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Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-

mass spectrometry (LC-MS), the most established platform to perform metabolomics. In

contrast to LC-MS however, NMR data is predominantly being processed with commercial

software. Meanwhile its data processing remains tedious and dependent on user interventions.

As a follow-up to speaq, a previously released workflow for NMR spectral alignment and

quantitation, we present speaq 2.0. This completely revised framework to automatically
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analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal

information loss or user interaction. The tool offers a fast and easy workflow that starts with

the common approach of peak-picking, followed by grouping. This yields a matrix consisting

of features, samples and peak values that can be conveniently processed either by using

included multivariate statistical functions or by using many other recently developed methods

for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics

based on 1D NMR but is also compatible with other NMR frameworks or complementary

LC-MS workflows. The methods are benchmarked using two publicly available datasets.

speaq 2.0 is distributed through the existing speaq R package to provide a complete solution

for NMR data processing. The package and the code for the presented case studies are

freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub

(https://github.com/beirnaert/speaq).

Author summary

We present speaq 2.0: a user friendly workflow for processing NMR spectra quickly and

easily. By limiting the need for user interaction and allowing the construction of workflows

by combining R functions, metabolomics data analysis becomes fully reproducible and

shareable. Such advances are critical for the future of the metabolomics field as it needs to

move towards a fully open-science approach. This is no trivial goal as many researchers are

still using black-box commercial software that often requires manually doing several steps,

thus hampering reproducibility. To encourage the shift towards open source, we deliberately

made our method usable for anyone with the most basic of R experience, something that is

easily acquired. speaq 2.0 allows a stand-alone analysis from spectra to statistical analysis.

In addition, the package can be combined with existing tools to improve performance, as it

offers a superior peak picking method compared to the standard binning approach.

Introduction 1

1D NMR spectroscopy has been a popular platform since the early days of metabolomics. 2

Although less sensitive than the complimentary and more common LC-MS technology, NMR 3

it has its merits. For one, it is an unparalleled technique in determining the structure of 4
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unknown metabolic compounds. Furthermore, because it is a non-destructive technique, 5

samples can be reanalyzed later or can be used in a different spectroscopic analysis such as 6

mass spectrometry. Also, an NMR spectroscopy experiment requires little sample preparation 7

compared to LC-MS, thus limited unwanted extra variability is introduced. Finally, the 8

results of an NMR analysis are less dependent on the operator and instrument used. All 9

these factors make 1D NMR spectroscopy a technique with a relatively high reproducibility 10

and rather minimal researcher bias [1]. There are however also drawbacks associated with 11

this technique. First, the aforementioned low sensitivity is an important issue as the dynamic 12

range in real biological samples surpasses the NMR detection range. This is particularly 13

problematic when the goal is to identify an unknown metabolite with a low concentration. 14

To get the best of both worlds, combining large scale LC-MS analysis with NMR 15

spectroscopy has been presented as an option to yield valuable novel insights in metabolic 16

pathways and biomarkers [2–4]. From a data processing perspective, this combination is not 17

trivial. The data analysis of NMR is not as automated as LC-MS data analysis, which can 18

rely on open-source solutions like XCMS [5]. Most NMR data analysis is still performed on 19

commercial software [6]. While the reproducibility of the NMR experimental techniques is 20

high, the data analysis still requires a substantial degree of user intervention. This results in 21

the possible introduction of bias and lower research reproducibility, meaning that the data 22

analysis can not be easily replicated by others. The absence of standardized and automated 23

NMR metabolomics workflows is the main culprit despite recent progress. This progress 24

includes the proliferation of R packages for NMR analysis like speaq [7], BATMAN [8], 25

muma-R [9], ChemoSpec [10], and specmine [11]. But also other widely used frameworks 26

are recent developments, such as MetaboAnalyst [12–14] a web server for LC-MS and NMR 27

metabolomics analysis, Bayesil [15], another web based approach and MVAPACK [16], a 28

GNU Octave toolbox to process NMR data starting from the raw FID signal. Not all these 29

