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Abstract  

Background 

Recent studies have shown that histone marks are involved in pre-programming gene 

fates during cellular differentiation. Bivalent domains (marked by both H3K4me3 and 

H3K27me3) have been proposed to act in the histone pre-patterning of poised genes; 

however, bivalent genes could also resolve into monovalent silenced states during 

differentiation. Thus, the histone signatures of poised genes need to be more precisely 

characterized.  

Results 

Using a support vector machine (SVM), we show that the collective histone modification 

data from human blood hematopoietic cells (HSCs) could predict poised genes with fairly 

high predictive accuracy within the model of directed erythrocyte differentiation from 

HSCs. Surprisingly, models with single histone marks (e.g., H3K4me3 or H2A.Z) could 

reach comparable predictive powers to the full model built with all of the nine histone 

marks. We also derived an H2A.Z and H3K9me3-based Naive Bayesian model for 

inferring poised genes, and the validity of this model was supported by data from several 

other pluripotent/multipotent cells (including mouse ES cells). 

Conclusion 

Our work represents a systematic quantitative study that verified that histone marks play 

a role in pre-programming the activation or repression of specific genes during cellular 

differentiation. Our results suggest that the relative quantities of H2A.Z modification and 

H3K9me3 modification are important in determining a corresponding gene’s fate during 

cellular differentiation.   
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Background  

The tremendous advances in genomic sequencing have allowed access to an 

unprecedented plethora of genetic data, i.e., DNA sequences. Yet, we are still far from 

understanding global transcriptional regulation in eukaryotic cells under normal 

conditions, let alone in disease states. Gene transcriptional regulation at the epigenetic 

level modulates the complex process by which a single genome (e.g., a zygote) can 

develop into one of over 200 types of different cells, which collectively form the various 

tissues and organs of a human body [1]. Indeed, the versatility of epigenetic regulation at 

the organismal level is remarkable.  

 

Epigenetic regulation is mainly achieved via DNA methylation and histone modifications 

[2]. Histone N terminal tails, when chemically modified, e.g., methylated, acetylated, or 

phosphorylated (also referred to as histone marks), are closely associated with gene 

transcription in either a positive or negative manner. The intensively studied histone 

marks include H3K4me3, H3K27me3, H3K36me3 and H3K4me1 [3-7]. Bernstein et al. 

(2006) described bivalent domains in mouse embryonic stem cells (mES cells), referring 

to those genomic regions with both H3K4me3 (an activating histone mark) and 

H3K27me3 (a repressive histone mark) [8]. These authors proposed that the genes 

harboring bivalent domains (hereafter referred to as bivalent genes) in stem cells are 

repressed but poised for expression as the cells differentiate. Recently, there have also 

been reports showing that histone marks other than H3K4me3 and H3K27me3 may also 

play a pre-programming role in development and that histone mark pre-patterns may 

function similarly even in lineage-restricted multipotent cells [9, 10].  

 

To date, previous studies characterizing the pre-programming role of histone marks have 

been largely empirical. Several reports (including Bernstein et al. in 2006) have 

demonstrated that the fate of bivalent genes is not necessarily activation: certain genes 

can be repressed [11, 12]. Therefore, it is difficult to predict whether a gene is poised for 

expression by simply observing whether it has both H3K4me3 and H3K27me3 
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modifications. Accordingly, the histone modification feature of poised genes within the 

context of cellular differentiation requires a more precise characterization. In addition, 

bivalent genes are also present in tissue stem cells or other terminally differentiated cells 

and can be generated de novo [11, 13, 14]. Thus, it remains to be explored whether a 

common histone signature is present for all poised genes, regardless of cell identity or 

species.   

 

Using a support vector machine (SVM), we demonstrate that within the model of directed 

erythrocyte differentiation from human blood hematopoietic cells (HSCs) [11], the 

collective histone modification data from HSCs could predict induced (poised) genes 

with fairly high predictive accuracy. Surprisingly, even models with a single histone 

mark (e.g., H3K4me3 or H2A.Z) exhibited a predictive power that was comparable to the 

full model using all nine histone marks. We then derived an H2A.Z and H3K9me3-based 

Naive Bayesian model for inferring poised genes, and the validity of this model was 

supported by data from several other pluripotent/multipotent cells (including mouse ES 

cells). Our results further verified the pre-programming role of histone marks and 

suggested that relative quantities of H2A.Z and H3K9me3 modifications are important in 

determining a corresponding gene’s fate during cellular differentiation.   

