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ABSTRACT
Forest soils typically harbour a vast diversity of fungi, but are

usually dominated by filamentous (hyphae-forming) taxa. Compared
to temperate and boreal forests, though, we have limited knowledge
about the fungal diversity in tropical rainforest soils. Here we show,
by environmental metabarcoding of soil samples collected in three
Neotropical rainforests, that Yeasts dominate the fungal communities
in terms of the number of sequencing reads and OTUs. These
unicellular forms are commonly found in aquatic environments, and
their hyperdiversity may be the result of frequent inundation combined
with numerous aquatic microenvironments in these rainforests. Other
fungi that are frequent in aquatic environments, such as the abundant
Chytridiomycotina, were also detected. While there was low similarity
in OTU composition within and between the three rainforests, the
fungal communities in Central America were more similar to each
other than the communities in South America, reflecting a general
biogeographic pattern also seen in animals, plants, and protists.
Contact: dunthorn@rhrk.uni-kl.de

1 BACKGROUND
Fungi are microbial eukaryotes that are constituents of most
ecosystems, where they fulfil diverse ecosystem functions such as
saprotrophy, mutualism, and pathogenesis/parasitism (Blackwell,
2011; Peay et al., 2016; Treseder and Lennon, 2015). They have
different growth forms, ranging from unicellular organisms (James
et al., 2006; Jones et al., 2011) to widespread mycelial networks
that can occupy several square kilometres (Smith et al., 1992).
Filamentous growth forms typically dominate terrestrial ecosystems
(Peay et al., 2016; Treseder and Lennon, 2015). However,
throughout the fungal tree of life, especially in the Ascomycota
and Basidiomycota, many groups have evolved unicellular yeast
morphologies either throughout their lifecycle or only under certain

∗to whom correspondence should be addressed

aqueous conditions (Botha, 2011). Some, like the Saccharomycetes
(hereafter referred to as Yeasts) have only unicellular forms,
while other taxa can switch between filamentous and unicellular
morphologies depending on environmental conditions. Yeasts are
known to dominate fungal communities in liquid or stressful
environments such as the rumen of farms animals and deer
(Kittelmann et al., 2013), floral nectaries such as the bumble-
bee-pollinated Helleborus foetidus (Herrera et al., 2010), and
deep-ocean water and sediments (Bass et al., 2007).

While temperate, boreal and arctic soil fungi communities
have been examined in detail using environmental high-throughput
sequencing methodologies (e.g., Clemmensen et al., 2013; Mundra
et al., 2016; O’Brien et al., 2005; Tedersoo et al., 2014), the
diversity of soil fungal communities in the tropics is relatively
rarely sampled. For example, Tedersoo et al. (2014) found the
Agaricomycotina to be dominating the fungal communities in their
Neotropical forests sites and that Yeasts comprised less than 1%
of their operational taxonomic units (OTUs). Likewise, Kivlin
and Hawkes (2016) sampling of monoculture plots and secondary
forests in La Selva Biological Station, Costa Rica, and Peay
et al. (2013) sampling of forests in Amazonian Peru found the
Agaricomycotina to be dominating. Peay et al. did note they found
many Yeasts, which accounted for almost 25% of their sequencing
reads.

To more thoroughly analyse Neotropical rainforest soil fungal
communities, we extensively sampled three Central and South
American forests and deeply sequenced using Illumina MiSeq. The
hyperdiverse protist communities were recently analysed from these
same samples, and a large proportion of OTUs were found to be
highly dissimilar to those in reference sequence databases, to be
dominated by parasites, and to exhibit extremely high heterogeneity
between spatially disjunct samples even within the same forests
(Mahé et al., 2017). Using the same DNA extracted from the soils,
we asked what is the dominant fungal group(s) and if the fungal
communities exhibit comparable patterns of biodiversity.
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2 MATERIALS AND METHODS
(a) Sampling, sequencing, and clustering
All codes used here can be found in HTML format (supplementary
file 1). Details about sampling and permits can be found in
Mahé et al. (2017). Briefly, 279 soils samples were taken in a
variety of lowland Neotropical forest types in: La Selva Biological
Station, Costa Rica; Barro Colorado Island, Panama; and Tiputini
Biodiversity Station, Ecuador. DNA was extracted, and every two
samples were combined. The samples were first amplified for the
hyper-variable V4 region of 18S rRNA locus following Mahé et al.
(2015a) with general eukaryotic V4 primers (Stoeck et al., 2010),
then amplified with sample-specific tags and Illumina MiSeq’s
sequencing adapters. Illumina MiSeq sequencing used v3 chemistry.

