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s Abstract

16 The long-term stability of microbiomes is crucial as the persistent occurrence of beneficial microbes and their associ-
17 ated functions ensure host health. Microbiomes are highly diverse and dynamic, but are they complex to the point of
18 being impossible to understand? We present an approach that while embracing this complexity it allows to identifying
19 meaningful patterns: the dynamic core microbiome. We study the structure, dynamics and stability of microbiomes
20 belonging to six marine sponges sampled monthly over three years. We show that microbiome temporal stability is not
21 determined by the diversity of their microbial assemblages, but by the abundance density of those microbes that con-
22 form their core microbiome. High-density cores confer hosts resistance against the establishment of occasional taxa
23 to which sponges are constantly exposed through their filter-feeding activities. The core microbial interaction network
24 consisted of complementary members interacting weakly with a dominance of commensal and amensal interactions

»s  that have likely coevolved to maintain host functionality and fitness.

» Introduction

27 Microbes form intricate relationships with most animals and plants, with symbiosis postulated as one of the driving
23 forces behind diversifications across the tree of life ([41]]). Research on host-microbe symbiosis is typically restricted to
29 highly specialized reciprocal interactions with one or a few microbes interacting with a single host, resulting in mutual
30 benefits for the host and the microbe(s) ([21} [53]]). However, more diverse and complex host-associated microbial
a1 communities (hereafter microbiomes) are increasingly found in different plant and animal species ([41]). This poses a
32 challenge because the pairwise specificity, coevolution and reciprocity of host-microbe interactions might not explain
33 the structure, dynamics and functioning of microbiomes. The mere existence of multiple microbes interacting with a
s« host suggests that microbe-microbe interactions might also be an important driver regulating the overall composition
35 and abundance of microbiomes and their associated ecosystem functions. The individually unique, but temporal stable
s microbiome of the human gut, for example, is likely to be regulated by interactions among its constituent members
o ([16]).

38 The diversity, complexity and highly dynamic nature of microbiomes makes them difficult to understand. We thus
39 require approaches that embrace the complexity and dynamics of microbiomes but still allow identifying meaningful
40 biological patterns. The quest for core microbiomes is a promising avenue ([80, |81 |69} 68|, |1} 4} 28]]). A temporal
41 dimension has rarely been considered for determining the core microbiome ([7,!16}[17]). A core microbiome, broadly

42 defined as a set of microbes consistently present over long periods of time is likely to have a large effect on the
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43 development, health and functioning of its host. Studies on humans, for example, have revealed that several aspects
4¢ of human health, including autoimmune disorders ([62, [64]), diabetes ([57]]) and obesity ([33} [81]) can be linked to
45 severe shifts in gut microbiome composition. Whether these disorders emerge as a consequence of perturbed core
s microbiomes still remains to be seen. Arguably, the long-term stability of the core microbiome is likely critical
47 as the persistent occurrence of beneficial microbes and their associated functions ensure host health and well-being
s (2511350159 [10L143]).

49 Despite the recent realizations that complex microbiomes pervade the tree of life, little is known about microbiome
so dynamics beyond humans. Here we study the structure, dynamics and stability of the microbiomes of six coexisting
51 marine sponges (Porifera) belonging to different orders that were sampled over 36 consecutive months.

52 Sponges are key-species in marine coastal areas due to their filter-feeding activities. They regulate primary and
s3  secondary production by transferring energy between the pelagic and benthic zones ([23} [11]]). Despite their constant
s¢ influx of water, they maintain highly diverse, yet specific microbiomes with little intraspecific variation ([77]). As
ss  Porifera is a sister-group to all other multicellular animals ([71]), their associations with microbes likely represent
s the oldest extant form of animal-microbe symbiosis ([75, [27, 90]). The sponge hosts analyzed here correspond to
57 two different groups that are shown to differ markedly in numerous traits, illustrating their dependence upon their
ss associated microbes. The classification is based on the diversity and abundance of microbes they harbor — High
ss and Low Microbial Abundance (HMA and LMA), respectively. This classification pervades host morphology and
e physiology: LMA hosts have an interior architecture fitted for pumping large volumes of water, whereas HMA hosts
st are morphologically adapted to harbor denser microbial assemblages within their tissue ([86} 66]). As a result, LMA
62 hosts are more dependent on nutrient uptake from the water column ([29, 86, 166, |19} 137]]), whereas HMA hosts rely
63 more heavily on nutrients produced by their microbial symbionts ([[19} 37} 160, 20, [18} 156[]). These two sets of hosts
e+ provide an ideal system from which we can generalize whether the structure and temporal dynamics of complex
es microbiomes differs across hosts with different eco-evolutionary characteristics and lifestyles.

66 Our general aim is to understand the temporal dynamics of complex microbiomes. More specifically, we try
67 to answer (i) what is the diversity and community structure of each core microbiome, and how does it differ from
es that of the many transient taxa passing through the host? (ii) what are the temporal dynamics and stability of each
e microbial taxa and their aggregated effect on the core microbiome? and (iii) what are the likely ecological processes
70 that underpin the observed temporal dynamics and stability? We expect the answer to each of these questions to
71 differ across hosts with different lifestyles (i.e., HMA vs. LMA hosts), reflecting their different dependency on their

72 respective microbiomes. In particular, we expect the core microbiomes harboured by HMA hosts to be more diverse
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73 and stable over time.

» Results

» Diversity and compositional overlap

76 We divided each microbiome into three different temporal assemblages based on the persistence of individual OTUs
77 (Operational Taxonomic Units; hereafter taxa) over the 36 consecutive months. Core microbiomes consisted of taxa
78 present in more than (or equal to) 70% of each time-series (i.e., persisting > 26 months), whereas opportunistic
79 assemblages comprised taxa present in less than (or equal to) 30% of each the time-series (i.e., persisting < 11 months).
s The transient assemblages consisted of intermediately persistent taxa (i.e., those persisting between 12 and 25 months).
s We analyzed six microbiomes; three belonging to hosts classified as HMA (Agelas oroides, Chondrosia reniformis,
82 Petrosia ficiformis) and three from hosts classified as LMA (Axinella damicornis, Dysidea avara, Crambe crambe)
ss  ([22 [15]).

84 Core microbiome diversity (species richness) only represented a small fraction (1.24%) of the overall diversity that
ss resulted from the aggregation of all taxa found throughout the time-series, with a dominance of opportunistic taxa.
ss  HMA hosts harbored about 5 to 6 times more taxa in their core microbiomes than LMA hosts (Table[I). These taxa
&7 represented an important fraction of monthly diversity, particularly in HMA hosts, where opportunistic assemblages
s only had between 4 to 5 times more taxa than the core microbiomes. In contrast, LMA hosts harbored 19 to 25 times
o more opportunistic than core taxa (Table|[T).