 

Results  

The predictive role of HSC histone marks for the activation of lineage-specific genes 

in erythrocyte precursors 

Cui et al. (2009) [11] generated a set of histone modification (9 types) ChIP-seq and 

microarray data from HSCs and erythrocyte precursors differentiated from HSCs. As 

both the progenitor and descendant cells share the same genetic composition and the 

transcriptomic and epigenomic data for both are available, the Cui et al. (2009) data 

represent a suitable resource for investigating the histone modification features of poised 

genes within the context of (tissue-) stem cell differentiation and are hereafter referred to 

as the HSC dataset. First, the raw microarray data for both cell types were analyzed using 

the MAS5.0 P/M/A calling algorithm (see Materials and Methods for details). In total, 
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369 genes (RefSeq transcripts) were identified as silent in HSCs but active in erythrocyte 

precursors; these data are hereafter referred to as the poised gene set. A total of 8,007 

genes (RefSeq transcripts) were consistently silent in both cell types; these data are 

hereafter referred to as the silenced gene set. The histone modification signal densities 

covering the promoter and gene body regions were calculated separately for these two 

sets of genes (detailed in the Materials and Methods). Pairwise comparisons between the 

two sets of genes demonstrated that they largely differed for many histone marks in terms 

of their signal densities (in additional file, Figure S1). In general, poised genes are 

characterized by higher signal levels of active marks and lower signal levels of repressive 

marks, suggesting that poised and silenced genes are distinctly marked in progenitor cells 

(in this case, HSCs) [11].  

  

Overall, poised genes differ substantially from silenced genes in their histone profiles; 

however, it is difficult to determine individually whether a gene is poised based only on a 

single histone mark. For example, as is shown in Supplementary Figure S1, a large 

proportion of poised genes overlap with silenced genes in terms of their H2A.Z signal 

levels. Yet, when the H3K4me3 signal levels of the two sets of genes are plotted against 

the corresponding H3K27me3 signal levels, it is difficult to draw a simple curve to 

discriminate the two sets of genes (in additional file, Figure S2). This is also true when 

the information of H3K36me3 is incorporated by visualizing its signal levels using 

different dot sizes in the same scatter plot. Furthermore, as shown in Figure S2, some 

genes, either belonging to the poised or silenced gene set, are characterized by a very low 

level of H3K4me3 but a very high level of H3K36me3 (accounting for 9.5% of the 

poised gene set and 3.2% of the silenced gene set). Because H3K36me3 is a well-

established histone mark associated with transcriptional elongation and transcription of a 

gene normally occurs only when H3K4me3 is present at its promoter, we did not include 

these genes for further analysis. 

 

To ascertain whether a given gene is poised based on its histone mark information, we set 

out to build a support vector machine (SVM) classifier. In this study, we initially 

considered the histone modification ChIP-seq read densities for both the promoter and 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 13, 2017. ; https://doi.org/10.1101/137646doi: bioRxiv preprint 

https://doi.org/10.1101/137646


 6 

transcribed regions, as it was unclear which region is more informative for a particular 

histone mark. We then calculated the F score for each feature using the formula presented 

in the Materials and Methods. F score is viewed as a classifier-independent measure of 

discriminant ability of a feature to separate two classes[15].  It is demonstrated in Figure 

1a that for H2A.Z, H3K27me3, H3K4me3, H3K9me3, the features based on promoter 

regions are more informative; One the contrary, for the 4 mono-methylation histone 

marks (i.e., H3K27me1, H3K4me1, H3K9me1 and H4K20me1), the features based on 

gene body regions are more informative.  

