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Abstract 

Alternating between two tasks is effortful and impairs performance. Previous functional magnetic 

resonance imaging (fMRI) studies have found increased activity in fronto-parietal cortex when 

task switching is required. One possibility is that the additional control demands for switch trials 

are met by strengthening task representations in the human brain. Alternatively, on switch trials 

the residual representation of the previous task might impede the buildup of a neural task 

representation. This would predict weaker task representations on switch trials, thus also 

explaining the performance costs. To test this, participants were cued to perform one of two similar 

tasks, with the task being repeated or switched between successive trials. MVPA was used to 

test which regions encode the tasks and whether this encoding differs between switch and repeat 

trials. As expected, we found information about task representations in frontal and parietal cortex, 

but there was no difference in the decoding accuracy of task-related information between switch 

and repeat trials. Using cross-classification we found that the fronto-parietal cortex encodes tasks 

using a similar spatial pattern in switch and repeat trials. Thus, task representations in frontal and 

parietal cortex are largely switch-independent. We found no evidence that neural information 

about task representations in these regions can explain behavioral costs usually associated with 

task switching.  

Significance statement 

Alternating between two tasks is effortful and slows down performance. One possible explanation 

is that the representations in the human brain need time to build up and are thus weaker on switch 

trials, explaining performance costs. Alternatively, task representations might even be enhanced 

in order to overcome the previous task. Here we used a combination of fMRI and a brain classifier 

to test whether the additional control demands under switching conditions lead to an increased or 

decreased strength of task representations in fronto-parietal brain regions. We found that task 
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representations are not significantly modulated by switching processes. Thus, task 

representations in the human brain cannot account for the performance costs associated with 

alternating between tasks. 

 

Introduction  

In order to reach desired goals, humans are often required to switch between different tasks. This 

important aspect of cognitive control allows flexible adjustment of behavior to changing 

circumstances (Kok, Ridderinkhof, & Ullsperger, 2006). Such adjustments are often investigated 

using the task switching paradigm, requiring subjects to frequently switch between two or more 

tasks (Meiran, 2010). Typically, participants react slower and perform less accurate on tasks they 

just switched to as compared to tasks that were repeated multiple times (Jersild, 1927; Spector & 

Biederman, 1976). These switch costs (Rogers & Monsell, 1995) reflect cognitive control 

processes (Goschke, 2000) that affect task processing and the implementation of tasks (Monsell, 

2003), as well as proactive interference and between-task crosstalk (Allport, Styles, & Hsieh, 

1994; Yeung, 2006). However, the exact sources of switch costs are still under debate (Kiesel et 

al., 2010).  

Previous fMRI studies investigated the neural basis of preparatory processes in task switching 

using univariate methods (Ruge, Jamadar, Zimmermann, & Karayanidis, 2011). Although many 

results implicate involvement of prefrontal and parietal cortical regions in task switching (Dove, 

Pollmann, Schubert, Wiggins, & Yves von Cramon, 2000; Gruber, Karch, Schlueter, Falkai, & 

Goschke, 2006; Jamadar, Hughes, Fulham, Michie, & Karayanidis, 2010), this finding is not 

always consistent (Ruge et al., 2011). Previous task switching research mostly focused on neural 

correlates of task switching processes in terms of BOLD signal differences between switch and 

repeat trials. Recently, multivoxel pattern analysis (MVPA, Haynes, 2015) has been used to 
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investigate neural task representations. Such representations are encoded in local spatial 

activation patterns in the lateral prefrontal, dorsal anterior cingulate and posterior parietal cortex 

(Bode & Haynes, 2009; Gilbert, 2011; Wisniewski, Reverberi, Momennejad, Kahnt, & Haynes, 

2015; Woolgar, Hampshire, Thompson, & Duncan, 2011).  

Different cognitive processes like rule complexity (Woolgar, Afshar, Williams, & Rich, 2015) or 

skill acquisition (Jimura, Cazalis, Stover, & Poldrack, 2014) have been shown to alter 

representations of tasks. However, whether and how task switching (and its associated cognitive 

control demands) influence task representations is still largely unknown. Behavioral switch costs 

in task switching reflect both the cognitive control processes required to switch to performing a 

different task as well as involuntary processes such as proactive interference from a previous 

task-set (Kiesel et al., 2010; Vandierendonck, Liefooghe, & Verbruggen, 2010). Possibly, this also 

affects the representation of these tasks (Waskom, Kumaran, Gordon, Rissman, & Wagner, 

2014). In other cases, task representations remain unaffected by whether tasks were chosen 

freely or were externally cued (Wisniewski, Goschke, & Haynes, 2016) or whether tasks were 

novel or routinely performed (Cole, Etzel, Zacks, Schneider, & Braver, 2011). This suggests that 

tasks can also be represented independently of current cognitive control demands (Zhang, 

Kriegeskorte, Carlin, & Rowe, 2013). However, it has remained open whether and how task-

switch related control demands and between-task crosstalk in task-switching contexts affect the 

neural representation of tasks.  

In order to investigate the influence of task switching on task representations two main questions 

are addressed in this study: (1) Do different cognitive control demands on task-switch versus task-

repeat trials affect the strength of neural tasks representations? More specifically, does the 

accuracy with which tasks can be decoded from neural activation patterns differ between task-

switch and task-repeat trials? (2) Is the neural code in which tasks are represented independent 
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from control demands? Thus, are tasks encoded using similar spatial activation patterns in switch 

and repeat trials?  

To address these questions, subjects were instructed to perform one of two simple stimulus-

response mapping tasks while brain activity was measured with fMRI. We identified brain 

networks involved in representing tasks and then assessed task information in these regions for 

switch vs. repeat trials separately. Furthermore, we tested whether brain regions encode tasks 

similarly in switch and repeat trials. Results indicated that tasks are represented similarly in a 

fronto-parietal network, suggesting that switch-related cognitive control demands exert no strong 

effect on neural task representations.  

Materials and Methods 

Participants 

42 right-handed subjects (21 females, mean age: 25.2, age range 20-30 years) with normal or 

corrected to normal vision participated in the study. We obtained written informed consent from 

each subject and the local ethics committee approved the experiment. Subjects received 30€ for 

their participation. No subject had a self-reported history of neurological or psychiatric disorders. 

We only invited subjects to the fMRI session whose accuracy in performing the tasks after training 

was above 90 % and we thus had to discard one subject after the training session because of 

poor behavioral performance (see experimental paradigm). We discarded two further subjects 

because of technical problems during scanning and one subject due to excessive head movement 

during scanning. To ensure reliable behavioral performance all subjects took part in a training 

session 1-3 days prior to the scanning. Overall, the MRI data of 38 subjects (20 females, mean 

age: 25, age range 20-29 years) were used for our analyses.  
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Task and Experimental Paradigm 

Subjects were cued to apply one of two stimulus-response mappings (tasks) to a visual stimulus 

in each trial of the experiment. In half of the trials, the task was identical to the previous trial 

(repeat trials), in the other half of the trials the task differed from the previous trial (switch trials). 

We instructed subjects to respond as quickly and accurately as possible.  

