-deficient mutant to determine 68 

phenotypic effects on growth rate, lipid profile, and magnitude of hydrogen 69 

isotopic fractionation between medium water and lipid. Our findings show 70 

patterns similar to those observed for D. alaskensis G20 (Leavitt et al., 71 

2016).  72 

 73 

2. Methods 74 

T. saccharolyticum strain JW/SL-YS485 (wild type) was cultivated in 75 

parallel with a recently reported NfnAB transhydrogenase-deficient mutant 76 

(Lo et al., 2015), strain LL1144 (•nfnAB::Kanr). Triplicate cultures of each 77 

were grown at 55 °C in 150 ml glass bottles with a 50 ml working volume in 78 

MTC defined medium on 5 g/l cellobiose, as detailed in the Supplement. 79 
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Cells were harvested at early stationary phase by way of centrifugation and 80 

were lyophilized. Lipid extraction, derivatization and analysis protocols 81 

were identical to those reported by Leavitt et al. (2016). Lipid retention 82 

times and peak areas were determined by gas chromatography-mass 83 

spectrometry (GC-MS), the •2H values of lipids measured by GC isotope 84 

ratio mass spectrometry (GC-IRMS) and the •2H of water samples by duel-85 

inlet IRMS and cavity ring-down spectroscopy (CRDS), following Leavitt et 86 

al. (2016). The •2H values are reported relative to V-SMOW (Vienna 87 

Standard Mean Ocean Water) and fractionation is reported as apparent 88 

fractionation between medium water and lipid from the equation: 2•lipid/water = 89 

(2•lipid/water -1), where • = [(•2Hlipid + 1000)/(•2Hwater + 1000)]. Each lipid from 90 

each culture sample (representing each individual biological triplicate) was 91 

measured 14 to 20 times.  92 

 93 

3. Results 94 

The doubling time of the wild-type strain was 0.33 ± 0.10 h-1, 95 

compared vs. a slower growth rate of 0.10 ± 0.01 h-1 for the •nfnAB strain 96 

(Fig. 1). The wild-type strain demonstrated a longer lag phase, perhaps 97 

because it was inoculated at a lower initial cell density than the mutant. 98 

The maximum optical density (OD) for the wild-type was nearly 3-times 99 

that of the mutant, with average final OD600: wild-type = 1.04 (±0.03) vs. 100 

•nfnAB = 0.37 (±0.01), representing biological triplicates of each strain (Fig. 101 

1).  102 
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The lipid profile of T. saccharolyticum was similar to what has been 103 

previously reported from this genus (Jung and Zeikus, 1994). The strain 104 

produced abundant n-C16 fatty acids (FA) along with branched iso- and 105 

anteiso- C15 and C17 FA. Smaller amounts of n-C14 FA were detected, along 106 

with a long-chain dicarboxylic acid. The mass spectrum of the latter was 107 

consistent with one reported from T. ethanolicus (Jung and Zeikus, 1994). 108 

The wild-type had elevated concentrations of the iso- FA relative to the 109 

mutant, but the lipid profiles were otherwise similar (Fig. 2).  110 

 The mass-weighted average hydrogen isotopic fractionation between 111 

water and lipid (2•total) was greater for the wild type (-319±4 ‰) than for 112 

•nfnAB (-298±4 ‰). The fractionation (2•) for each individual lipid was also 113 

greater in the wild type than in the mutant (Fig. 3). The isotopic ordering of 114 

individual lipids (2•lipid/water) was similar for both strains, with anteiso- lipids 115 

depleted relative to iso- and straight chain FA. The relative ordering from 116 

most depleted lipid (anteiso-C15:0) to most enriched (iso-C17:0), was nearly 117 

identical for both wild-type and mutant (Fig. 3).  118 

 119 

4. Discussion 120 

 Observation of the 2•lipid/water and 2•total in wild-type and nfnAB 121 

transhydrogenase mutant strains of D. alaskensis G20 revealed that faster 122 

growing strains were more depleted in 2H than the slower strains (Leavitt et 123 

al., 2016).  T. saccharolyticum also showed similar relationships between 124 

growth rate and fractionation. Whether this pattern can be attributed to a 125 
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similar role for the influence of transhydrogenase on •2Hlipid, a consistent 126 

relationship with growth rate and •2Hlipid, or a more nuanced relationship 127 

due to changes in both NfnAB activity and growth rate, remains unresolved. 128 

Deconvoluting these possibilities will require steady-state experiments with 129 

both strains cultured in parallel at a fixed growth rate. Growth rate effects 130 

have been observed on •2Hlipid in haptophyte algae (Sachs and Kawka, 2015; 131 

Schouten et al., 2006), and chemostat experiments have been used to 132 

understand fractionation as a function of rate in other isotope systems 133 

(Leavitt et al. 2013).  134 

 Another commonality between T. saccharolyticum and D. alaskensis 135 

is the 2H depletion in the anteiso- FA relative to the other FA (Fig. 3). 136 

Leavitt et al. (2016) suggested that this depletion might originate in the 137 

biosynthesis of anteiso- FA from 2-methylbutyryl-CoA derived from 138 

isoleucine. This explanation could also be invoked for T. saccharolyticum, 139 

and compound-specific •2H measurements of amino acids might provide 140 

valuable constraints on the isotopic ordering among lipids. A recent study of 141 

the H isotopic compositions of individual amino acids in Escherichia coli 142 

grown on glucose and tryptone showed that isoleucine was depleted in 2H 143 

relative to leucine by ca. 100‰ (Fogel et al., 2016). 144 

 145 

5. Conclusions 146 

Deletion of the electron-bifurcating transhydrogenase, NfnAB, slows 147 

growth rate and decreases the magnitude of 2•lipid/water and 2•total when T. 148 

saccharolyticum is grown on a defined medium in batch culture. The 149 
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relative ordering of 2•lipid/water is similar in both strains. These patterns of 150 

fractionation and isotopic ordering are similar to recent observations of the 151 

heterotrophic sulfate reducer D. alaskensis G20. The consistency of results 152 

across these taxa supports a role for NfnAB in determining the H isotopic 153 

composition of lipids in obligate anaerobes. However, to better constrain 154 

these observations, and isolate the effect of growth rate, continuous culture 155 

(chemostat) experiments are necessary. Similar work with a broader array 156 

of transhydrogenase-containing microbes would be helpful, including 157 

organisms utilizing families of transhydrogenases other than NfnAB-class. 158 

Such experiments can place further constrains on the mechanism(s) of lipid 159 

H-isotopic fractionation.  160 

 161 

6. Supplementary information 162 

All supplemental methods and data are archived at: 163 

10.6084/m9.figshare.4598224. 164 

 165 
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Figure 1.  234 

 235 

Fig. 1. Growth curves and 236 

calculated doubling times for wild-237 

type and mutant (avg. of triplicate 238 

growth experiments). 239 

240 

Figure 2.  241 

 242 

Fig. 2. Lipid abundance profiles for 243 

wild type and mutant (avg. of 244 

triplicate growth experiments). 245 

 246 

 247 

 248 

  249 
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Figure 3.  250 

 251 

Fig. 3. H isotope fractionations 252 

between FA and water. Black 253 

horizontal bar, weighted mean for 254 

each strain. Vertical bars, standard 255 

mean error (SME) for all biological 256 

(N = 3) and technical replicates (n = 257 

14 to 20).  258 

 259 

260 

Figure 4.  261 

 262 

Fig. 4. Weighted H- isotopic 263 

fractionation between FA and water 264 

for each strain vs. average doubling 265 

time. 266 

 267 
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