 

Based on these observations, for each histone mark only the more informative feature 

was retained for the subsequent model building process. The training and test of the SVM 

classifiers was implemented in the R computing environment using the package “e1071” 

[16](details are in the Materials and Methods). Because there are approximately 20-fold 

more negative instances (i.e., silenced genes) than positive instances (i.e., poised genes), 

the positive instances were under-sampled to an amount of instances that was equal to 

that of the positive instances. The under-sampled negative instances were then combined 

with the original positive instances for building the models. The predictive power was 

determined using a five-fold cross-validation method, and the process was repeated more 

than 2,000 times. As shown in Figure 1b, the median of the sensitivities, specificities and 

accuracies are 71.9%, 66.3%, and 69.1%. These good performances indicate that the 

model is, indeed, applicable to infer whether a specific gene is poised for subsequent 

activation during cellular differentiation from the histone modification status of the 

progenitor cell.  

 

Different discriminative roles of single histone marks for poised genes 

We have shown that one can predict whether a gene is poised using nine histone mark 

features in a framework of SVM learning. It has been shown previously that many 

histone marks are closely correlated to each other and that, in a sense, different histone 

marks may carry redundant information with regard to gene regulation and chromatin 

states [7]. As shown in Figure S3 (in additional file), our correlation analysis is highly 

consistent with the previous findings and identified several closely correlated histone 
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mark pairs or groups [4]. For example, the active marks H2AZ, H3K27me1, H3K4me1, 

H3K4me3, H3K9me1 and H3K36me3 are highly correlated to each other, and these 

active marks generally show a weak negative correlation with the repressive marks 

H3K27me3 and H3K9me3. Interestingly, H3K27me3 is dramatically negatively 

correlated with H3K27me1; conversely, the negative correlation between H3K9me3 and 

H3K9me1 is not very pronounced.  

 

To define clearly the relative contribution of a certain histone mark feature to the 

prediction model, it is necessary to rule out the redundant information of highly 

correlated histone marks. The SVM prediction models were rebuilt using a single histone 

mark feature each time. The overall performances for more than 2,000 sampled subsets of 

data (the procedure was the same as described above) were compared with the original 

trained model based on all of the nine-histone mark features (referred to as the full 

model) (Figure 2). Surprisingly, when each was used alone to train a prediction model, 

three of the histone features (H3K4me1, H3K9me1 and H4K20me1), showed even 

slightly higher sensitivities than those of the full model but at the sacrifice of much 

compromised specificities. In contrast, prediction models based on H3K27me1 and 

H3K36me3 separately exhibited high specificities at the cost of much lower sensitivities. 

Only models trained based on H3K4me3 and H2A.Z separately reached balanced 

sensitivities and specificities that were comparable (but slightly lower) to those of the full 

model. Interestingly, H3K27me3, when used to train prediction models alone, was barely 

effective. 

 

Based on these results, the histone marks can be classified into three major categories: 

Class i, those that can reach high sensitivities with compromised specificities (H3K4me1, 

H3K9me1 and H4K20me1); Class ii, those that can reach high specificities with 

compromised sensitivities (H3K27me1 and H3K36me3); and Class iii, those that can 

reach both high sensitivities and specificities (H3K4me3 and H2A.Z) and can be 

regarded concurrently as Class i or Class ii histone marks. The performance differences 

of these investigated single-feature prediction models suggest that some of the histone 

marks are more efficient in identifying a certain gene as a poised gene (Class i histone 
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marks, e.g., H3K4me1), whereas others are more efficient in identifying that a certain 

gene is not a poised gene (Class ii histone marks, e.g., H3K36me3). H3K4me3 and 

H2AZ are exceptional, as they are both good predictors for identifying potential poised 

genes and ruling out silenced genes. We also compared the predictive performances of 

triple histone marks by enumerating all of the possibilities and found that a preferable 

triple model should comprise at least one Class i histone mark and at least one Class ii 

histone mark (data not shown).    