NMR analysis tools are applicable to all research setups. Some serve only specific purposes 30

like BATMAN [8], for example, which is aimed at obtaining concentration estimates for 31

known metabolites from the raw spectra. However, a lot of untargeted experiments are in 32

search for not only known metabolites, but also unknown ones. These experiments require 33

tools that can process large amounts of data in a scalable way. 34
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A typical workflow for NMR spectral analysis consists of several pre-processing steps, 35

such as baseline correction, raw spectra alignment, spectra summarization and grouping. 36

This is then followed by statistical analysis. The spectra summarization step and the 37

alignment/grouping step are most time consuming. In the spectra summarization, all the 38

experimental measurement points are transformed into a small number of features, which are 39

more suited for automated analysis. Multiple spectra summarization techniques exist, each 40

with their own advantages and drawbacks [18]. The specific method that is chosen can result 41

in user-introduced bias and low reproducibility. This is the case for the most commonly 42

used summarization approach: the so-called binning or bucketing method [19]. This method 43

was introduced to compensate for small spectral shifts between samples. It allows to vastly 44

reduce the number of measurements points to a limited number of variables (the bins) in one 45

single, automated step [20]. There are however major drawbacks to this method that have a 46

profound influence on the results [21]. In particular, it is not straightforward to define the 47

boundaries of the bins in crowded spectra. Automating this process may lead to splitting 48

up small but relevant peaks. Manually checking the bins on the other hand is extremely 49

tedious and tweaking the boundaries can forfeit any attempt for reproducibility. Several 50

methods have been proposed to tackle the bin boundary issue [22–24], but this is not the 51

only concern. Loss of information is intrinsically linked to the binning approach as entire 52

bins are simply summed together. 53

At the end of an analysis based on the binning approach, when several bins are found 54

to be interesting, it is still necessary to revert to the raw spectra to manually check the 55

intervals. This is necessary to find the ppm values of the actual peaks of interest that can 56

then be used to query a database, like HMDB [17]. This introduces yet another point where 57

user intervention is required, which slows down the whole process and hampers the use of 58

an automated workflow. 59

In this paper we present the speaq 2.0 method. The underlying core paradigm is to 60

efficiently summarize spectra with little user interaction, high speed and most importantly 61

little loss of information whilst greatly reducing the dimensions of the data. The overall 62

aim however, is not to construct yet another all-encompassing package for NMR analysis, 63

but more importantly, to construct a method that can complement established tools for 64

NMR data analysis, like MetaboAnalyst [14], by improving performance, analysis quality 65

and reproducibility. This is achieved by improving the quality of the peak lists which are the 66
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starting points for MetaboAnalyst [14] or muma-R [9]. By automating the important peak 67

picking step in the NMR analysis workflow, less researcher bias is introduced hereby greatly 68

improving reproducibility. The automation potential of the package makes it suitable for the 69

fast analysis of NMR spectra in a way that is very comparable to how LC-MS spectra are 70

analyzed. In the future, this method will effectively be used for high-throughput analyses 71

in which LC-MS and NMR data are combined to achieve better results. Nonetheless, a 72

complete standalone analysis pipeline is presented with the focus on user-friendliness. This 73

is to allow also non-expert users to be able to work with open-source tools instead of the 74

black-box proprietary software. 75

The basic proposition of speaq 2.0 is to use peaks instead of raw spectra. The peak- 76

picking process is achieved with wavelets. Specifically the Ricker wavelet, also called the 77

Mexican hat wavelet, is used to mathematically represent the peaks in the spectra in such 78

a way that a large reduction of variables is achieved with very little loss of information. 79