The experiment was programmed using MATLAB Version 7.11.0 (MathWorks, RRID: 

SCR_001622) and the Cogent Toolbox (http://www.vislab.ucl.ac.uk/cogent.php). On each trial we 

first presented a task screen for 3,000 ms that simultaneously displayed a task cue, a target 

stimulus and four colored circles used for response mapping assignment (Figure 1 and see 

below). Subjects were allowed to respond in the same 3,000 ms time window. The task screen 

was followed by an intertrial-interval (ITI) where a fixation cross was presented centrally on 

screen. ITIs varied between 4,000, 6,000, 8,000 and 10,000 ms and were distributed pseudo-

logarithmically to decorrelate trials in time. The mean ITI was 5,525 ms.  

Tasks were cued using abstract visual symbols presented at the top of the screen. They were 

free of semantic meaning in order to avoid a-priori semantic associations (Figure 1, Reverberi, 

Görgen, & Haynes, 2012a; Wisniewski, Reverberi, Momennejad, et al., 2015). Over the 

experiment, two different cues were associated with each task in order to allow for cue-

independent task decoding (see below for details, also see Reverberi, Görgen, & Haynes, 2012). 

The cue - task associations were counterbalanced across subjects. The target stimuli consisted 

of three geometric objects (Figure 1, T-shape, L-shape, Z-shape) each appearing in two possible 

orientations (0 and 90 degrees) and presented in the middle of the screen. Stimuli and their 

orientations were pseudo-randomized in order to control for the influence of low-level visual 

features. The two tasks consisted of different stimulus response (S-R) mappings that associated 

stimulus shapes with colors that in turn specified which response key had to be pressed. In task 

one, the T-shaped stimulus was associated with magenta, the Z-shaped stimulus with cyan and 
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the L-shaped stimulus with yellow. In task two, the T-shaped stimulus was associated with cyan, 

the Z-shaped stimulus with yellow and the L-shaped stimulus with magenta. The S-R mappings 

were chosen to be similar in order to control for possible confounds due to difficulty differences 

between tasks (Todd, Nystrom, & Cohen, 2013). Furthermore, switch costs can also be affected 

by task difficulty (Arbuthnott, 2008). Below the target stimulus four colored circles were presented 

that mapped colors to response buttons. The position of the each colored circle was pseudo-

randomized across trials, avoiding motor preparation of responses as well as balancing left-hand 

and right-hand button presses throughout the experiment. Subjects used index and middle fingers 

of both hands to indicate their response by pressing the button corresponding to the color on 

screen on a 2 x 2 button box (Current Designs). Three of the circles were relevant for the task 

(cyan, magenta, yellow) and one was a dummy (white) that was not relevant in any trial. This was 

done in order to balance left and right button presses.  

Each run contained 80 trials, which were ordered so that 50 % appeared in a sequence-length of 

1 (e.g. task1), 37.5 % in a sequence length of 2 (e.g. task 1 – task 1), and 12.5 % in a sequence 

length of 3 (e.g. task 1 – task 1 – task 1). This results in 50 % switch trials and 50 % repeat trials 

overall. In 50 % of the trials subjects performed task 1 and in 50 % they performed task 2. Tasks 

and switch conditions were orthogonalized. Within each brief sequence of identical tasks we only 

used one of the two possible cues, i.e. in each of the subsequent repetitions of a task the same 

cue was used (cue repetition). Furthermore, cues were counterbalanced with stimuli and ITIs, to 

avoid possible confounds.  

Following each completed run, the percentage of correct answered trials was presented and 

subjects were offered a short resting break of self-determined length. Subjects performed 5 runs 

in total. The experiment lasted around 75 minutes in total. A sixth run, in which subjects performed 

the tasks in a different sequential order, was not analyzed and is not included in this paper.  
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1-3 days before the scanning session, subjects performed a 90 minutes training session, during 

which they learned the S-R mappings. At the end of the training session, they performed two runs 

of the task as they would be presented in the scanner. Only if the accuracy during these runs was 

above 90 % were subjects invited to the scanning session. This was done in order to avoid 

possible learning effects during the MRI session. 

Figure 1 

Image Acquisition 

Functional imaging was conducted on a 3-T Siemens Trio (Erlangen, Germany) scanner equipped 

with a 12-channel head coil. For each of the 5 relevant scanning sessions we acquired 347 T2*-

weighted (TR = 2000 ms; TE, 30 ms; flip angle, 90°) gradient-echo echo-planar images (EPI). 

Imaging parameters were as follows: repetition time (TR), 2000 ms; echo time (TE), 30 ms; flip 

angle, 90°. Each volume contains 33 slices (thickness: 3 mm) separated by gaps of 0.75 mm. 

Matrix size was 64 x 64, the field of view (FOV) was 192 mm and in-plane voxel resolution was 

set to 3 mm² with a voxel size of 3 x 3 x 3 mm. A T1-weighted structural dataset was also collected. 

The parameters were as follows: TR, 1900 ms; TE, 2.52 ms; matrix size, 256 x 256; FOV, 256 

mm; 192 slices (1 mmt thick); flip angle, 9°. 
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Data Analysis 

In all analyses only trials with correct responses and preceded by correct trials (no misses/errors) 

were included in order to avoid post-error slowing effects (Dudschig & Jentzsch, 2009). We 

analyzed behavioral and fMRI-data using MATLAB Version 2013a (MathWorks), and for the 

multivariate analyses we used The Decoding Toolbox (TDT, Hebart, Görgen, Haynes, & Dubois, 

2015). Unthresholded group-level parametric maps of all analyses can be found at 

NeuroVault (Gorgolewski et al., 2015, RRID:SCR_003806; 

http://neurovault.org/collections/2011/).  

Behavior 

For each subject we assessed task performance by calculating the mean RT and mean accuracy 

(percentage of trials that were correctly answered in time) across all runs. It has been reported 

previously, that switching between tasks leads to increased RT and decreased accuracy in switch 

trials compared to repeat trials (Monsell, 2003). We tested these so-called switch costs by 

comparing switch and repeat trials in terms of mean RT and accuracy. In order to control for 

possible influences of task difficulty we also assessed the influence of the two tasks and the four 

cues on RTs and accuracies. We expected task switches to have an effect on both accuracy and 

RT (switch cost) but did not expect the other variables to affect them.  

Neuroimaging 

First level GLM analysis 

In a first step, we analyzed functional data using SPM8 (http://www.fil.ion.ucl.ac.uk/spm, RRID: 

SCR_007037). The functional volumes were unwarped, realigned and slice time corrected. No 

spatial smoothing and no spatial normalization was applied at this point in order to preserve fine-

grained patterns of voxel activations (Haynes & Rees, 2006).  
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The preprocessed data was used to estimate a voxelwise general linear model (GLM; Friston, 

Jezzard, & Turner, 1994). Twelve regressors-of-interest were used in the GLM. First, regressors 

for the 8 conditions of the experimental design: 2 (tasks) X 2 (cue-sets) X 2 (switch / repeat) were 

added. Second, 4 separate regressors of no interest were added modelling the four possible 

button presses in order to control for possible motor confounds in the data. Third, movement 

parameters were added to the GLM as regressors of no interest in order to account for possible 

head movement during scanning. Regressors were time-locked to the onset of the task-screen 

and convolved with a canonical hemodynamic response function (HRF), as implemented in SPM. 