 

A two-histone mark probabilistic model for predicting poised genes in various cell 

types  

Using the SVM, we showed that the quantitative histone mark models in progenitor cells 

are predictive of poised genes, and we also assessed the predictive powers of each single 

histone mark. Nevertheless, although powerful, SVM models have been criticized for 

their “black-box” nature. Thus, to derive an intuitive and simplified probabilistic model, 

we investigated the dependency relationships among “gene poising” and histone mark 

features using the WinMine Tookit [17, 18]. The histone profiles for the total RefSeq 

genes were discretized by k-means clustering into three levels (“Lev0”, “Lev1”, and 

“Lev2”, from the lowest to highest levels). Because the training dataset of the HSCs [11] 

is severely unbalanced, under-sampling was performed in each case to obtain a random 

subset of poised genes (250 genes) and a random subset of silenced genes (250 genes), 

and the combined instances were used for the learning Bayesian Networks. To obtain 

robust and reproducible Bayesian Networks, the aforementioned process was repeated 

100 times, and only the edges directed to “gene poising” that appeared more than 30 

times were retained. Among the 100 learned Bayesian networks, 47% contained two 

edges pointing to gene poising, 26% contained three edges pointing to gene poising, and 

the left contained more edges. For simplicity, we chose a two-histone mark model 

(namely H2AZ+H3K9me3), as shown in Figure 3a.  

 

According to Bayesian network theory, a node is only dependent on the directed edges 

pointing to it. Thus, if our learned Bayesian network is reliable, we should be able to 

deduce “gene poising” solely from the profile data of the two-histone marks 
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(H2AZ+H3K9me3). For simplification of the probabilistic model, we assumed 

independence between H2AZ and H3K9me3 profiles and derived Naive Bayesian models 

using the HSC training data. The models were repeatedly learned using randomly 

sampled 200 poised plus 200 silenced genes and validated using the rest of the data. As 

shown in Figure 3b, the median sensitivity is approximately 56.4% and the median 

specificity is approximately 63.1%. As Bernstein et al. (2006) [8] proposed the co-

existence of H3K4me3 and H3K27me3 as an indictor for poised genes, we also tested the 

predictive power of an H3K4me3+H3K27me3 Naive Bayesian model. In general, our 

H2AZ+H3K9me3 model is more stable than the H3K4me3+H3K27me3 model, though 

the former shows a lower specificity. 

  

To test whether the H2AZ+H3K9me3 Naïve Bayesian model learned from the HSC 

dataset is also valid in other cells of variable differentiation potentials, we selected an 

optimal model from 100 learned models and applied it to GM12878 cells, a 

lymphoblastoid cell line that may represent B cell progenitor cells. Transcriptionally 

inactive genes were first selected by microarray analysis, and the log likelihood ratio s 

was calculated for each of these silent genes (detailed in the Materials and Methods: the 

higher is the s value, the more likely it is that the corresponding gene is poised). Because 

the prediction model showed a modest sensitivity and specificity, to test whether the 

prediction was reasonable, only the genes with the highest s scores were predicted to be 

poised genes and the genes with the lowest s scores were predicted to be silenced. In the 

GM12878 cells, 240 ENSEMBL genes were predicted to be poised, whereas 527 

ENSEMBL genes were predicted to be silenced. By comparing the expression values of 

these two groups of genes in B cell (biogps database, http://biogps.org/), it was found that 

there were significantly more genes of the predicted poised gene group that were 

activated in B cells (Fig 3c). This result suggests that our H2AZ+H3K9me3 model 

learned from the HSC dataset could also be applied to other cells (e.g., B lymphoblastoid 

cells). 

 

We also tested the H2AZ+H3K9me3 Naïve Bayesian model with mouse embryonic stem 

E14 cells. The GSE36114 dataset contains E14 ChIP-seq and RNA-seq data of E14 cells 
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at day 0 and day 6 (upon differentiation). Using the model trained with the HSC dataset, 

poised (2,577) and silenced (556) genes were predicted with a high confidence based on 

the E14 cell day 0 histone modification data. As there were many more genes predicted to 

be poised than silenced genes, repeated under-sampling (300 genes from each group) was 

performed to compare the ratio of genuine activated genes (day 6) in these two groups. 

As illustrated in Figure 3d, the predicted poised genes were, on average, almost twice as 

likely to be activated during differentiation. This result indicates that our 

H2AZ+H3K9me3 Naïve Bayesian model learned from an HSC dataset (tissue stem cells) 

can also successfully be applied to mouse ES cells, thereby suggesting a common poising 

mechanism by histone marks, at least in mammalian cells.  

