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Abstract

Motivation: Understanding the relationship between protein structure and function is a fundamental
problem in protein science. Given a protein of unknown function, fast identification of similar protein
structures from the Protein Data Bank (PDB) is a critical step for inferring its biological function. Such
structural neighbors can provide evolutionary insights into protein conformation, interfaces and binding
sites that are not detectable from sequence similarity. However, the computational cost of performing
pairwise structural alignment against all structures in PDB is prohibitively expensive. Alignment-free
approaches have been introduced to enable fast but coarse comparisons by representing each protein as a
vector of structure features or fingerprints and only computing similarity between vectors. As a notable
example, FragBag represents each protein by a “bag of fragments”, which is a vector of frequencies of
contiguous short backbone fragments from a predetermined library.
Results: Here we present a new approach to learning effective structural motif presentations using deep
learning. We develop DeepFold, a deep convolutional neural network model to extract structural motif
features of a protein structure. Similar to FragBag, DeepFold represents each protein structure or fold
using a vector of learned structural motif features. We demonstrate that DeepFold substantially outper-
forms FragBag on protein structural search on a non-redundant protein structure database and a set of
newly released structures. Remarkably, DeepFold not only extracts meaningful backbone segments but
also finds important long-range interacting motifs for structural comparison. We expect that DeepFold
will provide new insights into the evolution and hierarchical organization of protein structural motifs.
Availability: https://github.com/largelymfs/DeepFold
Contact: jianpeng@illinois.edu

1 Introduction

The comparison of protein structures has been a fundamental and widely applicable task in structural
biology. Given a new protein with unknown functions, searching similar protein structures from existing
databases is a critical step for predicting its function. It is particularly valuable when the query pro-
tein shares little sequence similarity with existing ones, where sequence alignment algorithms, such as
BLAST[4], cannot easily identify evolutionary relationships. Protein structural search against a database
is often prohibitively expensive because performing pairwise structure alignments against all proteins in
a database is computationally linear to the number of protein structures in the database, which is usually
large. Due to the advances in crystallography and cryo-EM, the Protein Data Bank[1], a database of
solved protein structures, has recently been increasing rapidly, with new protein structures solved almost
every day, though the number of possible protein folds is thought to be bounded. Structural classifica-
tions of PDB, including SCOP[7] and CATH[18], enable us to explore the hierarchical organization of
protein structure space and provide useful guidelines on the relationship between protein structure and
functions by identifying structural neighbors. However, the classification of structural neighbors may
not be optimal, as there are neighbors, though functionally and structurally similar, classified differ-
ently. Thus, fast and accurate structural search against a large-scale protein structure database is still
a challenge.

∗To whom correspondence should be addressed.
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Arguably the most popular structural comparisons approaches are structural alignment-based meth-
ods [30, 13, 16, 24, 22]. Pairwise structural alignment algorithms take 3D coordinates of two protein
structures and optimize a predefined geometric similarity measure using heuristics, such as simulated
annealing, dynamic programming and local search. Although these approaches can provide residue-
resolution alignments with high accuracy, they are often computationally expensive. Such computational
cost makes large-scale structural search not practical when coping with a very large database since the
runtime of such structural alignment algorithms scales linearly to the number of proteins in the structure
database.

Another entirely different approach for structural search is to represent protein structures using
structural features as 1D vectors and then perform similarity calculation of such vectors without per-
forming an alignment. The idea of alignment-free algorithms was initially introduced for protein sequence
comparisons. A feature vector is computed to represent each protein sequence for fast cosine- or Eu-
clidean distance-based similarity calculations. For instance, CD-HIT computes a histogram of k-mers
for fast sequence clustering [9]. Other examples include k-mer mismatch kernels for homology search
and compositional methods for metagenomic binning [6, 10]. In many applications, these methods can
provide fast comparisons with comparable performance to the alignment-based methods. Recently, sev-
eral alignment-free protein structural comparisons have been proposed [3, 14, 31]. By representing each
protein as a vector of structure features or fingerprints, we can compute the similarity between vectors
to find structural neighbors in a large database. As a notable example, FragBag represents each protein
by a “bag of fragments”, which is a vector of frequencies of a set of predefined contiguous short backbone
fragments [3]. Although it achieves comparable accuracy to some structural alignment algorithms, the
performance of FragBag is not satisfactory when the database becomes large. A possible reason is that
FragBag only considers contiguous backbone fragments, which captures only local property of the whole
structure. This limitation is sub-optimal because important long-range interacting patterns are ignored.