Only a few values capture the peak information that is contained in the tens or hundreds of 80

raw data points describing the peak in the original spectra. Besides the data reduction the 81

additional advantage of using wavelets, and specifically the continuous wavelet transform, is 82

that the need for baseline correction and smoothing is eliminated with no loss of sensitivity 83

or increase in false positives [25,26]. 84

Materials and methods 85

Benchmark Data 86

To validate the presented approach two previously published benchmark datasets are 87

reanalyzed: 88

1. The wine dataset by Larsen et al. [27] where 40 table wines (red, white & rosé) are 89

measured with 1H NMR spectroscopy. The focus of Larsen et al. was not to investigate 90

differences between wines of different colour and origin, but merely to evaluate how 91

pre-processing methods like alignment and interval selection can aid in chemometrics 92

and quantitative NMR analysis [27]. Wine is a good example for evaluating alignment 93

algorithms because of the often substantial differences in pH, which can cause large 94

shifts in the NMR spectra. Because of this property, the wine dataset has been used to 95
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evaluate the performance of several alignment algorithms, like COW [27], icoshift [28] 96

and CluPA [7]. 97

98

2. The onion intake in mice dataset which originates from a nutri-metabolomics study by 99

Winning et al. [29] in search of biomarkers for onion intake. 32 rats were divided into 100

4 categories each receiving a specific onion diet: control (0% onion), 3% onion residue, 101

7% onion extract and 10% onion by-product. Urine samples were collected during 24 102

hours and analyzed with proton NMR spectroscopy to characterize the metabolome of 103

the different onion fed mice. More details can be found in [29]. 104

Both datasets were originally made available by the University of Copenhagen at 105

http://www.models.life.ku.dk/. 106

Workflow 107

The NMR data analysis workflow of speaq 2.0 is depicted in Fig 1. Spectra serve as input, 108

then peak picking with wavelets is applied to transform the spectra to peak data. These 109

peaks are then grouped into features with the grouping algorithm. The resulting matrix of 110

features and samples are then used in statistical analysis. The following section describes 111

the individual steps in more detail. 112

Pre-processing steps 113

The input to the workflow consists of spectra in the intensity (y-axis) vs ppm (x-axis) format. 114

This means that the free induction decay (FID) signal coming from the NMR spectrometer 115

has to be converted to spectra by using the Fourier transform. In addition, before peak 116

picking, the spectra can be aligned with the included CluPA algorithm [7] (the core of the 117

first speaq version). Note that it is also possible to analyse spectra that have already been 118

aligned with other methods like icoshift [28]. However, depending on the algorithm used, 119

aligning raw spectra can result in the distortion of small peaks [30]. 120

Peak Detection: from spectra to features via wavelets 121

The Mexican hat or Ricker wavelet is used to perform the peak detection. It is a suitable 122

wavelet because it resembles a peak by being symmetrical and containing only 1 positive 123
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Fig 1. Possible workflows of speaq 2.0. The newly presented methods are standalone
(black arrows) or can be used together with the CluPA alignment algorithm that was
supplied in the first speaq implementation [7] (green arrows). It is still possible to perform
an analysis based on raw spectra alone, as per the classic speaq analysis. In the new
methods raw data is converted to peaks, and every peak is summarized with ppm location
and width, intensity and SNR. These peaks are subsequently grouped and optionally peak
filled (missed peaks in samples are specifically searched for). The resulting data is converted
to a feature matrix that contains intensities for each peak and sample combination. This
matrix can then be used in statistical analysis with built-in or external methods.

maximum [25]. This peak detection method is inspired by the CluPA alignment algorithm 124

in the original speaq software [7] where wavelets are used to find landmark peaks to aid 125

in the alignment. The interaction with the wavelets relies on the MassSpecWavelet R 126

package which performs the actual peak detection in the two-dimensional (position and 127

scale) wavelet transform space by using ridge detection as per the method outlined by Du et 128

al [25]. The result is a peak detection that is both sensitive to low and high intensity peaks 129
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and insensitive to background noise. After the peak detection, the spectra (intensity vs ppm 130

data) are converted to a dataset with peakIndex and peakValue values. There is a direct 131

link between a) ppm and peakIndex and b) intensity and peakValue whereby the peakValue 132

is related to the amplitude of the wavelet that describes the peak. Note that this peakValue 133

vs peakIndex dataset is substantially smaller than the original data. 134

Peak Grouping 135

The peaks resulting from the wavelet peak detection are not perfectly aligned since no two 136