In order to account for the possible influence of task difficulty on MVPA results (Todd et al., 2013) 

we first calculated the mean RT for task 1 and task 2 for each subjects individually. We then set 

the duration of each regressor to the mean task RT of the current trial (mean RT task 1 for trials 

with task 1, and mean RT task 2 for trials with task 2, as suggested by Woolgar, Golland, & Bode, 

2014). This accounts for task specific RT related effects in the data during GLM estimation but 

does not remove task switch related variance from the data (for recent reviews about switch cost 

see Kiesel et al., 2010; Vandierendonck et al., 2010).  

Multivariate searchlight decoding 

Analysis 1: Differences in task coding in switch and repeat trials 

In order to test for possible differences of task representations in switch and repeat trials we first 

identified regions that code for tasks and, in the following steps, assessed the differences of task-

decoding in switch and repeat trials separately in these regions.  

Analysis 1A. Task information across all trials: In the first analysis, we used "searchlight" 

MVPA (Kriegeskorte, Goebel, & Bandettini, 2006; Norman, Polyn, Detre, & Haxby, 2006) as 

implemented in TDT (Hebart et al., 2015) on the maps of GLM-parameter estimates for each 

individual subject. For each voxel V in the volume the searchlight classifier distinguishes between 
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the two classes (here: tasks) based on the multivariate pattern formed by the local fMRI activity 

patterns in a small spherical cluster with the radius of 3 voxels surrounding V. We used a support 

vector classifier (SVC) with a linear kernel and a fixed regularization parameter (C = 1) as 

implemented in LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm). As a result, searchlight 

decoding produces a whole-brain accuracy map, representing which searchlights contained 

information about the two classes entered into the analysis. To identify which brain regions 

contain information about tasks, we performed this first searchlight decoding analysis, classifying 

task 1 vs task 2 and using data from both switch and repeat trials combined. Trials were collapsed 

across switch and repeat condition in order to increase power to identify regions of interests (ROI) 

that contain information about tasks. In order to control for the effect of visual cue information, we 

performed cross-classification across visual cues. More specifically, we trained the SVC to 

discriminate “task 1 with cue 1” and “task 2 with cue 2”, and tested its performance on trials from 

“task 1 with cue 3” and “task 2 with cue 4”. Only brain regions that use similar activation patterns 

to encode the same tasks with different cues will be visible in this analysis. Therefore, this analysis 

controls for effects that are merely due to the visual features of the cues used. There are a total 

of four different combinations of task and visual cues as training- and test-dataset, so that we 

repeated this analysis three more times: once for every combination. In order to address the 

problem of overfitting (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009), we performed a five-

fold leave-one-run-out cross-validation (CV). Thus, every run was the test dataset once. The 

results of the combinations of cross-validation and cross-classification were averaged for each 

subject.  

The average accuracy maps were then spatially normalized to a standard brain (Montreal 

Neurological Institute [MNI] EPI template of SPM8) to account for individual differences in brain 

structure. Accuracy maps were then smoothed with a Gaussian kernel (6mm full-width at half-

maximum) in order to account for differences in localization. At the group level, a random-effects 

analysis was performed, using voxel-wise one sample t-tests against chance level (50 %). Results 
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were initially thresholded at voxel level with p < 0.001, corrected for multiple comparisons at the 

cluster level for familywise error (FWE, p < 0.05). Note, that these threshold values are not 

problematic for cluster-level inference regarding the inflated FWE-rates that have recently been 

discovered by Eklund, Nichols, & Knutsson, 2016. 

Analysis 1B. Differences in task decoding for switch and repeat trials: In a second step, we 

performed two additional searchlight decoding analyses that were highly similar to analysis 1A 

described above. This time we performed two independent analyses for switch trials only and 

repeat trials only. We first entered only the data of switch trials into a SVC that was trained to 

classify task 1 versus task 2. We again applied cross-classification across cues and leave-one-

run-out cross-validation and averaged across them. We also smoothed and normalized the 

resulting decoding accuracy maps, as described above. The same procedure was repeated for 

repeat trials only. This yielded a task decoding accuracy map for switch trials and for repeat trials 

for each individual subject. To compare the task decoding accuracies in switch and in repeat trials 

we created regions of interest (ROIs) from the clusters that we defined in task decoding analysis 

1A. In order to avoid circular analysis (Kriegeskorte et al., 2009), we used a leave-one-subject-

out ROI analysis (Esterman, Tamber-Rosenau, Chiu, & Yantis, 2010). For this, we excluded one 

subject and performed a group level analysis as described above (analysis 1A). The results were 

then thresholded at voxel level with p < 0.001 (corrected for multiple comparisons at the cluster 

level, FWE, p < 0.05). We extracted the resulting significant clusters from this analysis and created 

a ROI from each cluster (based only on the training subjects). For each ROI thus defined, we 

extracted the mean decoding accuracy for the left out subject. The ROI should resemble the group 

level results of analysis 1A, but ensure an independent dataset for extracting decoding 

accuracies. Accuracy values were extracted for the decoding of task in switch trials only, repeat 

trials only, and all trials together (analysis 1A). We repeated this procedure until every subject 

was left out once. This ensures independence of the data used to define the ROIs from the data 
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used for statistical assessment of the accuracy values inside these ROIs. The mean decoding 

accuracies from all three analyses and all ROIs were then entered into a two-factorial repeated 

measures ANOVA (Factor 1: 3 analyses, Factor 2: ROIs) in order to identify possible differences 

between task coding in switch and repeat trials in each ROI. Furthermore, in order to assess 

whether decoding accuracies were significantly above chance in each analysis and ROI, planned 

one-tailed t-test against chance level were performed. Results from these tests were Bonferroni 

corrected for the three analyses performed in each ROI.  

Analysis 2: Similarities in task coding between switch and repeat trials 

Please note that the abovementioned analysis (1D) merely tests whether brain regions that 

encode tasks have different accuracies in switch and in repeat trials. If a given ROI indeed has a 

higher accuracy in one or the other condition, this would indicate a specialized role for task coding 

in either switch or repeat trials. If however, no difference were to be found, this would not directly 

show that the ROI has a similar role in switch and repeat trials. In order to directly assess whether 

any brain regions encode tasks similarly in these two conditions, a different type of analysis is 

necessary. Thus, in analysis 2, we aimed to identify brain regions that encode task-information in 

the same way independent of whether subjects were repeating or switching between tasks, again 

using cross-classification (Kaplan, Man, & Greening, 2015; Reverberi et al., 2012a; Wisniewski 

et al., 2016) . Similar to analysis 1A, we first trained a searchlight classifier to distinguish between 

tasks in switch-trials only and tested it on repeat trials only. We then trained a classifier on repeat 

trials only and tested it on switch trials only. Again, in both cases we used leave-one-run-out 

cross-validation in order to avoid the problem of overfitting. Results from both analyses were first 

averaged for both cross-classification directions and then smoothed and normalized as in the 

previous analyses.  