Here we present a new approach to learning an innovative structural motif presentation using deep
learning. Inspired by FragBag, we hope to further generalize it by learning conserved structural motif
for protein structure representation. We develop DeepFold, a deep convolutional neural network model
to extract structural motif features of a protein structure from its Cα pairwise distance matrix. This
neural network model extracts local patterns from residue contact patterns and composes low-level
patterns into high-level motifs from layer to layer. From this neural network, we can represent each
protein structure/fold using a vector of structural motifs and perform the structural search by only
computing vector similarity. This neural network model is trained in a supervised manner by fitting
TM-scores [29, 30], a structural similarity score, between existing protein structures from a nonredundant
SCOP database. We demonstrate that DeepFold substantially outperforms three existing alignment-free
methods, FragBag [3], SGM [14] and SSEF [31], on protein structure search for a set of newly released
PDB structures in 2016. DeepFold achieves improved structural search accuracy and obtains better
structural neighbors. We also show that DeepFold not only extracts conserved backbone segments but
also identifies important long-range interacting structural motifs in the representation. We expect that
DeepFold will provide new insights into the evolution and hierarchical organization of protein structural
motifs.

2 Background: protein structure comparison and retrieval

2.1 Structural alignment

Pairwise structural alignment algorithms take two protein structures as input and identify geometri-
cally aligned substructures according to a predefined structural similarity score. Notable examples of
structural alignment algorithms include TM-align [30], Combinatorial Extension (CE) [16], DeepAlign
[22], Matt [13] and FATCAT [24]. It is worth noting that, given a structural similarity score, sophis-
ticated optimization and sampling techniques are usually required to optimize the score and find the
best alignment and substructures. As a result, the computation of aligning two structures is expensive.
Therefore, using structural alignment algorithms for structural neighbor retrieval would require O(n)
pairwise structural alignments, where n is the size of the structure database used for retrieval. By Febru-
ary 1st of 2017, there have been more than 117, 000 protein structures deposited in the PDB. Even the
non-redundant SCOP and CATH include more than 13, 000 structural domains. Thus, naively applying
structural alignment algorithms for protein structure retrieval is prohibitively expensive.
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2.2 Alignment-free methods

In contrast to structural alignment algorithms, alignment-free methods have been proposed for accel-
erating structural neighbor search. Instead of optimizing a complex score for identifying geometrically
similar substructures, alignment-free methods represent each protein as a set of structural patterns or
fingerprints encoded in a feature vector and compare these representations via very simple similarity
calculations like cosine- or Euclidean similarity. For example, Zotenko et al. [31] count the frequencies
of 1, 500 secondary structure triplets (SSEF) as a vector for representing a protein structure. Scaled
Gaussian Metric (SGM) [14] represent a protein structure using 30 global backbone topological mea-
sures. Recently, Kolodny and co-workers developed FragBag [3], a ”bag-of-words” vector representation
including frequencies of local contiguous fragments in the protein backbone. The optimal performance
was achieved with a library of 400 backbone segments, each with 11 contiguous residues. Although
FragBag shows improved retrieval performance over previously existing alignment-free methods, the ac-
curacy of FragBag is still not satisfactory compared to advanced alignment-based methods. Possible
reasons are that 1) the backbone fragment library may not be optimal and that 2) the long-range inter-
acting patterns, which are known to be highly important in discriminating different protein fold, were
not considered.