peaks are exactly the same and different spectra can be shifted relative to each other. These 137

shifts can be caused by differences in sample environment (pH, solvent, etc.) or differences 138

in experimental conditions (temperature, magnetic field homogeneity). However, the aim 139

is to go towards a feature dataset whereby a feature is defined as a group of peaks with 140

at most one peak per sample belonging to that feature. This means the peaks have to be 141

grouped with a single index value describing the group center. To group the NMR peaks we 142

can make optimal use of the results of the wavelet based peak detection step. Not only ppm 143

values but also signal-to-noise ratio and sample values can provide additional information 144

to aid in the grouping. The hierarchical clustering based algorithm developed for grouping 145

divides the samples in groups based on the distance matrix. It is illustrated with pseudocode 146

in Fig 2 and a more detailed description see the supplementary files. 147

Note that this method is designed to process data that is sufficiently well aligned. If 148

this is not the case the method will most likely underperform because of the larger overlap 149

between peaks. Nonetheless the method even works on data with non-trivial shifts between 150

samples as is the case in the wine dataset [28]. Extremely shifted spectra can be aligned 151

with existing methods such as CluPA [7], prior to peak detection. 152

Peak Filling 153

The purpose of peak filling is to detect peaks that may have been missed in the first round 154

of peak detection or that were deleted in one of the grouping steps. Because of the way 155

the grouping is implemented it is advised to perform the peak filling step. The motivation 156

for peak filling is that, when certain samples are represented in a peak group and other 157

samples not, then it is not trivial to know if the signals are indeed absent or if some peaks 158

where missed by the wavelets or deleted in the grouping step. If the peak is very large and 159
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Fig 2. Grouping algorithm pseudocode.

prominent it can be assumed that the peak is simply not present in the missing sample. 160

However, if the peak is small or close to a specified signal-to-noise ratio threshold then some 161

peaks might end up missing while in fact they are present in the data. With peak filling, 162

the information of the samples that are present in a feature is used to specifically search the 163

raw data for peaks of missing samples. This results in more peaks, which in turn results in 164

a more robust statistical analysis afterwards as less missing values have to be imputed. 165
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Statistical analysis 166

Following peak filling, the data can now be represented in the form of a matrix with samples 167

for rows, features (peak groups) for columns and peak values in each matrix cell. Each of 168

these peak values corresponds to the intensities of the original peaks as quantified by the 169

wavelets. A huge number of techniques for univariate and multivariate statistics (e.g. PCA, 170

PLS-DA) and machine learning (e.g. SVM, random forest) can be applied to this data 171

matrix. A selection of methods have been directly integrated into the speaq 2.0 framework: a 172

differential analysis method and a tool to perform scaling, transformations and imputations. 173

Scaling and imputation 174

Before statistical analysis methods like PCA can be used the missing values in the data have 175

to be imputed. This step is often done in tandem with the desired scaling method since 176

otherwise data can artificially be created. For example, imputing zeros followed by z-scaling 177

is not the same as z-scaling followed by imputing zeros. The last actually corresponds with 178

imputing mean values. For both benchmark datasets zeros are used for imputing missing 179

peak values in the data matrices as this indicates intensity 0, i.e. a non present peak. After 180

imputing the scaling step is executed. Several methods for scaling are available in our 181

framework, one of which is Pareto scaling [32]. This method is most suited for metabolomics 182

since it reduces the effects large signals while keeping the data structure roughly intact. 183

Pareto scaling is governed by the formula in Eq (1) with xj the jth feature vector containing 184

the peak values xi,j of all samples 1 . . . i . . . N and σj the standard deviation of xj . 185

x̃j =
xj√
σj

(1)

Principal component analysis 186

Principal component analysis, or PCA, is an unsupervised multivariate analysis technique 187

based on projections of the data onto new variables or dimensions called principle components. 188