Please note that in contrast to the analysis 1, this analysis does not control for the effect of visual 

features of the task cues, and results might potentially reflect these. Due to the limited number of 
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trials, we were unable to perform a cross-classification across switch/repeat and visual cues at 

the same time. In order to still control for the effect of visual cue information we again used the 

ROIs defined in analysis 1A, using the leave-one-subject-out method. Within these clusters we 

now extracted the mean task decoding accuracies from analysis 2, where we cross-classified 

across switch and repeat trials. Please note, that this is similar to a conjunction analysis, and only 

voxels that show significant above chance information in both task decoding cross-classified 

across visual cues and task decoding cross-classified across the switch and repeat conditions 

are interpreted. If tasks are encoded similarly in these regions, mean decoding accuracies of task 

in both analyses should be significantly above chance. We tested this by applying a t-test (against 

chance level, 50 %) on the mean decoding accuracies for each cluster.  

Results 

Behavior 

The mean RT across all correct trials was 1,681 ms (SE = 30 ms). After removing trials following 

error trials the mean RT changed significantly to 1,664 ms (SE = 27 ms; paired t-test: t(37) = 3.69; 

p < 0.001). This effect could reflect post error slowing (Dudschig & Jentzsch, 2009). All fMRI and 

RT analyses are based only on correct trials also following a correct trial. On average, subjects 

were correct and fast enough in 95.5 % (SE = 0.6 %) of the trials. In 2.9 % of the trials (SE = 0.3 

%) subjects pressed the wrong button and in the 1.6 % (SE = 0.3 %) they did not respond within 

the 3,000 ms response window. The mean RT did not differ significantly between the two tasks 

(paired t-test, t(37) = -0.30, p = 0.76), neither did the accuracy of both tasks. Furthermore, there 

was no significant effect of cue on RTs, as tested using a one-way repeated measures (ANOVA, 

F(3, 37) = 0.31 , p = 0.81). No effects of tasks (paired t-test, t(37) = 0.47, p = 0.74) or cues 

(ANOVA, F(3, 37) = 1.17, p = 0.32) were found in accuracy rates. The average RT in switch trials 

was 1,699 ms (SE = 32 ms). The average RT in repetition trials was 1,656 ms (SE = 30 ms). The 
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difference between these switch and repeat trials (switch cost) was significant, (paired t-test, t(37) 

= 5.04; p < 0.001). Average accuracy in switch trials was 94.59 % (SE = 0.68 %) and in repeat 

trials 96.36 % (SE = 0.5 %). This difference was also significant (paired t-test, t(37) = -4.44; p < 

0.001). These results replicate previous findings of switch cost in RT and accuracy values 

(Monsell, 2003).  

Multivariate searchlight decoding 

Analysis 1: Differences in task coding in switch and repeat trials 

Analysis 1A. Task information across all trials: First, we identified regions which encode tasks 

using data from both switch and repeat trials combined. Using cross-classification, we ensured 

that the visual features of the task cues cannot explain the results. Significant above-chance 

classification of task could be observed in three clusters (p < 0.05, FWE corrected at the cluster 

level, initial voxel threshold p < 0.001, Figure 2A and Table 1): the first is located in left inferior 

and superior parietal cortex spanning across angular gyrus; the second cluster was found in right 

superior parietal cortex spanning across angular gyrus; the third cluster is located in left prefrontal 

cortex (PFC).  

Analysis 1B. Differences in task decoding for switch and repeat trials: In order to compare 

the task decoding accuracies in switch only and repeat only trials, we used a leave-one-subject-

out approach to create the ROIs from the clusters identified in analysis 1A. This procedure avoids 

the problem of double-dipping (Kriegeskorte et al., 2009). We then extracted the task decoding 

accuracy values in switch only and repeat only conditions. Figure 2B shows an overlay of all 

leave-one-subject-out-ROIs that were created. As expected, they closely resemble task decoding 

results across all subjects in analysis 1A. A two-factorial repeated measures ANOVA on the mean 

task decoding accuracies in these ROIs showed no significant main effect of the decoding 

analysis (all/switch-only/repeat-only task decodings, F(2,74) = 0.06, p = 0.94); no significant main 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/138230doi: bioRxiv preprint 

https://doi.org/10.1101/138230
http://creativecommons.org/licenses/by-nc/4.0/


16 / 34 
 

effect of the ROI (F(2,74) = 0.59, p = 0.55); and no interaction effect between ROI and the 

decoding analysis (F(4,148) = 1.08, p = 0.36). This indicates that there are no strong differences 

in the task decoding accuracies between switch and repeat trials in task-related brain regions. 

Average task decoding in the left parietal cortex in all trials was 52.44 % (SE = 0.64 %), which 

was significantly above chance level (50 %, t-test: t(37) = 3.82; p < 0.001). In switch trials only 

the average decoding accuracy was 52.46 % (SE = 0.79 %) and in repeat trials only it was 51.83 

% (SE = 0.89 %). In right parietal cortex the task decoding accuracy in all trials was 52.1 % (SE 

= 0.54 %), and was significantly above chance level (t-test: t(37) = 3.87; p < 0.001). In switch trials 

only it was 52.05 % (SE = 0.69 %) and in repeat trials only it was 51.75 % (SE = 0.76). In left 

lateral prefrontal cortex the task decoding accuracy in all trials was 51.85 % (SE = 0.5 %) and 

was significantly above chance level (t-test: t(37) = 3.733; p < 0.001), in switch trials only it was 

51.35 % (SE = 0.6 %) and for repeat trials only 52.18 % (SE = 0.83 %). 
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Figure 2 
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Analysis 2: Similarities in task coding between switch and repeat trials 

In analysis 1, we did not find evidence for a difference in task coding between switch and repeat 

trials. In a next step, we directly assessed whether regions that encode task do so similarly across 

both switch and repeat trials. We thus performed a task decoding analysis, training on switch trials 

and testing on repeat trials. To ensure an independent test dataset, we again used the ROIs 

extracted from analysis 1A using a leave-one-subject-out approach. We extracted the mean 

decoding accuracy in these ROIs from the task decoding analysis cross-classified across the 

switch/repeat conditions. Mean decoding of task was significantly above chance-level (50 %) in 

left parietal (t-test: t(37) = 4.84; p < 0.001), right parietal (t-test: t(37) = 5.05; p < 0.001) and left 

prefrontal (t-test: t(37) = 2.83; p < 0.001)) regions. This finding indicates that all identified task-

related brain regions encode tasks similarly regardless of the current switch/repeat condition. 

In order to assess whether any other regions outside of the ROIs investigated above also encode 

tasks similarly in switch and repeat trials, we performed an additional explorative whole-brain 

analysis of the task decoding using cross classification across switch / repeat trials.  

Results were thresholded at voxel level with p < 0.001, corrected for multiple comparisons at the 

cluster level (FWE, p < 0.05). Task information was found in bilateral inferior and superior parietal 

cortex, bilateral precuneus, right angular gyrus and bilateral occipital cortex spanning into bilateral 

cerebellum (Figure 3, green). Please note that in contrast to analysis 1, this analysis does not 

control for the effect of visual features of the task cues, and results might potentially reflect these. 