3 Learning structural motifs for protein structure representa-
tion

We propose DeepFold, a novel deep learning based method to project tertiary protein structures into a
low-dimensional vector space. Different from conventional protein structure filtering methods like Frag-
Bag, our method does not need a predefined fragment library but automatically identifies relevant local
structural protein motifs and long-range interacting motifs. Benefiting from the powerful representation
learning ability of deep neural network, DeepFold is able to construct a more powerful protein structure
representation, achieving a better performance on the task of protein structural searching.

3.1 Protein structure comparison

Suppose we have a query structure xQ and two candidate template protein structures xA, xB . By
applying the DeepFold neural network on these structures as a feature extractor, we obtain three corre-
sponding structural fingerprint vectors vQ, vA, vB . With these fingerprints, we compute the similarity
of each candidate to the target query by taking the cosine similarity of their corresponding vectors and
ranking all candidates from a structure database accordingly. A schematic diagram of this procedure
can be found in Figure 1. Thus, how to effectively represent each protein into a low-dimensional vector
space is quite critical for enabling accurate protein structure search.

Figure 1: Alignment-free structure comparison. The query protein structure is mapped into a low-
dimensional fingerprint vector. We then compute a cosine similarity score between the query fingerprint
vector and the vector of a template structure. Similar structures share high similarity scores, while dis-
similar structures share low similarity scores.
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3.2 Deep convolutional neural network

Deep convolutional neural networks (DCNNs) are natural for learning hierarchical representations of
image data. Multiple layers of convolutional filters are constructed for identifying local patterns in a
nested manner. Inspired by the recent successes of DCNNs in computer vision and image processing,
we propose to develop a deep convolutional neural network model, DeepFold, to learn structural motifs
for structural comparison.

Given a tertiary structure of a protein, we first calculate the Cα pairwise distance matrix as the raw
representation feature, aiming at preserving the geometric information of the input protein structure.
We denote the proteins structure as x and its pairwise distance matrix as D, each entry Dij being the
Cα distance between ith residue and jth residue. Due to the existence of missing residues in protein
structures, directly taking the distance matrix as input may later cause numerical issues in the neural
network. So instead, we use the following tensor as input.

Xijk = D−2kij , k = 1, ...,K (1)

where X ∈ RL×L×K and K is an integer indicating the inverse power of the squared distances. It is worth
noting that the choice of this inverse power series of distances is similar to several distance-dependent
approximations in force field energy functions, such as van de Waals and electrostatic energies [23, 2].

Figure 2: Deep neural network structure of DeepFold: Given a protein structure, we firstly compute
the raw distance features. Then we feed the features into a deep convolutional neural network that consists
of N convolutional blocks. Inside each block, we apply a convolutional layer, followed by a ReLU nonlinear
layer. The final output of DeepFold is a vector representation of structural motifs.

As shown in Figure (2), a deep neural network, DeepFold, takes the transformed input feature of X,
followed by a sequence of blocks of transformations. Each block contains the stacked layers including a
convolutional layer and a nonlinear transformation ReLU layer. After the last convolutional layer, we
apply a mean-pooling layer and L2 normalization to aggregate features and obtain the final fingerprint
representation f(X) of the input protein structure. Taken as a whole, our deep net is a non-linear map-
ping from a high-dimensional structural input X to a low-dimensional fingerprint representation f(X).
Specifically, a convolutional layer takes the output from the previous layer Hn−1 ∈ RLn−1×Ln−1×Kn−1

as input and compute output Hn ∈ RLn×Ln×Kn in the following way. For each k ∈ {1, 2, ..,Kn}

Hk
n = ReLU(W k

n ∗Hn−1 + bkn) (2)

where for the n-th convolutional layer, W k
n ∈ Rl×l×Kn−1 is a weight tensor of Kn−1 convolutional filter