 

Histone modification features of poised genes  

Based on our H2A.Z+H3K9me3 Naïve Bayes model trained with the HSC dataset, we 

proposed to calculate the log likelihood ratio of each gene to be poised versus silenced. 

As each histone feature was discretized into three levels, there would be a total of nine 

types of combinations of varying H2A.Z and H3K9me3 levels. When the score s is 

ordered according to the ascending levels of each histone mark, an apparent trend about 

the likelihood of the gene to be poised is observed (Figure 4a). Genes with higher levels 

of H2A.Z plus lower levels of H3K9me3 are more likely to be poised, whereas genes 

with lower levels of H2A.Z plus higher levels of H3K9me3 are more likely to be 

silenced.  Figure 4b shows the histone modification profiles of two genes (one is poised, 

the other is silenced) in HSCs. Although these two genes appear to both be bivalent 

(marked by both H3K4me3 and H3K27me3), a closer look indicates that the silenced 

gene displays stronger in both H3K9me3 and H3K27me3 signals and that its H2A.Z 

signal is weaker than that of the poised gene. These two examples also show the validity 

of our method for capturing the information of histone marks by focusing on promoter 

regions. 

 

Because a certain genomic region is often co-marked by several types of histone 

signatures, it would be interesting to examine which levels of other histone marks are 

associated with poised genes. Based on the HSC dataset, we compared 95 poised genes 
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with the highest levels of H2A.Z and the lowest levels of H3K9me3 (these genes have the 

largest s values) to 155 silenced genes with the lowest levels of H2A.Z and the highest 

levels of H3K9me3 (these genes have the smallest s values). As shown in Table 1, these 

two groups of genes are associated with distinct levels of other histone marks: the poised 

genes are frequently co-marked by higher levels of H3K27me1, H3K9me1 and 

H3K4me3, whereas the silenced genes are much less frequently marked by higher levels 

of these histone marks. In addition, the silenced genes are approximately two times more 

likely to be co-marked by higher levels of H3K27me3. These observations further 

confirmed that the relative amount of distinct histone modifications are indicative of 

poised versus silenced genes.   

 

Discussion  

Accumulating data have suggested that histone modifiers and histone marks can pre-set 

gene expression schemes prior to the differentiation of pluripotent/ multipotent cells [9-

11, 19-21]. The prominent “bivalent domain” term has been widely regarded as a 

mechanism for poising lineage-regulatory genes for expression during the development 

of ES cells [8]. However, the fate of bivalent genes can be either activation or 

suppression [8, 11, 12]; in addition, bivalency can also be found in terminally 

differentiated cells [12, 22]. Therefore, bivalency is not a sufficient or accurate histone 

signature for poised genes in pluripotent/multipotent cells. In this study, we 

systematically assessed the poised-gene-discriminating capabilities of various histone 

marks by taking advantage of quantitative measures. We further proposed a simple 

probabilistic model for predicting poised genes based only on the H2A.Z and H3K9me3 

levels. We showed that our model could be applied to both pluripotent cells and 

multipotent cells, either human or murine. 

 

H2A.Z is known to be associated with active chromatin, whereas H3K9me3 is involved 

in gene silencing [11, 23, 24]. Our model illustrates that genes with higher levels of 

H2A.Z plus lower levels of H3K9me3 are more likely to be poised genes. Thus, it is 
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tempting to argue that an antagonistic outcome between active forces (e.g., H2A.Z) and 

silencing forces (e.g., H3K9me3) dictates the fate of the corresponding gene during 

development. Fine-tuning the relative quantities of counter-acting H2A.Z and H3K9me3 

histone marks controls the expression potential of a gene. 