Fastq files were assembled with PEAR v0.9.8 (Zhang et al., 2014)
using default parameters and converted to fasta format. Paired-end
reads with both primers and no ambiguous nucleotides were retained
with Cutadapt v1.9 (Martin, 2011). Reads were dereplicated into
strictly-identical amplicons (that is, reads were merged at 100%
similarity and to which an abundance value can be attached) with
VSEARCH v1.6.0 (Rognes et al., 2016), and clustered into OTUs
with Swarm v2.1.5 (Mahé et al., 2015b) using d = 1 with the
fastidious option on. Chimeric OTUs were identified and removed
with VSEARCH (de novo search). Low abundant OTUs were
discarded only if they included 62 reads, and were sequenced from
only one sample, and were <99% similar to accessions in the Protist
Ribosomal Reference (PR2) database v203 (Guillou et al., 2013).
Following Adl et al. (2012), the PR2 database contains 21,083
fungal references.

(b) Analyses
Stampa plots (Mahé, 2016) were made to show the distribution of
the number of reads and OTUs per similarity value to their best
match in the PR2 database. Taxonomic assignment of the amplicons
and OTUs used VSEARCH’s global pairwise alignments with the
PR2 database. Assignment used the best hit, or co-best hits, in the
reference database as reported by VSEARCH. The R package Vegan
(Oksanen et al., 2013) was used to analyse frequency count data
derived from OTU clustering. Different functions of Vegan were
called to randomly subsample our samples (rrarefy function) and
to estimate and compare species compositions, using Bray-Curtis
distance and NMDS ordination (monoMDS function). Figures were
made using the R Statistical Environment (R Core Team, 2016) and
ggplot2 (Wickham, 2009).

3 RESULTS AND DISCUSSION
(a) Read and OTU characteristics
From the soil samples collected in the three Neotropical rainforests,
a total of 44,430,656 cleaned reads comprising 17,849 OTUs were
assigned to the fungi (for the OTU table see supplementary file 2).
With our use of the Swarm clustering method, 99.9% of the OTUs
had radii with >97% similarity (figure 1), which is a widely used
global clustering threshold in other 18S rRNA fungal environmental
sequencing studies. About 91.2% of the total reads and OTUs had a
maximum similarity of >95% to references in the PR2 database,
and almost 97.6% of them were >80% similar to the references
(figure 2). This pattern of mostly high similarities to PR2 references
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Fig. 1. The radius (minimum % similarity between the OTU centroid and
any other member of the OTU) of Swarm OTUs of the fungal V4 data. The
number of amplicons in each OTU was plotted against the abundance value
of the OTUs’ centroids (most abundant amplicon). More than 99.9% of the
OTUs have radii >97% similarity.
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Fig. 2. Similarity of fungi reads and OTUs to the taxonomic reference
database. Most of the reads and OTUs were >80% similar to references
in the PR2 database. See supplementary figures 1 and 2 for these similarities
within different fungal subclades.

also occurs in most of the different fungal subtaxa (supplementary
figures 1 and 2). In contrast to these high fungal similarities from
the same soil samples, only 14.7% of the protists had a maximum
similarity of >80% to PR2 references (Mahé et al., 2017). Neo-
tropical rainforest fungi are therefore better characterised than other
microbial eukaryotes or at least have more closely related relatives
that have already been sequenced.

(b) Yeasts dominate Neotropical soil fungal communities
A dominating part of the fungal diversity in the three Neo-
tropical rainforests were the Yeasts and other unicellular-forming
fungi (figure 3, supplementary file 2). The Saccharomycotina (in
the Ascomycota) were the most abundant fungi for both reads
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Yeasts dominate soil fungal communities in three lowland Neotropical rainforests
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Fig. 3. Taxonomic identity and relative abundances of fungi reads and
OTUs. Each taxa shown represent at least >0.1% of the total data.
Taxonomic assignment is to the fifth level in PR2 reference database, except
for Archaeorhizomyces.