weights of size l × l. The function operator (∗) is 2-dimensional convolution operator over the first
two dimensions of the input Hn−1, and bn is a bias term. Intuitively, a filter in the first convolutional
layer can be seen as a local feature extractor on the inverse pairwise distance matrix with the goal to
capture important local residue contact patterns as a structural motif. In higher layers, a filter can be
seen to compose low-level structural motifs into high-level motifs. However, note that the convolutional
operation essentially performs dot products between the filters and local regions of the input features.
A common implementation of the convolutional layer is to take advantage of this fact and formulate
it as matrix multiplications. The output dimensions Ln × Ln depend on the stride which further
reduces the feature dimensionality by controlling how the convolutional filters slide across the input of
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each layer. After each convolutional layer, a Rectified Linear Unit (ReLU) function [8] is applied for
nonlinear activation. The ReLU can be implemented by simply thresholding a matrix of activations at
zero by ReLU(h) = max(0, h). Given any tensor/matrix/vector input h, ReLU takes elementwise max
operations. Compared to traditional logistic or tanh functions, ReLU is found to greatly accelerate the
convergence of stochastic gradient descent due to its linear, non-saturating form.

After the last convolutional layer, we get KN feature maps with the size of LN ×LN . Then for each
feature map i ∈ {1, 2, ..,KN}, we extract the diagonal elements of each feature map and take the mean
pooling (that is, calculating the mean value of diagonal elements). Therefore, we get the KN -dimensional
vector representation of f(x). For optimization efficiency, each vector is normalized with L2 Norm so
that all the vectors are projected on a sphere ||f(x)||2 = 1. Similar to the FragBag representation,
DeepFold maps an input tertiary structure into a low-dimensional one-dimensional fingerprint vector
but this representation is parameterized via a deep neural network, with each dimension encoding a
specific structural motif. Therefore, DeepFold is more powerful than FragBag in that it extracts not
only contiguous backbone fragments but also the long-range interacting motifs, which are completely
omitted by FragBag. One can easily see that FragBag becomes a special case of DeepFold if we only
consider the near-diagonal region of the pairwise distance matrix as input. Our in-house experiments
showed that the learning convergence of this special case is poor in practice.

3.3 Learning to compare protein structures

Given two proteins xA and xB , with their normalized representations f(xA) and f(xB), we expect the
similarity between f(xA) and f(xB) can reflect the structural similarity between xA and xB . So if two
proteins have very similar structures, we should map their features f(xA) and f(xB) to be close to each
other, while if xA and xB have different structures, we should push their fingerprint features far from
each other. Although pairwise structural alignments are slow in protein structural retrieval, we can
precompute them on a training dataset and use the resultant structural similarity scores to guide the
training of DeepFold. So our key idea here is to fit structural comparison scores using powerful deep
neural networks, thus enabling fast alignment-free comparison and retrieval for new query proteins. To
implement this idea for training DeepFold, we use the cosine similarity score of f(xA) and f(xB) and
apply the well-known max-margin ranking loss function [21] to discriminate structurally similar proteins
from dissimilar ones.

To apply the max-margin rank loss function, we firstly define what positive (similar) and negative
(dissimilar) pairs of proteins are. In this work, we use the structural alignment program TM-align [29]
to measure the structural similarity of two proteins. Based upon a dynamic programming algorithm,
TM-align performs structural alignment of the two input structures to produce an optimal superposition
and return a TM-score that scales the structural similarity in the range of [0, 1]. Therefore, for a protein
xA, we define all pairs (xA, xB) from the database with TM-score higher than p∗TMmax(xA) as positive
pairs, where TMmax(xA) is the maximal TM-score between xA and other proteins in the database, and
p is a hyper-parameter chosen to be 0.9. So only very similar structures in the database are considered
to construct positive pairs in training. For all other pairs that have scores smaller than this threshold,
we consider them as negative pairs. It is important to note that other structural similarity scores or
structural alignment algorithms can be used here. We choose TM-align/score as it has been shown to
be both fast and accurate in structural classification and often more robust than many other structural
similarity scores [30].