 

Our Naïve Bayesian model of H2A.Z and H3K9me3 only shows a modest predictive 

power, and several factors may have contributed to this result. Firstly, for simplicity, we 

only considered the histone modification features in promoter regions. However, 

chromatin has higher-order structure, and the long-range regulation by cis-elements is 

common[25, 26]. Secondly, as a histone modification pattern may involve multiple 

constituents, our two-histone mark model might have lacked some information from 

other histone marks. Nevertheless, we emphasize the wide applicability and simplicity of 

the model. Lastly, in contrast to the deterministic nature of genetic modulation, 

epigenetic regulation is much more flexible and plastic; thus, a poised gene becomes 

activated only when the internal and external environment is permissive. 

  

 

Materials and Methods 

Histone modification ChIP-seq raw data collection and preprocessing 

The ChIP-seq raw data from CD133+ cells (HSCs/ HPCs), CD36+ cells (erythrocyte 

precursors) and GM12878 cells (B lymphoblastoid) were downloaded as FASTQ format 

files (GEO IDs are GSE12646, GSE36114, GSE29611). The Solexa short reads were 

mapped to the human genome using Bowtie (index file: hg19.fa) using the default 

parameters [27]. The human H1 histone modification ChIP-seq data were downloaded as 

BED files [28], and the mouse ES E14 histone modification ChIP-seq data were 

downloaded as SRA files (GSE36114, GSE17642). These SRA files were transformed 

into FASTQ files using the SRA Toolkit from NCBI and then mapped to the mouse 

genome using Bowtie (index file: mm9.fa) using the default parameters [27]. All of the 

Bowtie output files were in SAM format, which were further transformed into BED files 

using a script form MACS [29] . 
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The total reads that fall into a defined genomic region were counted using the 

intersectBed function from BEDtools [28]. For each cell type, the histone modification 

tag densities, hereafter referred to as the histone mark feature, were calculated by 

dividing the read counts by the window sizes. The windows were defined as follows: 

promoter region (from 2,000 bp upstream to 2,000 bp downstream of TSS, transcription 

start site) and gene body region (from the TSS upstream 2,000 bp to the TTS, 

transcription termination site, downstream 2,000 bp). Prior to the Bayesian network 

analysis and Naïve Bayesian model learning, the histone mark features were split into 

three nominal variables representing high, moderate, and low levels (termed “Lev2”, 

“Lev1”, and “Lev0”, respectively). The boundaries between the groups were determined 

by k-means clustering. 100 repetitions were performed for each histone modification 

density vector for a given cell type, and the medians were used to define the boundaries.  

 

Microarray and RNA-seq data sources and analysis 

The microarray raw data were downloaded from the GEO database (GEO IDs are 

GSE12646, GSE26312). Present/absent calls were performed using the MAS5.0 

algorithm from the Bioconductor package (http://www.bioconductor.org/). The RNA-seq 

data of mES E14 were downloaded from the GEO database (GEO ID: GSE36114) in 

FASTQ format. The raw reads were mapped to the genome using Tophat [30], and 

transcript abundances were quantitated using Cufflinks [31]. A transcript with an FPKM 

score over 0.001 was defined as expressed (note that the cut-off may vary according to 

different sequencing depths and antibodies [32]). As the microarray analysis of the ES 

cells shows that approximately 1/3 of the total genes are not expressed, this result was 

used as a guide for setting the cut-off for the present study.       

 

Naïve Bayesian model and log likelihood ratio s  

The core equations of the Naïve Bayesian models in the present study are as follows: 
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p(class | HM1, HM2,..., HMi ) = p(class)× p(HM1, HM2,..., HMi | class)

p(HM1, HM2,..., HMi )
1)

p(class | HM1, HM2,..., HMi )∝ p(class)× p(HM1, HM2,..., HMi | class) 2)

p(class | HM1, HM2,..., HMi )∝ p(class)× ∏
i=1

n

p(HMi | class) 3)

classify(HM1, HM2,..., HMi ) = argmax p(class = c)∏
i=1

n

p(HMi | class = c) 4)

s = log∏
i=1

n

p(HMi | class = poised) − log∏
i=1

n

p(HMi | class = silenced) 5)

 

In all these equations, HMi refers to a histone mark profile feature (read density in the 

promoter region), and class refers to a poised or not poised (silenced) state, as determined 

by the expression analysis between the progenitor cells and descendant cells. Equation 1) 

is essentially the Bayesian theorem. In a Naïve Bayesian model under the assumption of 

independence of all of the predictors (HMi), 1) can be deduced to 3). Mathematically, a 