9 Compared to our null model that replicated each microbiome over time by randomly sample taxa from a regional
ot pool consisting of all taxa found within the six microbiomes including the water column (Figure [S3)), we found that
e microbiome composition differed markedly across hosts (Figure[I)) and lifestyles (HMA vs LMA) (Figure [ST] with
e very little overlap among core microbiomes (Figure[2). The taxonomic profiles of the core microbiomes also differed
94 between HMA and LMA hosts. The former harbored three dominant phyla that accounted for roughly half of their
o5 diversity. However, these hosts still kept their own individually unique taxonomic profiles by harboring other phyla,
o such as Actinobacteria, Nitrospira, Spirochaetes and SAUL (Figure [3). In stark contrast, the core microbiomes found
o7 within LMA hosts were largely dominated by taxa belonging to the phylum Proteobacteria (Figure|3).

9 Sponges are known to harbor certain taxa highly specific to the phylum Porifera (i.e., sponge-specific clusters)
99 ([26, [72]). These taxa are only detected at very low abundances outside of the sponge host, e.g., in the sediment

10 and seawater ([[75[74]]). Some of these sponge-specific clusters are transmitted vertically, suggesting sponge-microbe
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101 coevolution and cospeciation ([[76]). We found that the core microbiomes of HMA hosts harbored a larger proportion
12 of taxa that corresponded to sponge-specific clusters than LMA hosts (Table 2} Figure[S2). We further found that these
103 taxa had a higher average monthly abundance in the core microbiomes compared to the transient and opportunistic
10+ assemblages (Table[ST). These results contrast with the expectations derived from the null model, where the proportion
15 of taxa belonging to sponge-specific clusters and their average monthly abundances displayed opposite patterns, i.e.,
16 the proportion decreased while their average abundances increased from the cores to the opportunistic assemblages
107 (Tables [S2}S3). Overall, this suggests that a suite of non-random assembly processes, e.g., host selection of specific

18 taxa and microbial interaction dynamics may be responsible for the observed patterns.

o Temporal variability

110 We next analyzed temporal variability across microbiomes. Individual core and transient taxa were both more stable
111 (measured by their coefficient of variation) and abundant than opportunistic taxa (Figure 4] Figures [S4}{S7). Temporal
112 turnover is an intrinsic property of our definition of core microbiomes and transient and opportunistic assemblages. For
113 example, as opportunistic taxa persist less than 30% of the total time-series, these assemblages are bound to heavily
11a  fluctuate in microbial composition. Nevertheless, in order to quantify the temporal turnover of each assemblage, we
1s  applied a newly developed measure that disentangles the two additive determinants of temporal turnover, i.e., change
11e in total abundance and change in species composition ([70]). As expected, we found that core microbiomes were
117 overall driven by changes in abundance, whereas transient and opportunistic assemblages were mainly governed by
11e  changes in microbial composition (Figures [S8{ST0).

119 The aggregated microbial relative abundance for each assemblage and host reveals two markedly different micro-
120 biome temporal dynamics (Figure[5)). In the microbiomes of host A. oroides, C. reniformis and C. crambe, cores were
121 very dense, i.e., they accounted for the majority of microbiome relative abundance. In contrast, the core microbiomes
122 of host D. avara, A. damicornis and P. ficiformis were sparser, and instead transient and/or opportunistic assemblages
122 dominated microbiome relative abundance (Figure[5] Table[S3). The presence of abundant and transient taxa are likely
12 to have a negative impact on the stability of the core microbiome (Figure[d] Figures[S4}{S7). We found that dense cores
125 were more stable over time than sparse cores, measured as invariability (i.e., the inverse of variability) ([24]), both
12 at the population and community level (Figure [5). This suggests that high-density cores conferred hosts a resistance
127 against occasional taxa to increase in abundance.

128 Although we did not focus on measuring synchrony per se, it is interesting to note that the ratio of the two

129 invariability measures reflect community-wide synchrony ([24]]). Synchrony is linked to community stability, where
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10 a larger diversity tends to increase the potential for species asynchrony, thus stabilizing community level properties

1 ([34]).

w2 Core dynamics and ecological interactions

133 We finally aimed to determine the relative importance of biotic interactions and environmental variability for core
13a  microbiome dynamics. We developed a Bayesian modeling framework assuming Gompertz population dynamics that
135 decomposes temporal variation in microbial population abundances into contributions of interspecific and intraspecific
136 interactions and environmental variability. Apart from ecological drift, environmental variability includes measured
137 and unmeasured effects of both the host and the external environment acting on the host. In order to test if environmen-
13 tal factors had any effect on the analyzed microbiomes, we included in our model, several environmental covariates,
139 such as water temperature, salinity, chlorophyll and nutrients.

140 As interspecific interactions require species to frequently co-occur, the many occasional taxa observed across our
141 time-series, especially those occurring at high abundances are likely acting together with ecological drift as sources
12 of stochastic noise. Our framework models Lotka-Volterra type of interactions, estimating the microbial interaction
143 matrix where interaction coefficients correspond to the per capita influence of microbe j on the growth rate of microbe
144 1. We used these interaction coefficients to determine and characterize core interaction networks.

145 We found that intraspecific interactions explained the largest proportion of variation, thus indicating that all core
us taxa, on average, experienced strong self-regulation (Figure [6JA). The modelled environmental covariates only ex-
147 plained a small fraction of the relatively large proportion of variation explained by environmental variability (Fig-
ue  ures[STI}ST6). We further found a marked difference between HMA and LMA hosts in terms of variation explained
149 by interspecific interactions. In the core microbiomes of HMA hosts, interspecific interactions had a relatively large
150 effect on the dynamics, while this type of interactions had a negligible effect in LMA hosts (Figure [§JA). As a conse-
151 quence, we analyzed the network structure of each HMA core microbiome. For those networks, we found that only a
152 small fraction of the interspecific interactions among the possible ones were likely to occur (Figures[ST7ST8)), result-
153 ing in low network connectance, with values ranging from 5 to 7%. These interactions were mostly very weak, with a
15« skewed distribution of interaction strengths towards many weak and a few strong interactions in each core microbiome
155 (Figures [ST9). Among the most probable interactions (Figures [ST8), we found largely unilateral interactions in the
156 form of commensalism {+,0} and amensalism {—, 0} (Figure [6B). Reciprocal interactions, such as cooperative {+,+},
157 competitive {—, —} and exploitative {+,—} interactions were exceptionally rare.