These principal components are orthogonal to one another and are combinations of the 189

old variables in such a way as to maximize the variance (information) within a principal 190

component. Plotting the data on these principal components, the so-called score plot, is 191

often the first step in an analysis of large datasets as it can indicate groups, trends, or 192
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outliers. In addition, it was used in the original study of mice onion intake by Winning et 193

al. [29] and therefore PCA is also used in our analysis to compare results. 194

Differential analysis 195

A method to perform a differential analysis based on linear models is available in speaq 196

2.0. This function provides a way of identifying significant features with (adjusted) p- 197

values. Specifically, for each feature 1, . . . , j, . . . ,K consisting of peak values yi,j of samples 198

1 . . . i . . . N a linear model of the form 199

yj = x βj + ε (2)

is constructed with x the response vector (N elements), yj the jth feature vector and ε 200

the vector of errors εi. Now for each βj we can test whether there is a significant relationship 201

between feature yj and x by testing the hypothesis that βj = 0 (two-tailed t-test). The K 202

p-values can be used to find peaks significantly associated with the outcome vector. Several 203

multiple testing corrections are available within the speaq 2.0 framework. While the default 204

is Benjamini-Hochberg, for the purposes of this study, the stringent Bonferroni correction 205

was applied to all reported p-values. Note that in the case of only two classes this method is 206

equivalent to the t-test. 207

Metabolite identification 208

After statistical analysis the relevant peaks can be matched with the molecules responsible 209

for these peaks. Several databases are available to facilitate the metabolite lookup, such 210

as The Human Metabolome Database (HMDB) [17]. To obtain the metabolites for the 211

onion intake in mice data the latest version of HMDB (3.6 [33]) was used. It is however not 212

optimal to submit all significant peaks in a single query to this database since these peaks 213

can come from different metabolites. HMDB works by matching the queried peaks to the 214

database and then sorting the matched molecules according to their Jaccard index. For two 215

sets the Jaccard index is the number of common elements (the intersection), divided by all 216

the elements (the union), or in this specific case the number of matched peaks divided by 217

all peaks in the query. Adding additional peaks from molecule B when trying to identify 218
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molecule A will dilute the results. To eliminate the problem of submitting peaks from 219

multiple compounds, a correlation analysis is performed [34]. After all, in NMR spectra we 220

can assume that peaks originating from the same molecule exhibit a similar behavior over 221

all samples. Therefore the peaks that correlate strongly with each other are most likely to 222

come from the same metabolite and can as such be submitted to HMDB simultaneously. 223

Results 224

Wine data 225

The first validation dataset concerns the NMR spectra of table wines. This is an often 226

used dataset to evaluate alignment performance [7,28]. The right half of Fig 3 illustrates 227

the results from the peak detection and grouping procedures. Peak detection is applied to 228

the raw spectra to convert the large raw measurement data matrix of 40 samples by 8712 229

measurements to a smaller matrix of 6768 peaks by 6 columns consisting of values describing 230

the peaks. The data reduction after this step does not seem overwhelmingly large. However, 231

it is important to realize that this is only a reduction in redundant information which is 232

accompanied with almost no loss of information thanks to the wavelets. Furthermore, most 233

of the correlation between consecutive measurement points in the spectral data is removed. 234

After this step, the peaks are grouped, resulting in the same dataset as the peak data, but 235

now each peak has been assigned to a group. Such a group consists of a collection of peaks 236

with at most one peak per sample. The grouping method can theoretically under-perform 237

when spectra are severely misaligned. However, for this dataset the grouping algorithm 238

performs as expected, despite the severely shifted spectra. This grouped peak data can now 239

be represented as a matrix, with groups as columns, samples as rows, and peak intensities 240

as the matrix elements. The true data reduction becomes apparent now as there are only 241

207 peak groups, which correspond to the features used in further analysis. The original 242

matrix of 40 by 8712 is thus converted to a matrix of 40 by 207. 243

Next, we can identify those features that are associated with the wine type. Before any 244

analysis the data matrix is Pareto scaled and centered. The first step in a multivariate 245

analysis is often principal component analysis (PCA). The results show that there is a clear 246

difference between on one side red and on the other white and rosé wines (see supplementary 247

files). However, a differential analysis method incorporated into speaq 2.0 is more useful to 248
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Fig 3. Visualization of Bonferroni corrected p-values. Numerous features have a
corrected p-value below the significance threshold of 0.05 indicating that there is a
significant difference between red and white wine. An example of a significant feature
(indicated with the blue diamond) is represented on the right with its raw spectra (top), the
data after peak detection (middle) and the data after grouping (bottom).