(63.8%) and OTUs (37.0%). This proportional higher abundance
of Yeast reads may indicate that they are represented by a high
biomass or number of cells in the soil, although in a recent study
the proportion of fungal reads to OTUs was largely congruent
(Khomich et al., 2017). Agaricomycotina (in the Basidiomycota)
was also highly represented (21.0% of the reads and 20.4%
OTUs), but this group was also mainly composed of OTUs
with taxonomic affiliation to unicellular or dimorphic forming
tremellomycetes (Liu et al., 2015), such as Trichosporon spp.
Tremellomycetes accounted for 79.7% of the reads, and 94.0%
of the OTUs of the Agaricomycotina. Some other fungal groups,
including Pucciniomycotina and Ustilaginomycotina were also
largely represented by unicellular anamorphic fungi, suggested by
a majority of matches towards Sporobolomyces.

Proportionally fewer Yeasts were detected in previous environmen-
tal sequencing studies of fungal communities in Neotropical forests
(Tedersoo et al., 2014; Kivlin and Hawkes, 2016; Peay et al.,
2013). Our results may differ from these studies for a number of
reasons. First, we employed very deep Illumina MiSeq sequencing
on a large number of independent samples. Second, we amplified
the V4 region rather than the ITS region like Tedersoo et al.
(2014) and Peay et al. (2013), or LSU region like Kivlin and
Hawkes (2016). Although ITS primers are widely used for fungi
(Blaalid et al., 2013), 18S rRNA primers have also been used
to effectively characterize fungal communities (Bass et al., 2007;
Richards et al., 2015), but all primers have biases. Third, we
used local clustering thresholds to produce the fine-grained Swarm
OTUs rather than global clustering thresholds. Many of these fine-
grained OTUs would have been otherwise lumped together with
clustering methods that employed a global clustering threshold of
97% similarity. And fourth, we sampled primary forests regardless
of tree species, rather than sampling forests with ectomycorrhizal

plant species like Tedersoo et al. (2014) and secondary and cultured
forests like Kivlin and Hawkes (2016).

Yeasts could be dominating the fungal communities in the
three Neotropical rainforests because of the predominantly aqueous
conditions in the soils due to frequent (sometimes daily) flooding
leading to inundated or near-saturated soil conditions (Silver et al.,
1999). Seasonal and prolonged anoxia is known to structure
microbial communities (Pett-Ridge and Firestone, 2005; Pett-Ridge
et al., 2006) and to alter ecosystem functions including nitrogen
and carbon cycling (Davidson et al., 2000; Dubinsky et al., 2010;
Turner et al., 2015; Waldrop et al., 2000). The variable oxygen
concentrations could also create steep gradients in redox within
centimetre or millimetre scales that permit coexistence of numerous
aerobic and anaerobic microorganisms within close proximity
(Sexstone et al., 1985). The frequent anoxia therefore would be
highly influential over the Neotropical soils examined here, and
such unicellular fungal morphologies may be advantageous in
such a saturated environment, particularly when simple sugars are
available due to high turnover of soil carbon. In addition to soil-
inhabiting Yeasts and unicellular-forming fungi, there are several
other habitats in the tropical rainforests that could harbour these
taxa that then wash down onto surface soils (Botha, 2011). For
example, Yeasts and unicellular-forming fungi are known to inhabit
animal rumens, lichen thalli, and plant leaves, fruits, flowers, and
wood, and to use insect vectors to move between them (Botha, 2011;
Abranches et al., 1998; Li et al., 1985; Rosa et al., 2007; Spribille
et al., 2016). In the vertical arrangement of forests, from soils to tree
canopies, numerous flowers and fruits will exist in different stages
of ripening, representing numerous ecological niches for the growth
and promotion of unicellular fungi (Morais et al., 2006).

The proportional abundance of these detected Yeasts raise a
question: What are they all doing in the tropical soils? They
are presumably breaking down simple sugars near plant roots
and fallen fruits, or degraded lignin elsewhere in the soils
(Botha, 2011; Rodrigues et al., 2006). During this breakdown
of carbon compounds, the most common pathway would be
anaerobic fermentation (Rodrigues et al., 2006), especially given
the anoxic conditions caused by water inundation. Even in the
absence of anoxic conditions, anaerobic- and aerobic-fermentation
could take place via the well characterised Crabtree effect that
produces ethanol (De Deken, 1966). Better understanding of the
biogeochemical role of unicellular fungi in tropical soils would help
parameterise how carbon and nutrient cycles and soil respiration
respond to saturating conditions (Angert et al., 2015). For instance,
slowed transport processes and the associated accumulation of
decomposition products in water saturated soils present distinct
enzymatic challenges to the degradation of soil carbon by phenol
oxidases (Limpens et al., 2008)—enzymes produced by a wide
range of fungi (Burke and Cairney, 2002; Hammel, 1997) and other
microbial organisms. The consequences of these processes include
a switch from high soil CO2 efflux to the atmosphere under oxic
conditions to the transport of dissolved carbon in the hydrological
system under anoxic conditions (Angert et al., 2015).