158 Each core interaction network had a mixture of positive and negative interactions, and nodes with high and low
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150 degrees, i.e., the number of in- and out-going links (Figures [7S20). As noted above, all HMA core microbiomes had
10 a high proportion of taxa assigning to sponge-specific clusters. However, we did not observe that these taxa were more

16t connected than other taxa within each core microbiome network.

w Discussion

s In order to increase our understanding of the processes that govern microbiome assembly, stability and functionality,
164 it is critical to incorporate temporal dynamics. Recent studies have shown that microbiomes are examples of highly
s diverse dynamical systems. Most of these studies have focused on the human microbiome ([8, (17, 5, [12]), but a few
16 studies have explored temporal dynamics in other animal-host systems ([Z, 55]]).

167 In contrast to the diversity-stability relationship ([40]), we did not observe an increase in stability with diversity
168 (species richness). Instead, we found that temporal stability was associated with core microbiome abundance. In three
6o hosts (two HMA and one LMA host), core microbiomes accounted for the majority of relative abundance, resulting
170 in high-density cores. In the remaining three hosts (two LMA and one HMA host), the relative abundances of core
171 microbiomes were similar or lower than that of the transient and/or opportunistic assemblages, resulting in low-density
172 cores. Low-density cores showed larger variation over time than high-density cores, suggesting that core microbiome
173 stability indeed was negatively affected by the presence of occasionally abundant taxa. In other words, high-density
172 cores conferred hosts a resistance against occasional taxa to increase in abundance. Previous studies have shown that
175 diversity confer ecosystems a resistance to the establishment of biological invasions ([30]). Our results suggest that it
176 1S not only diversity that determines invasion resistance, but also the dominance of the core microbiome in terms of its
177 relative abundance. This could be responsible for the stability of host functioning, as in some cases, the abundance of
178 common species, not species richness, is the main driver of ecosystem functioning ([89]).

179 High-density cores were found in sponge species that transmit commensal taxa vertically from adult to larvae
1e0  offspring ([32} I82] 671]), whereas low-density cores correspond to sponge species with larvae deprived of microbes
11 ([314 1611 [38]]). Vertical transmission provides an evolutionary mechanism for preserving particular combinations of
12 taxa, and their associated ecosystem functions ([[79]]). Vertical transmission thus underpins the observed temporal
s stability of high-density cores, and confers a high resistance against invasion and establishment of occasional taxa.
18a  Evidence from other ecological communities suggest that the arrival order of species affects community assembly and
15 stability, resulting in priority effects ([9} [73]]). The process of vertical inheritance of commensals likely has similar

188 outcomes as classical priority effects. Moreover, as pathogenic taxa can use cooperative secretions that modify their
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157 environment to enhance their growth and expansion ([52, 142]]), it is reasonable to assume that commensals do too. We
1s  therefore hypothesize that the complementary set of taxa that are transmitted from adult to offspring preempt the host
18o  niche by fast reaching carrying capacity, while simultaneously modifying it in their favour. This will further inhibit
190 the colonization of some taxa, while facilitating the establishment of others (e.g. horizontally selected taxa).

191 In agreement with the HMA-LMA dichotomy, the metabolic profiles of P. ficiformis and C. crambe match those
122 of other HMA and LMA hosts, respectively ([45]). The low-density core of HMA host P. ficiformis was temporally
193 variable but harbored a high diversity, whereof the majority could be assigned to sponge-specific clusters. In fact, this
19« particular host harbored the highest proportion of sponge-specific taxa, suggesting that P. ficiformis displays HMA
155 characteristics by means of horizontally selecting commensals from the water column. The innate immune defense of
196 some sponge species is known to differentiate between pathogens, food bacteria and commensals in a manner similar
17 to the adaptive immune system of vertebrates ([I88}, 185, 187, 78] 91, [14]). This finding indicates that sponge-specific
18 clusters, although present in the water column and sediment as part of the rare biosphere ([84} [74]]), represent taxa
199 likely important for host functionality.

200 Other than density, species interactions and environmental stochasticity also have a strong effect on community dy-
201 namics and stability. In concert with studies on large free-living communities, we found that intraspecific interactions
202 were an important determinant of abundance variability across core microbiomes ([S0, 3} 139, [13]]). However, while
203 these studies showed that environmental stochasticity was the single most important determinant affecting dynamics,
20« we found that the majority of temporal variation across core microbiomes was explained by intraspecific interactions.
205 Moreover, our included environmental covariates only explained a small fraction of the relatively larger amount of
206 variation explained by stochasticity. These differences are likely due to the fact that microbiomes reside inside a host,
207 thus experiencing a reduced influence from the external environment acting on the host. More interestingly, we found
20 that interspecific interactions explained a much larger proportion of temporal variation in the core microbiomes of
200 HMA than LMA hosts. These interspecific interactions were similar, both in sign and strength. Theoretical results
210 have shown that reciprocal interactions, such as exploitation {+/—}, cooperation {+/+} and competition {—/—} differ
211 in their effects on community stability and ecosystem functioning ([46, 48 |47, 136, 63} [12] 49]), with communities
212 consisting of a mixture of unilateral interactions being more stable than those with only reciprocal interactions ([49])).
213 In concert, we found that HMA core microbiomes were characterized by unilateral interactions with similar degrees of
212 commensalism {+, 0} and amensalism {—, 0}. While the core microbiomes of hosts A. oroides and C. reniformis were
215 largely dominated by commensal interactions, the core microbiome of host P. ficiformis had a higher frequency of

216 amensalism. It was also the only core microbiome that displayed competitive interactions among its members, albeit
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217 at very low frequencies. Asymmetric interaction signs and strengths are important for species coexistence and network
218 stability ([6, 2]]). In agreement, we observed skewed distributions of interaction strengths towards a few strong and
219 many weak interactions.

220 Our study highlights the importance of defining core microbiomes temporally rather than cross-sectionally. Our
221 results show that it is density and not diversity what primarily determines the stability of the sponge microbiome
222 irrespective of hosts’ eco-evolutionary characteristics and lifestyles, and that HMA core microbiomes consist of com-
223 plementary commensals only interacting weakly and unilaterally among each other. We hypothesize that it is the
224 constituent members of the core microbiome and their interactions that give rise to HMA characteristic functionality,
25 regardless of these taxa being vertically inherited or horizontally selected. Our results further suggest that these inter-
226 actions are a result of a mutual dependency between the microbes and the host, with both parties having the capacity
227 to actively modify their interactions ([44]]). The sponge host and its core commensals have likely coevolved in ways

228 which allow for maintaining both functionality and fitness over ecological, and even evolutionary time scales.