With the defined positive and negative pairs, our target is to make the margin between all positive
pairs and negative pairs as large as possible. Formally, for a specific protein xA, suppose the set of all
positive pairs is X+

A while the negative set is X−A . Thus, the margin loss could be defined as :

L(xA) =
∑

x+∈X+
A

∑
x−∈X−

A

max(0, cos(f(xA), f(x−)) (3)

− cos(f(xA), f(x+)) +m) (4)

where m is a small positive margin value, which is chosen as 0.1 in this work. Then, the objective is to
minimize this margin loss and learn the parameters {W, b} in all layers of the neural network as defined
in the above.
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Efficient online training. In above Equation 4, to optimize the loss function, we need to sum over
all positive and negative training pairs and minimize the rank loss function. However, the number
of training pairs can be very huge, and thus it is not feasible to optimize them all at one time. In
addition, the imbalance of positive and negative pairs pose another challenge in training. Here, we
use the stochastic gradient descent to only randomly take a small batch of training samples at in each
iteration. Specifically, we use mini-batches to do the feed-forward passes and back-propagation in each
iteration. Motivated by [15], we design an simple yet effective sampling method to obtain a fast empirical
convergence by selecting effective pairs. Given a protein xA, we consider the most effective positive pairs
and negative pairs (xA, x

+
a ) and (xA, x

−
a ) accordingly as:

x+A = arg min
x∈X+

cos(f(xA), f(x)) (5)

x−A = arg max
x∈X−

cos(f(xA), f(x)) (6)

Intuitively, we identify those positive pairs that are easier to get confused with negative pairs (furthest
positive pairs) and those negative pairs that are easier to get confused to positive pairs (nearest negative
pairs) within each mini-batch. If mini-batches may not have any positive pair, we add at least one
positive pair for each protein in the mini-batch to balance the training. Also, inside each mini-batch,
we identify negative targets that are most similar to the query and incorporate the margin between all
positive pairs and these k negative pairs to make the training process more effective.

3.4 Implementation details

The first convolutional layer consists of 128 filters of size 12 × 12 with a stride 2 × 2. After that, we
connect it with the second layer of 256 kernels of size 4×4 with a stride of 2×2. From the third layer, we
stack 3 identical convolutional layers, each with the size of 4× 4 and a stride 2× 2. Finally, the output
of stacked layers is linked to 400 filters with a size of 4 × 4 and a stride of 2 × 2. The total dimension
of 400 is selected to match the size of the vector representation used in FragBag. Based on the features
extracted, we capture only diagonal elements and perform mean pooling for each filter. Then we conduct
L2 normalization and project all final fingerprints into the space of sphere ||x||2 = 1.

DeepFold is implemented with the Python library Lasagne1 based on Theano platform[20]. In the
optimization, we apply stochastic gradient descent(SGD) with a momentum of 0.9. The learning rate
decay scheme is chosen with AdaGrad[5] algorithm. The mini-batch size is chosen as 64 considering the
memory usage on the graphics card. Within each mini-batch, we sample one positive instance for each
protein and compute top 10 hardest negative instances in the margin loss inside each mini-batch. To
make the model more robust, we used Dropout[19] after each ReLU layer, which could be viewed as
an ensemble trick to enhance the generalization ability of the model. During training, we monitor the
retrieval accuracy using the validation set as queries and the training set as the database. Totally, we
train each model with 100 epochs and select the one with best evaluation accuracy. Then we report the
performance tested with testing fold as queries and all of the training data as database on this selected
model. All the experiments are performed on a workstation with 256GB RAM and a NVIDIA Titan X
graphics card with 12GB memory.

4 Results

4.1 Comparison to existing alignment-free structural retrieval methods

Experimental settings. We construct a sequence-nonredundant structure dataset by filtering out
protein structures with 40% sequence identity in the latest SCOP database (version 2.06) [7]. The
filtered database includes 13, 546 representative protein domains, indexed by the manually curated SCOP
taxonomy classification.

We compare our proposed DeepFold with FragBag [3], the existing state-of-the-art alignment-free
method. With the goal of making a fair comparison, we set the dimensionality of DeepFold representation
to be 400, which is the same parameter used in the default setting of FragBag. Also, we also compare our
approach with two other previous alignment-free methods, including SGM [14] and SSEF [31], which

1https://github.com/Lasagne/Lasagne
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were introduced much earlier. Furthermore, to test whether the long-range patterns are helpful, we
also build a simplified local DeepFold model as a baseline, which only extracts fragmental features from
consecutive residuals, the same as FragBag. This method is denoted by DeepFold(L).