identify the specific features that are different between the wine classes. Since a differential 249

analysis is between two groups, the two samples that are neither red or white are excluded. 250

The results of the differential analysis is a series of p-values, one for every feature, which 251

indicate how useful each feature is in building a linear model that can discriminate between 252

the two wine classes. These p-values are Bonferroni corrected to minimize the effects of 253

multiple testing. The p-values are displayed in Fig 3 along with the raw spectra and grouped 254

peak data for one of 33 significant features. When looking at the spectra that correspond to 255

these features the difference between red and white wines is is obvious. However, manually 256

searching the original spectra for these difference regions would be extremely tedious and 257

time consuming. With speaq 2.0, this entire process takes about 3 minutes with 1 CPU and 258
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a mere 50 seconds with 4 CPUs (2.5 GHz machine). 259

Onion intake in mice data 260

In the second validation we will compare the results of the presented method with those 261

obtained by Winning et al. [29]. The objective of their study was to search for onion intake 262

biomarkers in mice from 4 groups with increasing percentages of onion in their diet (0, 3, 7 263

and 10%). Subsequently urine was collected and analyzed with NMR spectroscopy. If the 264

workflow can identify such onion intake biomarkers, it can possibly also be applied to search 265

for other metabolic biomarkers. 266

The struggle with bins and intervals 267

Winning et al. [29] used intervals methods (binning) to summarize the spectra. The internal 268

workings of these interval methods are almost always the same: divide the spectra in intervals 269

(a.k.a. regions, bins, buckets, etc.) and use these as variables. There are a number of 270

problems with such methods, both at the pre-processing level (choice of the right boundaries, 271

disappearance of relevant peaks because of noisy peaks in the interval) and at the results 272

level (need for manually checking the relevant intervals for exact locations of interesting 273

peaks). 274

Towards a small and usable data matrix 275

Our method elegantly avoids these problems. The proposed method takes the raw NMR 276

spectra (see the supplementary files for spectra) and uses wavelets to convert these to 277

peak data. The results are presented in Fig 4 (right half). Note that the authors of the 278

study removed part of the data between 4.50 and 5.00 ppm because of insufficient water 279

suppression [29] (see the supplementary files). Next the peaks are grouped together. The 280

grouped peaks are now called features. These features form the data matrix used as input 281

for the statistical analysis. The dimensions of this data matrix are 31 samples by 677 282

features. This is a substantial reduction from the original spectra data matrix of dimensions 283

31 samples by 29001 measurement points. 284

14/23

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2017. ; https://doi.org/10.1101/138503doi: bioRxiv preprint 

https://doi.org/10.1101/138503
http://creativecommons.org/licenses/by-nc/4.0/


Fig 4. Differential analysis results of onion intake in mice data. (Left) the
Bonferroni corrected p-values for the features resulting from the differential analysis and
(right) one of the features with a significant p-value (indicated with the blue diamond on
the left image): (top) raw spectra, (middle) data after peak detection and (bottom) data
after grouping.

No grouping is found by PCA 285

In line with the original analysis by Winning et al. the feature data matrix is Pareto scaled 286

and centered. The results of the PCA analysis, as presented as a score plot in Fig 5, are 287

analogous to those of [29]: there is no obvious clustering of the groups (not on onion intake 288

class, nor on control vs onion intake). 289

Locating possible biomarkers with ease 290

From this point onwards the merit of the wavelet based analysis becomes more obvious. 291

Winning et al. resort to interval partial least squares (iPLS) and interval extended canonical 292

variate analysis (iECVA). After careful cross validation these methods lead to intervals that 293
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Fig 5. PCA analysis of onion mice data. The onion mice data matrix is Pareto scaled
and centered. There are no clear trends present in the PCA results, this matches the results
of Winning et al. [29].