» Methods

20 Sponge collection

231 Sponge specimens from species Agelas oroides, Chondrosia reniformis, Petrosia ficiformis, Axinella damicornis,
232 Dysidea avara and Crambe crambe were collected monthly from March 2009 until February 2012 close to the Is-
23 las Medas marine reserve in the NW Mediterranean Sea 42°3’0”N, 3°13’0”E by SCUBA at depths between 10-15
23 m. The collected sponge species belong to six different orders, and represent common members of the Mediterranean
235 benthic community. Each species were identified based on distinct morphological features. Replicates were carefully
23 placed in separate plastic bottles and brought to the surface. Three replicates per sponge species were sampled and

237 frozen in liquid nitrogen until DNA extractions.

2s  DNA extraction and sequencing

230 16S rRNA gene sequences was PCR-amplified from 25 mg of sponge tissue per sample using the DNeasy tissue kit
20 (Qiagen, Valencia, CA) and submitted the Research and Testing Laboratory (Lubbock, TX, USA) for gene amplicon
241 pyrosequencing sequencing. Samples were amplified with primer 28F and amplicons were sequenced using Roche

22 454 Titanium chemistry, producing reads in the 5°—3’ direction.
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s Analysis of sequencing data

24 454 reads were processed in mothur v.1.29.2 ([65]). Raw reads were pooled from replicates belonging to the same
25 sponge species. Fasta, qual and flow files were extracted from binary sff files; sffinfo(...,flow=T). Flow files were
26 then filtered based on barcodes to speed-up the proceeding de-noising process; trim.flow. Sequences were de-noised;
27 shhh.flows(..., lookup= LookUp_Titanium.pat). The LookUp-file is necessary and specific to the 454 technology used.
28 Next the barcode and primer sequences were removed together with sequences shorter than 200bp and/or contained
29 homopolymers longer than 8bp; trim.seqs(. .., pdiffs =2, bdiffs =1, maxhomop =8, minlength =200). In order to min-
250 imise computational effort, files were reduced to non identical sequences; unique.seqs. Non redundant sequences were
251 aligned to SILVA 102 reference alignment with default kmer search and Needleman-Wunsch algorithm; align.seqs(.. .,
=2 flip =F). Non overlapping sequences were removed; screen.seqs(..., optimize= end, start= 1044, criteria = 95), in
253 addition to empty columns that were introduced from the alignment process; filter.seqs(...,vertical =T, trump =.).
2« Aligned sequences were reduced to non redundant sequences; unique.seqs. To further reduce amplification errors, less
255 abundant sequences were binned to more abundant sequences if they were within 2bp of a difference; pre.cluster(.. .,
256 diffs =2). Chimeric sequences were identified; chimera.uchime(..., dereplicate =T) and removed; remove.seqs. Se-
257 quences were classified using the RDP reference taxonomys; classify.seqs(..., template =trainset9_ 032012.pds.fasta,
258 taxonomy =trainset9_ 032012.pds.tax, cutoff =80), and non bacterial lineages were removed; remove.lineage(...,
250 taxon= Mitochondria-Chloroplast-Archaea-Eukaryota-unknown). We calculated pairwise distances between aligned
260 sequences; dist.seqs(..., cutoff =0.050).

261 Due to an uneven sequence distribution across samples, we pooled all sequences from the three monthly replicates
262 per host species, and because of plate effects in sequence counts, we sub-sampled 1500 sequences from each monthly
263 host sample. This number corresponded to the average of the three lowest host-plate averages. This was followed by
264 clustering sequences into OTUs defined at 97% similarity; classify.otu(..., label=0.030) and creating an OTU-table

265 (.shared-file); make.shared(.. ., label=0.030). Beyond that, all analyses were conducted in R ([58]]).

s ldentification of sponge-specific clusters

267 A representative sequence from each OTU was taxonomically assigned using a BLAST 62 search against a curated
268 ARB-SILVA database containing 178 previously identified sponge-specific clusters (SC) ([72]). For each BLAST
260 search, the 10 best hits were aligned to determine sequence similarities. The most similar OTU sequence to the

270 respective reference sequence within the database was then assigned to an SC based on a 75% similarity threshold,

10
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271 1.e., (1) a sequence was only assigned to any given SC if its similarity was higher to the members of the cluster than to
272 sequences outside the cluster and (ii) if its similarity to the most similar sequence within the cluster was above 75%. A
273 majority rule was applied in cases where the assignment of the most similar sequences was inconsistent, and the OTU

274 sequence was only assigned to the SC if at least 60% of the reference sequences were affiliated with the cluster.

2  Null model

276 In order to assess whether random assembly processes from a species-rich regional pool generated empirical patterns
277 in species diversity, relative abundance and compositional overlap across hosts, we created a simple null model that
278 replicated each microbiome over the time-series. In our null model, a regional pool was created on a monthly basis by
270 pooling all OTUs and their sequence counts from the corresponding month across hosts, including the water column.
280 A “stochastic realization” was created for each host microbiome by randomly sample the same number of sequences
231 present in each month from the corresponding monthly regional pool. This meant that OTUs were randomly sampled
222 from each monthly regional pool in proportion to their abundance. We ran the null model 999 times for each host

283 microbiome.

=« lemporal dynamics
255 Temporal turnover

236 We applied a newly developed measure of temporal turnover that describes the extent to which individual OTUs and
257 consequently the microbiome changes over time ([70]. Importantly, this measure decomposes abundance fluctuations
283 into two additive contributions of change due to microbiome composition and total abundance.

Total turnover D between times ¢ and u, (1 > t) is defined as

S S
/\iu
D(t u):Zd,(t:u):Zlog(/\f )Pi,t (1)
i=1 i=1 Lt
S
Dit /\u)
=-) 1 i — 2
vl &
= D1(ps : pu) + Da(As 1 Ay) (3)

289 Where A; = Z?:1 A; ¢ represent the sum of the expected total abundance of each OTU in the microbiome. The expected

20 abundance A; ;i =1,2,...,S is unknown and therefore needs to be estimated from an observed time-series. p;
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201 represents the relative abundance of OTU i in time ¢ and is calculated as p; ; = (%) As such, total turnover D can
202 be decomposed into D; which is related to the amount of change in microbiome composition, and D, reflecting the
203 amount of change in total abundance.

As noted above, the expected abundance needs to be estimated, thus we modelled each time-series of sequence

counts N; ; assuming a Poisson distribution with a time varying mean A; ;

N;; ~ Pois(A; 1) “4)
N,

log(Aie) = ) XikPj 5)
j=1

24  where X ; is a time-series of k = 1,2,..., N, environmental covariates, and Bk,j 1s the corresponding regression
205 coefficient that needs to be estimated. We included temperature, salinity, chlorophyll, bacterial cell density, nitrite
26 (INO;), ammonia (N Hy), and phosphate (PO,) as the N, environmental covariates. All covariates where standardized

207 to have zero-mean and unit variance.

208 Temporal invariability

200 We applied two newly developed measures of temporal stability, i.e. invariability ([24]) in order to assess the stability
a0 at the population (i.e. for each OTU) and community level (i.e. for opportunistic and transient assemblages and the
31 core microbiome), respectively.