We therefore performed a conjunction analysis with the regions identified in analysis 1A. This 

analysis explicitly controls for the influence of visual cue features on task decoding results. Voxels 

found in both analysis 1A and analysis 2 thus encode tasks similarly for different visual cues and 

different switch/repeat conditions. This conjunction analysis identified the bilateral parietal cortex 

(Figure 3, yellow). In contrast to analysis 1A, we did not find a prefrontal cluster. Please note that 

this whole-brain analysis is less sensitive than our leave-one-subject-out ROI approach, 
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potentially explaining the absence of prefrontal findings. This analysis suggests that the parietal 

cortex encodes tasks similarly across multiple different contexts. 

 

Figure 3 

Discussion 

Summary 

Effective goal directed behavior requires humans to frequently switch between different tasks. In 

order to direct this behavior, cognitive control is required (Kok et al., 2006). Much previous 

research used task switching paradigms to examine the role of cognitive control when changing 

between tasks (Kiesel et al., 2010; Monsell, 2003). Results show that performance is modulated 

by switching, and switch-costs are observed in both RT and accuracy (Allport et al., 1994; Jersild, 

1927). Yet, the cognitive mechanisms and neuronal correlates of this behavioral switch cost are 

still under debate (Kiesel et al., 2010). Most previous fMRI research has focused on the neural 

correlates of task switching processes (Ruge et al., 2011) and task switching related processes 
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have been associated with a fronto-parietal control network (Brass, Derrfuss, Forstmann, & von 

Cramon, 2005; Braver, Reynolds, & Donaldson, 2003; Crone, Wendelken, Donohue, & Bunge, 

2006; Holmes et al., 2001). However, most of this research focused on the processes required to 

reconfigure the cognitive system from performing one task to performing a different task. 

Presumably, this includes changes to the neural representations of tasks, but effects on neural 

task representations have rarely been investigated before (but see Waskom et al., 2014). 

However, task representations have been shown to be context-dependent in some cases 

(Woolgar et al., 2015), while remaining context-independent in others (Wisniewski et al., 2016). 

Here, we investigated the influence of cognitive control processes related to task switching on the 

neural representations of tasks. 

In the current study, subjects were cued to perform one of two simple tasks, with the task being 

repeated or switched between successive trials. Behavioral results indicate that subjects showed 

switch costs (Rogers & Monsell, 1995), which suggests cognitive control demands differed 

between switch and repeat trials. We first compared task decoding accuracies in switch and 

repeat trials in these regions. Our results show that tasks were represented in bilateral parietal 

cortex and left lateral PFC. However, we found no differences in task decoding accuracies 

between switch and repeat trials. Thus, our data yielded no evidence that tasks are represented 

differently for either switch or repeat trials in the regions that we previously identified to maintain 

task information (but see Waskom et al., 2014). We also tested for similarities and in task coding 

across switch and repeat trials using cross-classification. Results indicate that the fronto-parietal 

cortex represents tasks irrespective of the current cognitive control demands in task switching 

and suggests that tasks are coded in a robust, switching independent pattern. 

Task representations in fronto-parietal cortex 

Recent MVPA research directly investigating the neural representations of tasks has shown that 

parietal (Bode & Haynes, 2009; Etzel, Cole, Zacks, Kay, & Braver, 2015; Waskom et al., 2014; 
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Wisniewski, Reverberi, Momennejad, et al., 2015; Woolgar, Thompson, Bor, & Duncan, 2011) as 

well as medial PFC (Gilbert, 2011; Momennejad & Haynes, 2013) and lateral PFC (Cole et al., 

2011; Reverberi et al., 2012b) hold information about tasks. We provide further evidence for these 

findings as we were able to discriminate between the two highly similar tasks in bilateral parietal 

and left lateral PFC. This is in line with previous results which highlight the important role of these 

regions in task processing during task retrieval and maintenance (Bunge, Kahn, Wallis, Miller, & 

Wagner, 2003; Gilbert, 2011; Sakai & Passingham, 2003), processing rule and task 

compositionality (Reverberi et al., 2012a; Woolgar, Thompson, et al., 2011), adaptively coding 

tasks under different conditions (Woolgar, Hampshire, et al., 2011) and their engagement over 

the course of development (Wendelken, Munakata, Baym, Souza, & Bunge, 2012). 

Influence of switching on task representation in fronto-parietal 

cortex 

Recent studies suggest that task representations can be modulated by different contextual 

variables: task representations have been observed to be modulated by rule complexity (Woolgar 

et al., 2015), rewards (Etzel et al., 2015) or skill acquisition (Jimura et al., 2014). This illustrates 

how higher cognitive functions might flexibly change the way task are processed in the brain, 

possibly reflecting adaptation of neuronal populations to different environmental demands 

(Duncan, 2010, 2013). However, other studies suggest that task representations also remain 

unaffected by experimental manipulation, such as task novelty (Cole et al., 2011), task difficulty 

(Wisniewski, Reverberi, Tusche, & Haynes, 2015), or whether they are freely chosen or externally 

cued (Wisniewski et al., 2016; Zhang et al., 2013). It remains an open question whether and how 

cognitive control processes modulate task representations. In a previous study, Waskom et al. 

(2014) found task information in the inferior frontal, and intraparietal sulcus, as well as the occipito-

temporal cortex. They found representations of rules regarding perceptual discriminations to be 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/138230doi: bioRxiv preprint 

https://doi.org/10.1101/138230
http://creativecommons.org/licenses/by-nc/4.0/


22 / 34 
 

modulated by task switching, as they had the highest decoding accuracy after a task switch. Such 

effects on context information might be driven by attentional processes (Liu & Hou, 2013). Also 

note that Waskom et al. did not observe behavioral switch costs. It thus remains unclear whether 

cognitive control demands differed between switch and repeat trials, and whether these 

neuroimaging results in fact reflect control-related processes. In contrast, our subjects did show 

switch costs, indicating different control demands between switch and repeat trials. Importantly, 

as we presented task cues simultaneously with the task stimuli, participants could not prepare in 

advance for the new task on switch trials. Thus, switch costs presumably reflect both effects of 

task-set inertia and proactive interference, as well as increased control demands due to the 

requirement to retrieve and implement the new task-set and to reconfigure stimulus-response 

accordingly. Nevertheless, our results suggest that control demands do not modulate task 

representations. Taken together, these findings indicate that tasks are represented using a 

general, context-independent neural code. At first glance, this finding might be taken to imply that 

these brain regions do not support flexible adaptation of behavior, as they do not flexibly change 

under varying environmental conditions. It has previously been argued that frontal and parietal 

brain regions support flexible adaptation through flexible task representations which change under 

varying external demands (Duncan, 2001; Waskom et al., 2014; Woolgar et al., 2015). However, 

similar coding under different conditions might also support adaptive behavior: invariant coding 

allows robust access to task information even if we are confronted with novel situations. This 

might enable fast transfer of abstract rules (Cole et al., 2011) and stable selective attention 

towards task-relevant information (Zhang et al., 2013). Stable task representations have also 

been observed under varying attentional loads (Chan, Kucyi, & DeSouza, 2015), further 

highlighting the context-independent coding of tasks. Thus, our findings of such invariant neural 

representations do not rule out a dynamic adjustment of task specific neurons, as the adaptive 

coding hypothesis (Duncan, 2001, 2010; Waskom et al., 2014) suggests. Flexible top-down 

signals may be reflected in different levels of task processing that merely access the robust 
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context-independent representation without modulating it. Additionally, we found no significant 

results in the analysis testing for context dependent task coding. Although we used a highly 

sensitive ROI approach, this null finding cannot rule out in principle that there might also be 

neurons that do code tasks differently for different cognitive control demands.  