For assessment, we pick structures with TM-Scores that are no less than 0.9 of the highest TM-Score
achievable by structures in the database as the True structural neighbors to a target structure. It is
natural to train and/or test DeepFold with other structural similarity metrics such as GDT TS[27][26],
MaxSub[17] and lDDT[12].To evaluate the accuracy of structural retrieval, we compute the Receiver
Operating Characteristic(ROC) curve for each method and calculate the average area under ROC curve
(AUROC) of all query proteins in the validation set. A more effective algorithm should have a larger
AUROC. In addition to the ROC curve, we also plot the hit@top-k curve, which has been widely used
for evaluating ranking performance in information retrieval [28]. The hit@top-K is calculated as the
percentage of queries in which at least one positive template (i.e. TMscore > 0.9∗TMmax(query)) appear
in the top-K retrieved list from the dataset. We choose the top-K hit rate as the metric motivated by
the fact that if there is a very similar structural neighbor ranked within top K, we can apply a structural
alignment algorithm (such as TM-align[30]) to identify it with at most K pairwise alignments. Besides
the curves mentioned above, we also report the area under the precision-recall curve(AUPRC) along with
hit@top-1,hit@top-5,hit@top-10 in the table, providing alternative metrics for comparison. In addition,
we also compute hit@top-K accuracy by the SCOP classification, i.e. whether two structures are within
the same family classification.
Results on SCOP data. Since DeepFold is trained by supervised learning, in contrast to other
unsupervised alignment-free structural comparison methods, we firstly design a rigorous cross-validation
scheme to evaluate the performance on the SCOP structure database more robustly. Specifically, we
randomly split all structures from the SCOP database into 5 subsets and perform a 5-fold cross validation.
In each fold, we only use pairwise TM-scoresbetween proteins from the training set as ground truth to
train DeepFold model, and for evaluation, we utilize each protein in the validation set as the query to
search in the training set and report the retrieval accuracy. We show ROC curves and Hit curves on
cross-validation and the comparison results in Fig. 3, Fig. 4 and Table 1 respectively.

According to the average ROC Curve of these algorithms, our method significantly outperforms
other alignment-free methods. Our algorithm achieves a much higher true positive rate at the same
level of the false positive rate. Also, our algorithm has a higher AUPRC score, indicating DeepFold
is better at ranking similar structures on the top. Moreover, according to the top-1, top-5, top-10
accuracy, our algorithm has remarkable improvement compared with the strongest baseline, FragBag.
From Fig 4, we also observe the significant improvement in the accuracies determined by the SCOP
family classification, indicating our method is consistantly better and not overfitted to the metric used
for training. The improvement we observed is probably because our algorithm could automatically learn
structural motif which is hard to be computed by human clustering or there maybe consist of several
unknown protein structures which have not be explored by the human before. Furthermore, FragBag
treats each structural motif equally which is not consistent with biological insights. Nevertheless, our
DeepFold can learn the weight for each filter automatically so that each motif is attached with a weight.
In addition, our DeepFold(L) outperforms FragBag according to AUROC but slightly worse according
to hit@top-k and AUPRC. We think the possible reason is that Fragbag is constructed on a set of
representative protein folds, while DeepFold(L) is only trained on a subset of protein fold space in the
cross validation.Furthermore, we study whether long-range structural motifs are useful for improving
retrieval. Both FragBag and DeepFold(L) only consider local structural motif representation, while
DeepFold considers both local structural motif and long-range protein contact patterns at the same
time, which is harvested by the convolutional structure and non-linearity of the networks. The retrieval
accuracy of DeepFold is significantly better than both DeepFold(L) and Fragbag, thus indicating that
long-range structural motifs should be considered for representing protein structures.
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Figure 3: ROC curves and Hit@Top-k curves on SCOP data. The performance of DeepFold is compared with
FragBag and a simplified version of DeepFold with only local backbone segmental features.