Invariability at the population and community level is defined as

Ip p — 1 — (N\tot)z (6)
0 N 2 L/ RV
(Ziicvm)) (Zifvarip?)
tot
1 (N

I.,,= = 7
on CV(Ntot)2 Var(Nior) ™

a2 where the total-abundance of a community N;,; is the sum of each OTUs’ abundance as N;,; = Zle N;, and the N, tot
s and 1\7, denotes their respective averages.

Interestingly, these two measures are connected. The ratio of I, and I, equals community-wide synchrony

Ipﬂ __ Var(Nio)

= ot} 8
Icom Zi \/Var(Nl-)z ®
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04 with 0 and 1 for perfectly asynchronous and synchronous communities, respectively. This implies that I, < Icopm,

25 and that the equality Ij,, = Icop, represents a perfectly synchronous community.

as Core dynamics and ecological interactions

307 We developed a multivariate first-order autoregressive model assuming Gompertz population dynamics based on [S0]

sos for modeling core dynamics and to infer interactions between core OTUs from time-series of sequence counts.

Process model If we denote n; ;* as the expectation of 1; , which is the natural logarithm of the observed time-series
N; 1, then on the natural logarithmic scale we have the expected number of sequences belonging to core OTU i in time

t within any given host species described by

S . Ne

al,]n],t—l X

nip*lnie g =ni g +rifl- § r + E XekPrj+€it )

B 1 B
j=1 j=1

t=2,3,...,T;k=1,2,...,N,

a9 where we assume r; ~ N'(0,10) and K; ~ Exp(1). The coefficients measuring each OTUs’ response the k — th envi-
a0 ronmental covariate are assumed By ;j ~ N (0,100). The residual variance ¢, ; representing apart from ecological drift,
a1 un-modelled host effects and the effects of the un-modelled external environmental acting on the host, are assumed to
sz be serially independent and normally distributed. We included temperature, salinity, chlorophyll, bacterial cell den-
a3 sity, nitrite (N O,), ammonia (N H4) and phosphate (PO,) as the N, environmental covariates potentially affecting the
a4 residing microbiomes. All covariates where standardized to have zero-mean and unit variance. Furthermore, we used

a5 a latent variable approach to model correlations between taxa (see [83]]).

Observation model The time-series of sequence counts are modeled as a Poisson process, where y; ; denotes the

number of sequences of core taxa 7 in time ¢

Vit = Pois(A; ) (10)
log A;; =n;;+log N; + uN; (11)
n, = MVN(n; %07 (12)

sis  where N; and uN; ~ N (0,100) both are offsets representing the total abundance in time .

13


https://doi.org/10.1101/137885
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/137885; this version posted May 14, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

317 We used Gibbs Variable Selection (GVS) ([54]]) method in order to constrain the model to only use interspecific
e interaction coefficients a; ; for which there are strong support in the data. This is achieved by introducing a binary
a9 indicator variable y; ; for i # j, and assuming y; ; ~ Bernoulli(p), such that ;; = 1 when OTU j is included in
a0 the dynamics of OTU i, and Vij = 0, otherwise. Where there is low support for a; in the data, Vij = 0 and the
s21  corresponding interaction is excluded from the model. When y;; = 1, a; ; is freely estimated from the data. p
322 represent our prior belief about how many of all interspecific interaction are actually realized. We chose value of 0.1,

323 which means that we did not expect more than 10% of all possible interspecific interactions to take place.

Variance partitioning Following [50] and [51], the total variance V; affecting the dynamics of core OTU i can be de-
composed into additive sources reflecting interspecific interactions, intraspecific interactions (i.e. density-dependence),

and environmental variability (i.e. measured environmental covariates and residual variance)

Interspecific interactions Intraspecific interactions Environmental variability
— —_—
r 2 r 2 N¢
— i E .l i y E 2 .
‘/1 = [?:| V]’](Xi’]- + [f:| Vi + ﬂi’q+£l (13)
Lz ! i=1

where v; ; represent the stationary variance for n; (Equation , p 12 ;. the variance attributable to each k covariate,
and ¢; correspond to residual variance. As a consequence of Equation[I3] the proportion of variation attributed to e.g.

interspecific interactions can be calculated as

2
O = [IQ—] D) vijal / v; (14)
! j#i

324 To determine and characterize core microbiome networks, we analyzed the interaction and sign structure of the
325 posterior probability distribution for the interaction coefficient a; ;. Because «; ; is a probability distribution, it con-
a6 tains the probability of OTU j having a per capita effect on the growth of OTU i (interaction strength), and vice
327 versa. Using all information in «;;, we constructed core networks for each HMA host as means of visualizing the
s2s  most ‘credible’ network structure. This was done by mapping the posterior average number of links onto «;;, and in
329 doing so, extracting the posterior average number of links with the highest probability of non-zero interactions. This
a0 was done by custom-written R scripts. As a way of validating the structure of each core network, we compared the
1 connectance of each network to the posterior average connectance for «; ; for each host. The networks were plotted

sz  using the igraph package in R v.3.2.1.
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333 Finally, we used Markov chain Monte Carlo (MCMC) simulation methods through JAGS in R using the runjags
s« package to sample from the joint posterior distribution of all the model parameters. We ran 10 independent chains
a5 with dispersed initial values for 5e6 iterations, discarding the first 2e6 samples of each chain as burn-in and thinned
ass  the remainder to every 50-th sample. We evaluated convergence of model parameters by visually inspecting trace and
a7 density plots. In addition, to ensure good mixing of «; ; we calculated the number of jumps y; ; made between its two

sss  states, 0 and 1.
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s Tables and Figures

Table 1: Microbiome diversity by temporal assemblage

HMA LMA
A. oroides  C. reniformis P, ficiformis  A. damicornis D. avara C. crambe
Core 45 33 40 8 6 8
384+117 274+11.1  321+123 6.7 +2.1 6.4 +2 6.4 +2.3
Transient 90 54 140 3] 44 41
ansie 413+144 264+125 67.9+308  127+59 24+74 177462
Onportunisti 2658 2436 2580 2443 2763 3465
PPOTRUMISHC 440+ 777 1299+ 667 141.4+302 1268 +78.1 1263 +428 160.1+60.4
Total biome 2793 2523 2760 2482 2813 3514

Notes: For each assemblage, the first row displays the total number of unique taxa, while the second row shows
the monthly average (+ SD) number of coexisting taxa. The last row shows the total number of taxa present in
each microbiome.

Table 2: Percentage of taxa within each assemblage and host assigning to sponge-specific clusters.