Role of task switch processes 

Although this study focused on differences and similarities of neural task representations during 

switching, we also observed behavioral switch costs. Our paradigm was not designed to 

determine the source of the underlying processes, but switch costs might arise for a number of 

reasons, including proactive interference due to task-set inertia (Allport et al., 1994), the inhibition 

of previously executed task-sets (Goschke, 2000; Mayr & Keele, 2000), and processes of rule 

retrieval (goal setting) and rule implementation (Rubinstein, Meyer, & Evans, 2001). Models of 

task switching which assume that part of the switch cost reflects proactive interference from 

previous and/or crosstalk from concurrently active, but currently irrelevant task-sets, would 

presumably result in task representations that are degraded and less distinct on switch compared 

to repeat trials. Such an effect should show up in a reduced accuracy with which task 

representation can be decoded from spatial patterns of brain activity. However, the present 

findings of task representations that are independent of current switch demands do not suggest 

such a modulation, from whichever source. Neurons in the fronto-parietal cortex are able to 

encode tasks similarly under various different conditions, like high and low control demands (see 

also Wisniewski et al., 2016). Switch costs might then arise at a different stage, when task 

information from the parietal cortex is further processed by brain regions more closely associated 

with implementing cognitive control (Badre, 2008). 
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Conclusion 

In summary, our results provide novel insights into the effects of task switching on the distributed 

neuronal representations of tasks. We did not find reliable differences in task coding between 

switch and repeat trials. However, task representations in bilateral parietal and left prefrontal 

cortex were similar under conditions of high and low cognitive control demands. These results 

provide further insight into the important function of the fronto-parietal network for task 

representation. Control-independent task coding might enable robust access to task-relevant 

information under different environmental conditions, in order to support flexible adjustment of 

behavior. 

References 

Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting attentional set – Exploring the dynamic 

control of tasks. Attention and Performance, (15), 421–452. 

Arbuthnott, K. D. (2008). Asymmetric switch cost and backward inhibition: Carryover activation 

and inhibition in switching between tasks of unequal difficulty. Canadian Journal of 

Experimental Psychology = Revue Canadienne de Psychologie Experimentale, 62(2), 91–

100. http://doi.org/10.1037/1196-1961.62.2.91 

Badre, D. (2008). Cognitive control , hierarchy , and the rostro – caudal organization of the frontal 

lobes, (April). http://doi.org/10.1016/j.tics.2008.02.004 

Bode, S., & Haynes, J.-D. (2009). Decoding sequential stages of task preparation in the human 

brain. NeuroImage, 45(2), 606–13. http://doi.org/10.1016/j.neuroimage.2008.11.031 

Brass, M., Derrfuss, J., Forstmann, B., & von Cramon, Y. D. (2005). The role of the inferior frontal 

junction area in cognitive control. Trends in Cognitive Sciences, 9(7), 314–316. 

http://doi.org/10.1016/j.tics.2005.05.001 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/138230doi: bioRxiv preprint 

https://doi.org/10.1101/138230
http://creativecommons.org/licenses/by-nc/4.0/


25 / 34 
 

Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and 

sustained cognitive control during task switching. Neuron, 39, 713–726. 

http://doi.org/10.1016/S0896-6273(03)00466-5 

Bunge, S. a, Kahn, I., Wallis, J. D., Miller, E. K., & Wagner, A. D. (2003). Neural circuits subserving 

the retrieval and maintenance of abstract rules. Journal of Neurophysiology, 90(July 2003), 

3419–3428. http://doi.org/10.1152/jn.00910.2002 

Chan, J. L., Kucyi, A., & DeSouza, J. F. X. (2015). Stable Task Representations under Attentional 

Load Revealed with Multivariate Pattern Analysis of Human Brain Activity. Journal of 

Cognitive Neuroscience, 27(9), 1789–1800. http://doi.org/10.1162/jocn_a_00819 

Cole, M. W., Etzel, J. A., Zacks, J. M., Schneider, W., & Braver, T. S. (2011). Rapid Transfer of 

Abstract Rules to Novel Contexts in Human Lateral Prefrontal Cortex. Frontiers in Human 

Neuroscience, 5(November), 1–13. http://doi.org/10.3389/fnhum.2011.00142 

Crone, E. a, Wendelken, C., Donohue, S. E., & Bunge, S. a. (2006). Neural evidence for 

dissociable components of task-switching. Cerebral Cortex, 16(4), 475–86. 

http://doi.org/10.1093/cercor/bhi127 

Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., & Yves von Cramon, D. (2000). Prefrontal 

cortex activation in task switching: an event-related fMRI study. Cognitive Brain Research, 

9(1), 103–109. http://doi.org/10.1016/S0926-6410(99)00029-4 

Dudschig, C., & Jentzsch, I. (2009). Speeding before and slowing after errors : Is it all just 

strategy ? Brain Research, 1296, 56–62. http://doi.org/10.1016/j.brainres.2009.08.009 

Duncan, J. (2001). An Adaptive Coding Model of Neural Function in Prefrontal Cortex. Nature 

Reviews Neuroscience, 2(November), 820–829. 

Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/138230doi: bioRxiv preprint 

https://doi.org/10.1101/138230
http://creativecommons.org/licenses/by-nc/4.0/


26 / 34 
 

intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172–179. 

http://doi.org/10.1016/j.tics.2010.01.004 

Duncan, J. (2013). The Structure of Cognition: Attentional Episodes in Mind and Brain. Neuron, 

80(1), 35–50. http://doi.org/10.1016/j.neuron.2013.09.015 

Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial 

extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 

201602413. http://doi.org/10.1073/pnas.1602413113 

Esterman, M., Tamber-Rosenau, B. J., Chiu, Y., & Yantis, S. (2010). Avoiding non-independence 

in fMRI data analysis: Leave one subject out. NeuroImage, 50(2), 572–576. 

http://doi.org/10.1016/j.neuroimage.2009.10.092 

Etzel, J. A., Cole, M. W., Zacks, J. M., Kay, K. N., & Braver, T. S. (2015). Reward Motivation 

Enhances Task Coding in Frontoparietal Cortex. Cerebral Cortex (New York, N.Y. : 1991), 

(Pessoa 2009), 1–13. http://doi.org/10.1093/cercor/bhu327 

Friston, K. J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-series. Human 

Brain Mapping, 1(2), 153–171. http://doi.org/10.1002/hbm.460010207 

Gilbert, S. J. (2011). Decoding the content of delayed intentions. The Journal of Neuroscience : 

The Official Journal of the Society for Neuroscience, 31(8), 2888–94. 

http://doi.org/10.1523/JNEUROSCI.5336-10.2011 

Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwartz, Y., Sochat, V. V., Ghosh, S. S., … 

Poldrack, R. A. (2015). NeuroVault.org: A repository for sharing unthresholded statistical 

maps, parcellations, and atlases of the human brain. NeuroImage, 124(April), 1242–1244. 

http://doi.org/10.1016/j.neuroimage.2015.04.016 

Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task set switching. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/138230doi: bioRxiv preprint 

https://doi.org/10.1101/138230
http://creativecommons.org/licenses/by-nc/4.0/


27 / 34 
 

In S. Monsell & J. Driver (Eds.), Attention and Performance XVIII: Control of cognitive 

processes (pp. 331–335). Cambridge, MA: MIT Press. 