Figure 4: Hit@Top-k according to SCOP family classification. The performance of DeepFold is compared with
FragBag and DeepFold(L).

Results on searching recently released proteins in PDB. In addition to the cross-validation on
SCOP, we hope to further evaluate the generalization performance of DeepFold on the newly release
protein structures in PDB. We download all recently released protein structures on the PDB website [1]
from March 1st 2016 to May1st as query proteins and filter them with sequence identity 40%. Further-
more, to avoid potential redundancy between these proteins and the proteins from the SCOP database,
we also remove all queries with a sequence identity higher than 40% to any protein in SCOP dataset.
Then final query dataset we get has 757 proteins. By searching every query protein against all SCOP
protein domains as the database, we report the retrieval performance using the same evaluations as
reported above. The final DeepFold model is used by the ensemble of five models trained in the earlier
5-fold cross-validation on SCOP.

The results are reported in Figure 5 and Table 2. The curves of SGM and SSEF are not shown in
the figure since their accuracies are much worse than DeepFold and FragBag.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2017. ; https://doi.org/10.1101/137828doi: bioRxiv preprint 

https://doi.org/10.1101/137828
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm Dimension AUROC AUPRC Top1 Acc Top5 Acc Top10 Acc

SGM[14] 30 0.768 0.062 0.000 0.001 0.002
SSEF[31] 1500 0.807 0.004 0.001 0.006 0.016

FragBag [3] 400 0.904 0.359 0.496 0.610 0.653

DeepFold (L) 400 0.958 0.341 0.443 0.596 0.662
DeepFold 400 0.979 0.498 0.587 0.736 0.784

Table 1: Performance comparison on the SCOP data.

Algorithm Dimension AUROC AUPRC Top1 Acc Top5 Acc Top10 Acc

SGM[14] 30 0.698 0.048 0.0 0.0 0.003
SSEF [31] 1500 0.800 0.008 0.004 0.009 0.021

FragBag [3] 400 0.876 0.301 0.450 0.558 0.587

DeepFold (L) 400 0.925 0.228 0.315 0.408 0.468
DeepFold 400 0.967 0.375 0.456 0.605 0.663

Table 2: Performance comparison on the recently released proteins.

Figure 5: ROC curves and Hit@Top-k curves on the recently released proteins.

Similar to previous results on SCOP data, DeepFold achieves better performance under all evaluation
metrics on this independent non-redundant dataset, which means that the learned structural motif in
our DeepFold actually can be generalized for newly released proteins that are not included in the train-
ing data. As shown in Figure 5, our Deepfold outperforms other methods by a significant margin. We
also discover the wide margin between our curve and baselines in the hit@top-k rate. Note that though
our DeepFold is only slightly better than FragBag on hit@top-1 accuracy, we are still able to obtain
significant improvement on hit@top-5 and hit@top-10, which further demonstrates the effectiveness of
DeepFold on protein structure search. The difference of the performance on SCOP and newly release
proteins may be caused by different distributions of folds appearing in these two datasets.

Computational Efficiency For computational efficiency, we evaluate the runtime needed to generate
the representations of all 757 protein structures in the recently released structures curated above. On
average, FragBag, one of the most efficient fingerprint algorithm before[3] took 553.202 seconds while
DeepFold only took 20.128 seconds. DeepFold is roughly 25× faster than FragBag. We argue that our
algorithm is faster because it does not need to perform the expensive local structural alignments between
the target protein and fragments in the library. The other reason is that DeepFold fully utilizes the GPU
parallelization and the fast CUDA numerical library, even though it has many parameters in the neural
network model. On CPU, DeepFold took 282.801 second, which is still faster. It is worth noting that we
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tried to implement Fragbag to run on a GPU, but the structure of local structural comparison algorithm
makes it tough to fully exploit the parallelism of GPU cores to outperform the implementation running
on CPU.

Figure 6: Structural motifs learned by DeepFold. The left figure shows the local backbone-segment motifs, and the
right figure shows the long-range interacting contact motifs. Motifs are clustered and visualized according to their
secondary structural composition. 10 representative motifs are shown with their structures.