have to be checked manually for interesting peaks. With our method the story becomes more 294

straightforward. The feature matrix is processed with the differential analysis method. In 295

this case there are more than two groups. However, this is not a problem for the differential 296

analysis method since it is based on linear models and in this case there exists a numerical 297

relationship between all the groups (i.e. the percentage of onion in the diet). Each feature 298

gets a Bonferroni corrected p-value assigned indicating how well the feature corresponds to 299

the increasing onion concentration. The distribution of uncorrected p-values is depicted in 300

the supplementary files. The corrected p-values are shown in Fig 4 along with an excerpt of 301

one of the significant peaks. In total, 9 peaks were found to be significant. The 9 significant 302

peaks can be used to search HMDB to find the possible biomarkers related to onion intake. 303

Identifying the biomarkers 304

Merely submitting all peak ppm values to HMDB will not produce the correct outcome, 305

as HMDB expects all peaks to correspond to a single metabolite. To avoid submitting 306

peaks from multiple metabolites to an HMDB search, a correlation-based clustering step is 307
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performed on the highly significant peaks. The result from this clustering, based on peak 308

intensity correlations, is displayed in Fig 6. The significant peaks are grouped into 5 clusters, 309

where the minimal Pearson correlation between any two peaks in the same cluster is higher 310

than 0.75. These peak clusters are used to search HMDB (tolerance ± 0.02), by submitting 311

the ppm values of the peak groups within a cluster. When submitting the cluster of 4 peaks, 312

the top hit is 3-hydroxyphenylacetic acid (HMDB00440) with a Jaccard index of 4/9. This 313

molecule is also identified in the original paper as a biomarker for onion intake. However, 314

in the original paper this is done only by looking at a small region around 6.8 ppm, as 315

compared to the speaq 2.0 analysis which yields peaks in multiple ppm regions that can 316

be used for identification. Note that in this case the correlation approach is not perfect, 317

as the peak with index 18662 can actually also be assigned to 3-hydroxyphenylacetic acid 318

(raising the Jaccard index to 5/9 upon also submitting this peak to HMDB). When the 319

cluster that only contains peak 19723, with corresponding ppm value of 3.1558, is submitted 320

to HMDB the top hits are dimethyl sulfone and 9-methyluric acid, both with a Jaccard 321

index of 1/1. These results match those from the original paper where dimethyl sulfone 322

(HMDB04983) is identified as a biomarker for onion intake. Raw spectra of the main peaks 323

for both biomarkers are shown in the supplementary files. 324

The other peaks explained 325

The other peaks found cannot be identified querying HMDB. The peak with index 19510 is 326

somewhat absorbed in the background. The peak with index 23648 ends up in a cluster 327

with non-significant peaks that are assigned to ethanol within HMDB, when the correlation 328

procedure is run on the entire dataset. As HMDB does not assign the 23648 peak to ethanol, 329

this may indicate that this is a derivative or a byproduct of ethanol. The peak with index 330

19752 is actually a peak in the tail of the large peak of one of the identified biomarkers, 331

namely dimethyl sulfone. The fact that this peak is significant is caused by an artifact of 332

the wavelet based peak detection since it considers the tail of the large dimethyl sulfone 333

peak as the baseline for the small peak. So when the dimethyl sulfone peak is larger, the 334

baseline for the small peak is also larger and therefore the peak diminishes. This is also the 335

reason why this peak is anti-correlated with the dimethyl sulfone peak. 336
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Fig 6. Correlation analysis of significant peaks. The significant peaks, which are
indicated by their peakIndex value, are clustered based on their Pearson correlation. The
group of four peaks correspond to the 3-hydroxyphenylacetic acid biomarker, peak nr.
19723 corresponds to the dimethyl sulfone biomarker. Both biomarkers are also identified in
the original analysis paper [29], but with only one peak for the first biomarker.