Gruber, O., Karch, S., Schlueter, E. K., Falkai, P., & Goschke, T. (2006). Neural mechanisms of 

advance preparation in task switching. NeuroImage, 31(2), 887–895. 

http://doi.org/10.1016/j.neuroimage.2005.12.043 

Haynes, J.-D. (2015). A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and 

Perspectives. Neuron, 87(2), 257–270. http://doi.org/10.1016/j.neuron.2015.05.025 

Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature 

Reviews Neuroscience, 7(7), 523–34. http://doi.org/10.1038/nrn1931 

Hebart, M. N., Görgen, K., Haynes, J.-D., & Dubois, J. (2015). The Decoding Toolbox (TDT): a 

versatile software package for multivariate analyses of functional imaging data. Frontiers in 

Neuroinformatics, 8(January), 1–18. http://doi.org/10.3389/fninf.2014.00088 

Holmes, E. C., Bessen, D. E., Chan, M., Day, P. J., Enright, M. C., Goldstein, R., … Carter, C. S. 

(2001). The role of prefrontal cortex and posterior parietal, 98(7). 

Jamadar, S., Hughes, M., Fulham, W. R., Michie, P. T., & Karayanidis, F. (2010). NeuroImage 

The spatial and temporal dynamics of anticipatory preparation and response inhibition in 

task-switching. NeuroImage, 51(1), 432–449. 

http://doi.org/10.1016/j.neuroimage.2010.01.090 

Jersild, A. T. (1927). Mental Set and Shift. Archives of Psychology, (89). Retrieved from 

https://archive.org/details/mentalsetshift00jers 

Jimura, K., Cazalis, F., Stover, E. R. S., & Poldrack, R. a. (2014). The neural basis of task 

switching changes with skill acquisition. Frontiers in Human Neuroscience, 8(May), 1–9. 

http://doi.org/10.3389/fnhum.2014.00339 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/138230doi: bioRxiv preprint 

https://doi.org/10.1101/138230
http://creativecommons.org/licenses/by-nc/4.0/


28 / 34 
 

Kaplan, J. T., Man, K., & Greening, S. G. (2015). Multivariate cross-classification: applying 

machine learning techniques to characterize abstraction in neural representations. Frontiers 

in Human Neuroscience, 9(March), 1–12. http://doi.org/10.3389/fnhum.2015.00151 

Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., … Koch, I. (2010). 

Control and interference in task switching--a review. Psychological Bulletin, 136(5), 849–74. 

http://doi.org/10.1037/a0019842 

Kok, A., Ridderinkhof, K. R., & Ullsperger, M. (2006). The control of attention and actions : Current 

research and future developments, 5, 1–6. http://doi.org/10.1016/j.brainres.2006.03.027 

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. 

Proceedings of the National Academy of Sciences, 103(10), 3863–3868. 

http://doi.org/10.1073/pnas.0600244103 

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker, C. I. (2009). Circular analysis in 

systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12(5), 535–

540. http://doi.org/10.1038/nn.2303 

Liu, T., & Hou, Y. (2013). A Hierarchy of Attentional Priority Signals in Human Frontoparietal 

Cortex. Journal of Neuroscience, 33(42), 16606–16616. 

http://doi.org/10.1523/JNEUROSCI.1780-13.2013 

Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: The role of backward 

inhibition. Journal of Experimental Psychology: General, 129(1), 4–26. 

http://doi.org/10.1037/0096-3445.129.1.4 

Meiran, N. (2010). Task switching: Mechanisms underlying rigid vs. flexible self control. (R. 

Hassin, K. Ochsner, & Y. Trope, Eds.)Task switching: Mechanisms underlying rigid vs. 

flexible self control. (1st ed.). New York: Oxford University Press. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/138230doi: bioRxiv preprint 

https://doi.org/10.1101/138230
http://creativecommons.org/licenses/by-nc/4.0/


29 / 34 
 

http://doi.org/10.1080/17439760.2011.614829 

Momennejad, I., & Haynes, J.-D. (2013). Encoding of prospective tasks in the human prefrontal 

cortex under varying task loads. The Journal of Neuroscience : The Official Journal of the 

Society for Neuroscience, 33(44), 17342–9. http://doi.org/10.1523/JNEUROSCI.0492-

13.2013 

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140. 

http://doi.org/10.1016/S1364-6613(03)00028-7 

Norman, K. a, Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel 

pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–30. 

http://doi.org/10.1016/j.tics.2006.07.005 

Reverberi, C., Görgen, K., & Haynes, J.-D. (2012a). Compositionality of Rule Representations in 

Human Prefrontal Cortex. Cerebral Cortex, 22(6), 1237–1246. 

http://doi.org/10.1093/cercor/bhr200 

Reverberi, C., Görgen, K., & Haynes, J.-D. (2012b). Distributed representations of rule identity 

and rule order in human frontal cortex and striatum. The Journal of Neuroscience : The 

Official Journal of the Society for Neuroscience, 32(48), 17420–30. 

http://doi.org/10.1523/JNEUROSCI.2344-12.2012 

Rogers, R. D., & Monsell, S. (1995). Costs of a Predictable Switch Between Simple Cognitive 

Tasks. Journal of Experimental Psychology: General, 124(2), 207–231. 

Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive Control of Cognitive Processes 

in Task Switching. Journal of Experimental Psychology: Human Perception and 

Performance, 27(4), 763–797. http://doi.org/10.1037//0096-1523.27.4.763 

Ruge, H., Jamadar, S., Zimmermann, U., & Karayanidis, F. (2011). The many faces of preparatory 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/138230doi: bioRxiv preprint 

https://doi.org/10.1101/138230
http://creativecommons.org/licenses/by-nc/4.0/


30 / 34 
 

control in task switching: reviewing a decade of fMRI research. Human Brain Mapping, 34(1), 

12–35. http://doi.org/10.1002/hbm.21420 

Sakai, K., & Passingham, R. E. (2003). Prefrontal interactions reflect future task operations. 

Nature Neuroscience, 6(1), 75–81. http://doi.org/10.1038/nn987 

Spector, A., & Biederman, I. (1976). Mental set and mental shift revisted. The American Journal 

of Psychology, 89(4), 669–679. 

Todd, M. T., Nystrom, L. E., & Cohen, J. D. (2013). Confounds in multivariate pattern analysis: 

Theory and rule representation case study. NeuroImage, 77, 157–65. 

http://doi.org/10.1016/j.neuroimage.2013.03.039 

Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of 

reconfiguration and interference control. Psychological Bulletin, 136(4), 601–626. 

http://doi.org/10.1037/a0019791 

Waskom, M. L., Kumaran, D., Gordon,  a. M., Rissman, J., & Wagner,  a. D. (2014). Frontoparietal 

Representations of Task Context Support the Flexible Control of Goal-Directed Cognition. 