Figure 7: “False positives” predicted by DeepFold.

4.2 Why does DeepFold work so well?

To interpret the superior performance DeepFold achieves in protein structure search, we analyze the rep-
resentation learned by the deep neural network model and intend to understand the structural meaning
of the representation. To do so, we develop a quantitative approach to visualize the structural motifs
learned in this deep neural network. In detail, we firstly obtain the activation values of filters in each
convolutional layer for each protein in a non-redundant protein structure dataset. Then for each filter,
we obtain the top proteins with the highest activation values and extract the corresponding protein sub-
structures. These substructures are aligned together, and a central substructure is picked to represent
the motif learned by the filter.

To visualize structural motifs in a well-organized way, we utilize t-SNE[11] to perform a nonlinear
dimension reduction, projecting these motifs into a 2D space. Figure 6 illustrates the structural motifs we
learned in DeepFold, where each point denotes a learned structural motif. The left plot presents all local
contiguous structural motifs, while the right one presents long-range interacting motifs. We annotate
each point with a specific color indicating the secondary structure composition of the corresponding
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motif, where blue indicates α-helix, red indicates β-strand and the purple one indicates loop. From
the left plot, we could observe the local structural motifs include not only α-helix, β-strand, but also
some mixture of short α/β structures. In addition, the long-range structural motifs are mainly β-β
interacting patterns, under the complicated environment with β-strand, α-helix or even loop structure.
Furthermore, we observe that the low-level motifs learned by DeepFold can be organized to represent
high-level structural motifs by composing local and long-range motifs together. From this visualization,
it is clear that DeepFold extracts not only meaningful contiguous backbone fragments but also the long-
range interacting motifs, which are entirely ignored in FragBag. It is worth noting that FragBag can be
seen as a special case of DeepFold if we only consider the near-diagonal region of the pairwise distance
matrix as input.

To compare the structural motifs against the fragment library used by FragBag. We visualize the
carbon backbones of the motifs and fragments in Figure 8. We observe that the local structural motifs
learned by DeepFold are similar to the fragments utilized by FragBag. Also, the DeepFold preserves long-
range contacts in the original structures, which contribute to a more powerful structural representation.

In addition to visualizing the structural motifs learned by DeepFold, we also check what are the
“false-positive” hits found by DeepFold. From the Figure 7, we observe that the “wrongly” predicted
top structures also share substantial structural similarity with the query proteins, indicating that our
DeepFold is potentially capable of finding remotely related structural neighbors which contains similar
motif composition.

Figure 8: Comparison of motifs used by DeepFold and FragBag. The left panel shows fragments used
by FragBag. The upper right panel shows local structural motifs, and the bottom right shows long-range
contact motifs by DeepFold.

5 Conclusion

In this paper, we present DeepFold, a deep-learning approach to building structural motif presentations
for better alignment-free protein structure search. We develop DeepFold, a deep convolutional neural
network model to extract effective structural patterns of a protein structure from its Cα trace. Similar
to the previous FragBag, we represent each protein structure/fold using a vector of the learned motifs
and perform the structure search by only computing vector similarity. This neural network is trained
in a supervised manner by discriminating similar template structures from dissimilar structures in a
database. We demonstrate that DeepFold greatly outperforms FragBag on protein structure search
on SCOP database and a set of newly released PDB structures, regarding both search accuracy and
efficiency for computing structural representations. Remarkably, after visualizing the motifs learned by
DeepFold, we find that it not only extracts meaningful backbone segments but also identifies important
long-range interacting structural motifs for structural comparison. Furthermore, given that the retrieval
accuracy of DeepFold is outstanding, we can combine it with structural alignment algorithms in the
compressive genomics manner by first applying DeepFold as a “coarse search” step to identify a very
small subset of putative similar template structures that are ranked very top, and then performing
structural alignment algorithms as a “fine search” step to refine the ranking and obtain more informative
residue-level structural alignments for downstream analysis [25]. Finally, we expect that the structural
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motifs extracted by DeepFold will provide new insights into the evolution and hierarchical organization
of protein structure.
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