Numerous other fungi were also found in the Neotropical
rainforest soil samples. The Chytridiomycotina, a large saprotrophic
and parasitic radiation also found in aqueous conditions, were
likewise prevalent especially in terms of OTU richness (1,671
OTUs). Many chytrids are likely not amplified by ITS-based studies
due to primer mismatches. Although most of the detected fungi
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are typically found in aquatic environments, filamentous terrestrial
fungi were also detected, including members of Agaricomycotina,
Archaeorhizomyces, Glomeromycotina, Mucoromycotina, and
Pezizomycotina. The arbuscular mycorrhizal Glomeromycotina,
globally distributed in terrestrial habitats (Davison et al., 2015),
had a high OTU richness (674 OTUs) but made up a relatively
small proportion of the reads. The spores and coenocytic hyphae of
Glomeromycotina, which may be cryptically sexual (Halary et al.,
2011; Corradi and Brachmann, 2017) and may include numerous
genetically different nuclei, complicate and may exaggerate
richness estimates. The most abundant OTUs in the Ascomycete
Pezizomycotina were affiliated with perithecial Sordariomycetes,
which are widespread decomposers of plant litter and dung, but
some are common parasites.

Within the Mucoromycotina, we obtained matches to various
taxa with different ecologies, including Mortierella and Umbelopsis,
assumed to be saprotrophs, and Endogone, a plant root
symbiont. We detected 128 OTUs affiliated to the newly described
Archaeorhizomycetes (Rosling et al., 2011) that are nested
within the Taphrinomycotina (Ascomycota). This fungal group is
associated with plant roots and has mainly been detected in forests
in the Northern Hemisphere; but our data, together with Tedersoo
et al. (2014), show that it also is widespread in tropical forests.
Additionally, 108 OTUs were assigned to the Zoopagomycotina,
which are parasites of other fungi or soil invertebrates, and 32 OTUs
were assigned to the Atractiellomycetes (Pucciniomycotina), which
form mycorrhizal associations with Neotropical orchids (Kottke
et al., 2010).

(c) Neotropical soil fungi follow general eukaryotic
biogeographic patterns
Fungal community diversity as estimated by the Jaccard similarity
index showed that there was high heterogeneity in the OTU
composition between samples. This high heterogeneity (that is,
low number of shared OTUs) occurred both within and between
forests (figure 4, supplementary figure 3). Although the Jaccard
similarity values were low on average among all samples (0.0111),
they were higher, in our recalculation of Mahé et al.’s data,
than the average for protists from the same samples (0.0069).
Even with this low similarity, non-metric multidimensional scaling
(figure 5, supplementary figure 4) and Bray-Curtis dendrograms
(supplementary figure 5) showed fungal communities in Costa Rica
and Panama to be slightly more similar to each other than the fungi
in Ecuador. This difference between Central American and South
American fungi was also found in protists (Mahé et al., 2017) and
in animals and plants (Gentry, 1991); that is, we found a general
pattern from the microbial to the macro-organismic levels in the
eukaryotes.

4 CONCLUSION
Similar to fungal communities in some aqueous environments
(Kittelmann et al., 2013; Herrera et al., 2010; Bass et al.,
2007), Yeasts dominated the communities in three Neotropical
rainforests. Frequent anoxic soil conditions caused by heavy
rains in these forests could create ideal conditions for unicellular
fungi. Dominance by Yeasts suggests tropical forests are not only
persistent carbon sinks owing to rapid tree growth (Pan et al., 2011),
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Fig. 4. Jaccard similarity index of fungi OTU composition differences
between soil samples. See supplementary figure 3 for sample names.
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Fig. 5. Non-metric multidimensional scaling of fungi OTU composition
differences between soil samples. See supplementary figure 4 for sample
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but also enormous fermentation tanks anaerobically processing
carbon because of the fungi.
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