HMA LMA
A. oroides  C. reniformis  P. ficiformis A. damicornis D. avara C. crambe
Core 422 45.6 60 25 0 12.5
Transient 433 40.7 47.1 25.8 9.1 9.8
Opportunistic 22.8 33.9 35.6 22.2 9.5 11.8
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Figure 1: Microbiome compositional similarity across hosts and months. Non-metric multidimensional scaling
(NMDS) calculated from Jaccard distances among all 36 monthly samples for each host. Colors and shapes denote all
monthly samples from a given host species. Host samples are surrounded by an ellipse showing the 95% confidence
interval around monthly samples. Red circles: A. oroides, blue triangles: C. reniformis, pink diamonds: P. ficiformis,
green stars: A. damicornis, yellow crosses (+): D. avara, and orange crosses (x): C. crambe. ANOSIM: R=0.767,
P<0.001
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Figure 2: Microbiome compositional similarity across hosts and assemblages. Non-metric multidimensional scaling
(NMDS) calculated from Jaccard distances among monthly samples for each host and assemblage. Colors and shapes
denote all monthly samples from a given host and assemblage, respectively. Different shapes for each host species;
circles: A. oroides, triangles: C. reniformis, diamonds: P. ficiformis, stars: A. damicornis, crosses (+): D. avara,
crosses (x): C. crambe. Different colors for each core microbiome; red: A. oroides, blue: C. reniformis, pink: P.
ficiformis, green: A. damicornis, yellow: D. avara, and orange: C. crambe. Dark gray denotes transient and light gray
opportunistic assemblages, respectively.
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Figure 3: Taxonomic profiles of core microbiomes across hosts. Taxonomic classification at the phylum level of core
taxa and their relative contribution to species richness for each core microbiome. The core microbiomes of HMA hosts
harboured a larger taxonomic diversity than those of LMA hosts.
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Figure 4: Abundance-stability relationship across microbiomes. The relationship between coefficient of variation (CV)
and (log) mean abundance of individual taxa for host A. oroides (panel A) and host A. damicornis (panel B). Overlaying
points have been separated by adding jitter (random noise) of 0.1 in both y and x direction. Opportunistic, transient
and core taxa are each shown by an increasing grey scale. Individual core and transient taxa are generally more stable
(Kruskal-Wallis test: H =2198, df=2, P<0.001 two-tailed; Dunn’s post-hoc test with bonferroni correction; P <0.001)
and abundant (Kruskal-Wallis test: H =1694, df= 2, P<0.001; Dunn’s post-hoc test with bonferroni correction; P<
0.001 two-tailed) than opportunistic taxa. The gray dashed vertical lines mark a potentially critical area by which core
microbiome temporal stability can be predicted. If there are only a few abundant and occasional taxa relative to the
number of core taxa, stability is predicted to be high (A. oroides, panel A), whereas if there are many abundant and
occasional taxa compared to the number of core taxa, stability is predicted to be low (A. damicronis, panel B). See
Figures [S4}{S7] for the remaining hosts.
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Figure 5: The contribution of assemblage type to microbiome abundance and its aggregated stability. The inner y-axis
shows the contribution of the aggregated microbial relative abundance for each assemblage and host. Each box shows
the median including the first and third quartiles (the 25" and 75" percentiles), representing temporal variation. The
outer y-axis shows invariability (i.e., the inverse of variability) at the community (blue dots) level and population (red
dots) for each assemblage and host. It is interesting to note that community-wide synchrony increases as the two
dots approach each other. The figure is ordered from the highest to the lowest in terms of core density. Lowercase
letters denote different significant scenarios (Dunn’s post-hoc test for Kruskal-Wallis rank sum test (see Table [S4] for
more details). a: the core microbiome was significantly different from the transient and opportunistic assemblages,
but transient and opportunistic assemblages were not significantly different from each other. b: all assemblages were
significantly different. c: the core microbiome and the opportunistic assemblage were not significantly different, but
the core microbiome and transient assemblage, and the transient and the opportunistic assemblage were significantly
different from each other. d: no significant differences between any assemblages. What emerged was three high-
density (scenario a & b), and three low-density (scenario ¢ & d) cores, respectively.
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Figure 6: Processes explaining temporal variation in core microbial population abundances and the frequency of
different interspecific interactions inferred from the HMA core microbiomes. Panel A shows the relative contribution
of inter- and intraspecific (i.e. density-dependence) interactions and environmental variability to temporal variation
in microbial population abundances across core microbiomes. In all hosts, core microbiome dynamics were mainly
driven by intraspecific interactions (i.e. density-dependence). While core microbiomes were relatively equally affected
by environmental variability, an important driver of the dynamics in HMA cores were interspecific interactions which
was almost negligible in LMA cores. Panel B shows the relative frequency of all possible interaction types within
HMA cores. Commensalism {+, 0} and amensalism {—, 0} were the most frequent interaction types across HMA cores.
Competitive {—,—} and exploitative {+,—} interactions were exceptionally rare. Noteworthy, cooperative interactions
{+,+]} was never inferred.
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Figure 7: The core microbiome network of HMA host A. oroides. Nodes represent core taxa and links their inferred
ecological interactions. Node size is scaled to their degree (i.e. in and out-going links). Colors correspond to different
bacterial phyla and dash and solid lines represent positive and negative interactions, respectively. Nodes marked with
SC correspond to taxa assigning to sponge-specific clusters. See Figure @ for the remaining two HMA hosts.
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s« Supplementary information

Table S1: Median (including 15! and 3rd quartiles) of average monthly abundances of taxa assigning to sponge-specific
clusters shown for each assemblage and host

HMA LMA
A. oroides  C. reniformis P. ficiformis A. damicornis D. avara C. crambe
1% Qu. 6.7 6.6 4.2 29.2 0 1.8
Core Median 11.3 19.8 6.7 50.3 0 16.5
3" Qu. 19.2 32.8 13.8 71.5 0 39.0
1% Qu. 0.6 1.1 1.0 3.1 0.6 1.0
Transient Median 1.0 1.6 1.7 3.9 0.8 2.1
3" Qu. 23 3.1 25 5.2 1.2 33.9
1% Qu. 0.0 0.0 0.0 0.0 0.0 0.0
Opportunistic ~ Median 0.0 0.0 0.0 0.0 0.0 0.1
3 Qu. 0.1 0.1 0.1 0.1 0.1 0.1

Table S2: Percentage (mean + SD) of taxa belonging to sponge-specific clusters across assemblages within each hosts’
“stochastic realisation”.