Journal of Neuroscience, 34(32), 10743–10755. http://doi.org/10.1523/JNEUROSCI.5282-

13.2014 

Wendelken, C., Munakata, Y., Baym, C., Souza, M., & Bunge, S. A. (2012). Flexible rule use: 

Common neural substrates in children and adults. Developmental Cognitive Neuroscience, 

2(3), 329–339. http://doi.org/10.1016/j.dcn.2012.02.001 

Wisniewski, D., Goschke, T., & Haynes, J. (2016). Similar coding of freely chosen and externally 

cued intentions in a fronto-parietal network. NeuroImage, 134, 450–458. 

http://doi.org/10.1016/j.neuroimage.2016.04.044 

Wisniewski, D., Reverberi, C., Momennejad, I., Kahnt, X., & Haynes, J.-D. (2015). The Role of 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/138230doi: bioRxiv preprint 

https://doi.org/10.1101/138230
http://creativecommons.org/licenses/by-nc/4.0/


31 / 34 
 

the Parietal Cortex in the Representation of Task – Reward Associations. The Journal of 

Neuroscience, 35(36), 12355–12365. http://doi.org/10.1523/JNEUROSCI.4882-14.2015 

Wisniewski, D., Reverberi, C., Tusche, A., & Haynes, J.-D. (2015). The Neural Representation of 

Voluntary Task-Set Selection in Dynamic Environments. Cerebral Cortex, 25(12), 4715–

4726. http://doi.org/10.1093/cercor/bhu155 

Woolgar, A., Afshar, S., Williams, M. A., & Rich, A. N. (2015). Flexible Coding of Task Rules in 

Frontoparietal Cortex : An Adaptive System for Flexible Cognitive Control. Journal of 

Cognitive Neurscience, 27(10), 1895–1911. http://doi.org/10.1162/jocn_a_00827 

Woolgar, A., Golland, P., & Bode, S. (2014). Coping with confounds in multivoxel pattern analysis: 

What should we do about reaction time differences? A comment on Todd, Nystrom &amp; 

Cohen 2013. NeuroImage, 98, 506–512. http://doi.org/10.1016/j.neuroimage.2014.04.059 

Woolgar, A., Hampshire, A., Thompson, R., & Duncan, J. (2011). Adaptive Coding of Task-

Relevant Information in Human Frontoparietal Cortex. Journal of Neuroscience, 31(41), 

14592–14599. http://doi.org/10.1523/JNEUROSCI.2616-11.2011 

Woolgar, A., Thompson, R., Bor, D., & Duncan, J. (2011). Multi-voxel coding of stimuli, rules, and 

responses in human frontoparietal cortex. NeuroImage, 56(2), 744–752. 

http://doi.org/10.1016/j.neuroimage.2010.04.035 

Yeung, N. (2006). Between-Task Competition and Cognitive Control in Task Switching. Journal 

of Neuroscience, 26(5), 1429–1438. http://doi.org/10.1523/JNEUROSCI.3109-05.2006 

Zhang, J., Kriegeskorte, N., Carlin, J. D., & Rowe, J. B. (2013). Choosing the Rules: Distinct and 

Overlapping Frontoparietal Representations of Task Rules for Perceptual Decisions. Journal 

of Neuroscience, 33(29), 11852–11862. http://doi.org/10.1523/JNEUROSCI.5193-12.2013 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/138230doi: bioRxiv preprint 

https://doi.org/10.1101/138230
http://creativecommons.org/licenses/by-nc/4.0/


32 / 34 
 

Legends 

Figure 1  

 Size: 1.5 columns 

 Placement: close to Materials and Methods / Task and experimental paradigm 

 Legend: 
 
Figure 1. Experimental paradigm. A Trial structure. Each trial consisted of a target stimulus at 

fixation, a cue stimulus above, and four possible response options below. Each task screen was 

presented for 3,000 ms, during which participants could indicate a response using the left and 

right index and middle fingers. Each trial was followed by a fixation cross with a variable inter-

trial-interval (ITI, 4,000-10,000 ms, mean = 5,525 ms). Responses were indicated by pressing the 

button corresponding to the mapped color on screen on a 2 x 2 button box with their index and 

middle fingers of both hands. Subjects were cued to perform one of two tasks, switching between 

tasks or repeating a task up to three consecutive times. B Stimulus-response associations & task 

cues. The two tasks consisted of similar stimulus response mappings, associating stimulus 

shapes (in two possible orientations) with colors. Each task was indicated by one of two possible 

abstract cues.  

Figure 2  

 Size: 1.5 columns 

 Placement: close to Results/ Multivariate searchlight decoding/ Analysis 1: Differences in 
task coding in switch and repeat trials 

 Legend: 
 
Figure 2. Task decoding. A Task decoding across cues in all trials and all subjects. Tasks were 

encoded in bilateral superior parietal cortex, left inferior parietal cortex and left lateral prefrontal 

cortex (p < 0.05, FWE corrected at the cluster level, initial voxel threshold p < 0.001). B Overlay 

of all 38 leave-one-subject-out ROIS. All ROIs were created leaving out one subject at the group 

level statistic (p < 0.05, FWE corrected at the cluster level, initial voxel threshold p < 0.001) and 
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later used for extraction of mean decoding accuracy values in that subject. C Mean task decoding 

accuracies extracted from the ROIs depicted in Figure 2B. We extracted values from four different 

decodings: task across cues in all trials (red), task across cues in switch trials only (blue), task 

across cues in repeat trials only (violet) and task across switch (green). Chance level in these 

plots is 50%. The distribution of mean decoding accuracies across subjects is shown in the 

histograms below.  

Figure 3 

 Size: 1 column 

 Placement: close to Results/ Multivariate searchlight decoding/ Analysis 2: Similarities in 
task coding between switch and repeat trials 

 Legend: 
 

Figure 3. Task decoding in all subjects for the decoding of task across cues (red, analysis 1A) 

and the decoding of task across switch/repeat (green, analysis 2). Both regions overlap Note: 

task decoding across switch/repeat does not control for the visual information contained in task 

cues (which might explain occipital task information) and is also less sensitive than the leave-one-

subject-ROI approach (which might account for no prefrontal cluster surviving cluster correction 

(for both analyses: p < 0.05, FWE corrected at the cluster level, voxel threshold p < 0.001). 

Table 1 

Table 1: Results of analysis I: Brain regions where tasks could be decoded in an analysis 

collapsed across switch and stay trials, independent of visual cue. Results of analysis II: Brain 

regions where classifiers trained on switch trials could be used to decode the task in repeat trials 

and vice versa.  
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Illustrations and Tables 

3 Figures (separate files), 1 Table 

Table 1 

   MNI coordinates (peak 
voxels) 

t-score 
peak 

Brain region Side Cluster 
size 

x y z  

I. Task across cues in all 
trials 

      

Parietal lobe left 383 -51 -52 49 4.75 

Parietal lobe right 293 36 -61 64 4.87 

Prefrontal lobe right 261 -39 35 -2 5.51 

       

II. Task across switch in all 
trials 

      

Parietal lobe left 1053 -48 -55 49 5.17 

Parietal lobe right 597 27 -64 46 5.71 

Occipital lobe left 440 -21 -91 -2 4.69 

Cerebellum left 173 -39 -64 -23 5.34 

Occipital lobe, cerebellum right 135 45 -64 -11 4.8 
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