Discussion 337

We present an easy way of converting 1D NMR spectra (or other 1D spectra) to peak data 338

by using wavelets for peak detection. This wavelet based method performs better than 339

binning or other spectra summarizing methods as the dimension of the dataset is greatly 340

reduced with little to no loss of information, while requiring no user intervention. After 341

the wavelet based step the peaks are grouped via a hierarchical clustering method. These 342

groups of peaks are called features. The features can easily be analyzed with a myriad 343

of statistical techniques or data mining approaches. Our method has been implemented 344

in an entirely new version of the existing speaq R package, in order to provide an entire 345
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solution for easy 1D NMR data analysis. As each step in the workflow is available as a 346

single function, analysis pipelines can be constructed easily and with little additional user 347

interaction, fostering improved research reproducibility and shareability. 348

Besides the possibility to perform a complete standalone analysis, our method can also be 349

used in tandem with other commonly used tools that rely on summarized spectra. Specifically, 350

it can be used to quickly and efficiently produce a high quality peak list. Such a peak list is 351

the starting point of an analysis with for example the often used MetaboAnalyst [14]. 352

The data processed in this article came in a matrix format with ppm values and intensities. 353

Other proprietary software or open-source frameworks are thus needed if only the raw 354

NMR Free Induction Decay signal (FID) is available and conversion to the frequency 355

space is needed. Optional pre-processing steps on the raw FID signal like zero-filling, 356

apodization, and phase-shifting have to be performed prior to employing speaq 2.0, if they 357

are desired. These pre-processing steps along with compatibility with the open source 358

nmrML (http://www.nmrml.org) format are on the road-map for future developments. 359

We expect the introduced method to be especially useful for processing NMR spectra 360

from large cross-platform experiments that combine NMR and LC-MS. Often software 361

packages like XCMS [5] are used to process LC-MS data. These open source packages also 362

employ the standard paradigm of peak-picking, grouping, etc. so the integration of data or 363

results should be facilitated with this framework. The method in itself also has merit as 364

is clearly demonstrated in the case of the onion intake in mice data. The analysis is fast, 365

sensitive to both small and large peaks and user-independent. Also, when comparing the 366

results we obtained to the work presented by Winning et al. [29], our analysis required less 367

user interaction and yields more peaks in the end that can be used to identify the possible 368

biomarkers, resulting in an improved confidence in the results. 369

The user-friendliness of speaq 2.0 should also allow people with little experience in R to use 370

the package. To this end, the code for both the performed analysis has been made available on 371

CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq)372

as a starting point. Also, it can serve as an attractive option for researchers interested in 373

switching from closed, proprietary software to open-source, especially if the goal is to speed 374

up analysis, improve reproducibility and increase control over workflows and algorithms. 375
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22. Sousa S, Magalhães A, Ferreira MMC. Optimized bucketing for NMR spectra: Three

case studies. Chemometrics and Intelligent Laboratory Systems. 2013;122:93–102.

23. Anderson PE, Reo NV, DelRaso NJ, Doom TE, Raymer ML. Gaussian binning: a

new kernel-based method for processing NMR spectroscopic data for metabolomics.

Metabolomics. 2008;4(3):261–272.

24. De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER, De Buyzere ML,

et al. NMR-based characterization of metabolic alterations in hypertension using an

adaptive, intelligent binning algorithm. Analytical Chemistry. 2008;80(10):3783–3790.

25. Du P, Kibbe WA, Lin SM. Improved peak detection in mass spectrum by in-

corporating continuous wavelet transform-based pattern matching. Bioinformatics.

2006;22(17):2059–2065.

26. Yang C, He Z, Yu W. Comparison of public peak detection algorithms for MALDI

mass spectrometry data analysis. BMC Bioinformatics. 2009;10(1):4.

27. Larsen FH, van den Berg F, Engelsen SB. An exploratory chemometric study of 1H

NMR spectra of table wines. Journal of Chemometrics. 2006;20(5):198–208.

28. Savorani F, Tomasi G, Engelsen SB. icoshift: A versatile tool for the rapid alignment

of 1D NMR spectra. Journal of Magnetic Resonance. 2010;202(2):190–202.
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