HMA LMA
A. oroides  C. reniformis P. ficiformis A. damicornis  D. avara C. crambe
Core 485+0.21 486+020 509+022 48.6+0.19 50.8+0.23 48.2+0.20
Transient 30.1 £ 1.6 29.8 £ 1.6 302+ 1.8 29.7+1.6 302+1.7 298+1.6
Opportunistic 29+0.1 2.8+0.1 34+0.1 2.8+0.1 33+0.1 2.8+0.1

Note: Mean + SD were calculated from 999 permutations of the null model.
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Table S3: Median (including 1 and 3" quartiles) (mean + SD) of the average monthly abundance of taxa assigning

to sponge-specific clusters across assemblages within each hosts”

stochastic realisation”.

HMA LMA
A. oroides  C. reniformis P. ficiformis A. damicornis  D. avara  C. crambe
1% Qu. 1.8 +0.2 1.7+ 0.2 1.4+0.1 1.8 +0.2 14+0.2 1.9+0.2
Core Median 2.6 +0.2 25+0.2 1.9 + 0.1 2.6 +0.2 21+02 2.6+0.2
374 Qu. 34+02 33+0.2 2.7+0.2 33+0.2 30£02 34+02
1% Qu. 32+03 3.1+0.2 24+0.2 32+0.2 24402 33+02
Transient Median 44+03 43+0.3 34+0.2 44 +0.3 36+02 45+03
374 Qu. 59+04 5.8+03 47+03 58+04 5103 6.0+04
1% Qu. 16.0+ 1.0 154+1.0 11.5+0.8 15.6 + 1.1 11.2+0.8 163 +1.1
Opportunistic = Median 202+1.2  200+1.2 173 +1.1 20.0 +1.2 171+1.0 203+1.3
374 Qu. 23.7+14 23.6+14 21.9+1.2 238+ 1.5 248+13 242+14

Note: Mean + SD were calculated from 999 permutations of the null model.

Table S4: Mean rank sums for relative abundance across assemblages and hosts. For each host, a Kruskal-Wallis rank
sum test was computed to test for differences between assemblages. A. oroides: H=40.103, df=2, P<0.001 two-tailed,
C. reniformis: H=31.222, df=2, P<0.001 two-tailed, C. crambe: H=40.696, df=2, P<0.001 two-tailed D. avara:
H=48.474, df=2, P<0.001 two-tailed, A. damicornis: H=17.747, df=2, P<0.001 two-tailed; P. ficiformis: H=3.567,
df=2, P=0.168 two-tailed. If there was a significant difference, Dunn’s post-hoc test for pairwise comparisons with
bonferroni correction was used.

HMA LMA
A. oroides  C. reniformis P, ficiformis A. damicornis D. avara C. crambe
Core 81.47 74.33 78.33 73.06 59.32 46.50
Transient 40.15 33.17 31.25 25.17 37.11 59.28
Opportunistic 41.88 56.00 53.92 65.28 67.07 57.72
a b b c c d

Note: The lowercase letters indicate different significant scenarios (see Figure [5]in main text). a: the core
microbiome was significantly different from the transient and opportunistic assemblages, but transient and op-
portunistic assemblages were not significantly different from each other. b: all assemblages were significantly
different. c: the core microbiome and the opportunistic assemblage were not significantly different, but the core
microbiome and transient assemblage, and the transient and the opportunistic assemblage were significantly
different from each other. d: no significant differences between any assemblages. What emerged was three
high-density (scenario a & b), and three low-density (scenario ¢ & d) cores, respectively.
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Figure S1: Microbiome compositional similarity across hosts and lifestyles. Non-metric multidimensional scaling
(NMDS) calculated on Jaccard distances among monthly samples for each host lifestyle (i.e., HMA and LMA). Each
lifestyle is surrounded by an ellipse showing the 95% confidence interval around their corresponding 108 monthly
samples. Red circles represent all monthly samples from the three HMA hosts, and green diamonds denote all monthly
samples belonging to the three LMA hosts. ANOSIM: R=0.268, P<0.001.
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Figure S2: Taxonomic profiles of core microbiomes across hosts. Taxonomic classification at the phylum level of core
taxa assigning to sponge-specific clusters and their relative contribution to species richness for each core microbiome.
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Figure S3: Microbiome compositional similarity across hosts’ “stochastic realization”. Non-metric multidimensional

scaling (NMDS) calculated on the average Jaccard distances between monthly samples for each hosts

s

stochastic

realization”. The average distance was calculated from 999 permutations of the null model for each host. ANOSIM:
R=-0.017, P=1. See Null model in the Methods section for more details.
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Figure S4: Abundance-stability relationship across microbiomes and hosts. The relationship between coefficient of
variation (CV) and the (log) mean abundance of individual taxa for host C. reniformis. Overlaying points have been
separated by adding jitter (random noise) of 0.1 in both y and x direction. Opportunistic, transient and core taxa are
each shown by an increasing grey scale (light-to-dark). Individual core and transient taxa are generally more stable
(Kruskal-Wallis test: H =2198, df=2, P<0.001 two-tailed; Dunn’s post-hoc test with bonferroni correction; P <0.001)
and abundant (Kruskal-Wallis test: H =1694, df= 2, P<0.001; Dunn’s post-hoc test with bonferroni correction; P<
0.001 two-tailed) than opportunistic taxa. The gray dashed vertical lines mark a potentially critical area by which
core microbiome temporal stability can be predicted. If there are only a few abundant and occasional taxa relative
to the number of core taxa, stability is predicted to be high, whereas if there are many abundant and occasional taxa
compared to the number of core taxa, stability is predicted to be low.
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Figure S5: Abundance-stability relationship across microbiomes and hosts. The relationship between coefficient
of variation (CV) and (log) mean abundance of individual taxa for host P. ficiformis. Overlaying points have been
separated by adding jitter (random noise) of 0.1 in both y and x direction. Opportunistic, transient and core taxa are
each shown by an increasing grey scale (light-to-dark). Individual core and transient taxa are generally more stable
(Kruskal-Wallis test: H =2198, df=2, P<0.001 two-tailed; Dunn’s post-hoc test with bonferroni correction; P <0.001)
and abundant (Kruskal-Wallis test: H =1694, df= 2, P<0.001; Dunn’s post-hoc test with bonferroni correction; P<
0.001 two-tailed) than opportunistic taxa. The gray dashed vertical lines mark a potentially critical area by which
core microbiome temporal stability can be predicted.. If there are only a few abundant and occasional taxa relative
to the number of core taxa, stability is predicted to be high, whereas if there are many abundant and occasional taxa
compared to the number of core taxa, stability is predicted to be low.
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Figure S6: Abundance-stability relationship across microbiomes and hosts. The relationship between coefficient of
variation (CV) and (log) mean abundance of individual taxa for host D. avara. Overlaying points have been separated
by adding jitter (random noise) of 0.1 in both y and x direction. Opportunistic, transient and core taxa are each shown
by an increasing grey scale (light-to-dark). Individual core and transient taxa are generally more stable (Kruskal-Wallis
test: H =2198, df=2, P<0.001 two-tailed; Dunn’s post-hoc test with bonferroni correction; P <0.001) and abundant
(Kruskal-Wallis test: H =1694, df= 2, P<0.001; Dunn’s post-hoc test with bonferroni correction; P< 0.001 two-tailed)
than opportunistic taxa. The gray dashed vertical lines mark a potentially critical area by which core microbiome
temporal stability can be predicted. If there are only a few abundant and occasional taxa relative to the number of core
taxa, stability is predicted to be high, whereas if there are many abundant and occasional taxa compared to the number
of core taxa, stability is predicted to be low.
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Figure S7: Abundance-stability relationship across microbiomes and hosts. The relationship between coefficient of
variation (CV) and (log) mean abundance of individual taxa for host C. crambe. Overlaying points have been separated
by adding jitter (random noise) of 0.1 in both y and x direction. Opportunistic, transient and core taxa are each shown
by an increasing grey scale (light-to-dark). Individual core and transient taxa are generally more stable (Kruskal-
Wallis test: H =2198, df=2, P<0.001 two-tailed; Dunn’s post-hoc test with bonferroni correction; P <0.001) and
abundant (Kruskal-Wallis test: H =1694, df= 2, P<0.001; Dunn’s post-hoc test with bonferroni correction; P< 0.001
two-tailed) than opportunistic taxa. The red dashed lines mark a potentially critical area by which core microbiome
temporal stability can be predicted. If there are only a few abundant and occasional taxa relative to the number of core
taxa, stability is predicted to be high, whereas if there are many abundant and occasional taxa compared to the number
of core taxa, stability is predicted to be low.
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Figure S8: Temporal turnover for each assemblage and host. Total temporal turnover (D) for for each assemblage

and host. Colors denote host species. Red: A. oroides, blue: C. reniformis, pink: P. ficiformis, green: A. damicornis,
yellow: D. avara, and orange: C. crambe.
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Figure S9: Temporal turnover for each assemblage and host. Temporal turnover in terms of species composition
(D1) for for each assemblage and host. Colors denote host species. Red: A. oroides, blue: C. reniformis, pink: P.
ficiformis, green: A. damicornis, yellow: D. avara, and orange: C. crambe. Transient and opportunistic assemblages
were mainly governed by changes in microbial composition (Mann-Whitney U-Test: U=10223, P<0.001 two-tailed;
Mann-Whitney U-Test: U=696, P<0.001 two-tailed, respectively). See Methods section for detailed information.
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Figure S10: Temporal turnover for each assemblage and host. Temporal turnover in terms of total abundance (D2) for
for each assemblage and host. Colors denote host species. Red: A. oroides, blue: C. reniformis, pink: P. ficiformis,
green: A. damicornis, yellow: D. avara, and orange: C. crambe. Core microbiomes were overall driven by changes in
abundance (Mann-Whitney U-Test: U=16676, P<0.001 two-tailed). See Methods section for detailed information.
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Figure S11: Processes explaining temporal variation in core microbial population abundances across hosts. Proportion
of variance explained by species interactions (i.e., inter- and intreaspecific interactions) and environmental variability
(i.e., variance explained by the included covariates and residual environmental variability) for host A. oroides. Colors
are in gray scale from interspecific interactions (darkest) to variance explained by covariates (lightest).
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Figure S12: Processes explaining temporal variation in core microbial population abundances across hosts. Proportion
of variance explained by species interactions (i.e., inter- and intreaspecific interactions) and environmental variability
(i.e., variance explained by the included covariates and residual environmental variability) for host C. reniformis.
Colors are in gray scale from interspecific interactions (darkest) to variance explained by covariates (lightest).
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Figure S13: Processes explaining temporal variation in core microbial population abundances across hosts. Proportion
of variance explained by species interactions (i.e., inter- and intreaspecific interactions) and environmental variability
(i.e., variance explained by the included covariates and residual environmental variability) for host P. ficiformis. Colors
are in gray scale from interspecific interactions (darkest) to variance explained by covariates (lightest).
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Figure S14: Processes explaining temporal variation in core microbial population abundances across hosts. Proportion
of variance explained by species interactions (i.e., inter- and intreaspecific interactions) and environmental variability
(i.e., variance explained by the included covariates and residual environmental variability) for host A. damicornis.
Colors are in gray scale from interspecific interactions (darkest) to variance explained by covariates (lightest).
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Figure S15: Processes explaining temporal variation in core microbial population abundances across hosts. Proportion
of variance explained by species interactions (i.e., inter- and intreaspecific interactions) and environmental variability
(i.e., variance explained by the included covariates and residual environmental variability) for host D. avara. Colors
are in gray scale from interspecific interactions (darkest) to variance explained by covariates (lightest).
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Figure S16: Processes explaining temporal variation in core microbial population abundances across hosts. Proportion
of variance explained by species interactions (i.e., inter- and intreaspecific interactions) and environmental variability
(i.e., variance explained by the included covariates and residual environmental variability) for host C. crambe. Colors
are in gray scale from interspecific interactions (darkest) to variance explained by covariates (lightest).
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Figure S17: Interaction probabilities across HMA core microbiomes. The probability of all possible interactions
within each core microbiome belonging to the HMA hosts. This was calculated from the posterior distribution of the
interaction matrix «;,; (Equation 9 in the Methods section). The two y-axes show the probability for species j to
interact with species i and vice versa. The x-axis displays all possible pairwise interactions. Blue and red color
denote the probability for positive (blue) and negative (red) interactions. Gray depicts the remaining zero probability.
Note that an interaction can have a certain probability of being both positive and negative.
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Figure S18: The most probable interactions within the HMA core microbiomes. A subset of the most probable
interactions shown in Figure[ST7] The number of interactions corresponds to the posterior average number of links
with the highest probability for each HMA core microbiome. The two y-axes show the probability for species j to
interact with species i and vice versa. The x-axis displays all possible pairwise interactions. Blue and red color
denote the probability for positive (blue) and negative (red) interactions. Gray depicts the remaining zero probability.
Note that an interaction can have a certain probability of being both positive and negative.
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Figure S19: Frequency histogram of interaction strengths for the core microbiome belonging to the HMA hosts.
Interaction strength was calculated from the posterior distribution of the interaction matrix «; ;. The distribution is
skewed towards many weak and a few strong interactions.
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Figure S20: The core microbiome network for HMA hosts C. reniformis and P. ficiformis. Nodes represent core taxa
and links their inferred ecological interactions. Node size is scaled to their degree (i.e. in and out-going links). Colors
correspond to different bacterial phyla and dash and solid lines represent positive and negative interactions,
respectively. Nodes marked with SC correspond to taxa assigning to sponge-specific clusters.
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