Naïve Bayesian classifier predicts the instance (i.e., a gene) to be a class that shows the 

higher joint probability. As there are approximately 20 times more silenced genes 

compared to poised genes in the HSC dataset, under-sampling of the silenced and poised 

genes into equal amounts (150 plus 150) was performed. The training of the Naïve 

Bayesian model was performed using the sampled 150 plus 150 genes, and the remaining 

genes were used for testing the model. This procedure was repeated 100 times to assess 

the stability and robustness of the models. The best model was selected from the 100 

model based on MCC (Mathew Correlation Coefficient). With regard the modest 

predictive sensitivity and specificity, when the Naïve Bayesian model learned from the 

HSC dataset is applied to the other cells, predictions based on original model as specified 

in equation 4) would be overwhelmed by false positives and false negatives, making the 

validation of those predictions inapplicable. Therefore, we devised a method to 

circumvent this problem by defining a log likelihood ratio s, which is intended to rank the 

probability that a gene is poised versus silenced given its histone mark features. The 

higher the s value is, the more likely the corresponding gene is poised. As we always 

train a Naïve Bayesian model by sampling the data into equal amounts of poised and 

silenced genes, the score s is specified as in equation 5).  
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Figure Legends 

Figure 1  - Histone marks in HSCs are predictive of poised genes 

The panel (a) illustrates the discriminant ability of each histone mark feature as measured 

by calculation of F score (detailed in Materials and Methods section). The panel (b) 

shows the statistics of 2, 000 SVM models’ performances. Sensitivity refers to true 

positive rate; specificity refers to true negative rate; accuracy is the rate of correct 

predictions among the total predictions. 

Figure 2  - Single histone marks vary in discriminant capabilities for poised genes  

Figure 3  - H2A.Z and H3K9me3 Naïve Bayesian models distinguish poised genes 

from silenced genes in multiple cell lines 

The panel (a) compares the performances of H2A.Z+ H3K9me3 models between 

H3K4me4 + H3K27me3 models by repeating 100 times. The panel (b) shows the 

selected Bayesian network learned from the HSC dataset, where only directed edges 

pointing to gene poising are illustrated.  A red arrow indicates a positive role while blue 

one indicates a negative role. The panel (c) compares the log2 value of expression levels 

of predicted poised genes versus silenced genes in B cells. The panel (d) demonstrates 

that predicted poised genes in mouse ES cells are almost twice likely to be activated upon 

6 days induction compared with predicted silenced genes. 

Figure 4  - Relative quantities of H2A.Z and H3K9me3 modifications imply genes’ 

fates during differentiation 

The panel (a) is essentially a heat-map, where each square (in total 9 squares) represents a 

class of genes with a specific combination of H2A.Z and H3K9me3 levels and the color 

indicates the log-likelihood ratio s (see Materials and Methods for definitions). The panel 

(b) shows the histone profiles of one poised gene and one silenced gene in HSC as 

visualized as custom tracks in the UCSC genome browser. Shades in yellow illustrate the 

promoter regions. 
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Tables 

 
Table 1 High-confidence HSC poised and silenced genes are associated with 
distinct levels of other histone marks  
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  H3K27
me1 

H3K27
me3 

H3K36
me3 

H3K4 
me1 
 

H3K4 
me3 

H3K9 
me1 

Poised Lev0 18  59 15 44 9 45 
(95) Lev1+Lev2 77 36 80 51 86 50 
 Proportion a 

(%) 
80.1 37.9 84.2 53.7 90.5 52.6 

Silenced Lev0 90 45 33 145 114 141 
(155) Lev1+Lev2 65 110 122 10 41 14 
 Proportion 

(%) 
41.9 71.0 78.7 6.5 26.5 9.0 

a the proportion of genes with higher levels of modifications (Lev1+ Lev2) 
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Additional files 

Additional file 1  

Supp_Figs.ppt is in .ppt format and contains Figures S1-S3. S2 is a scatterplot of 

poised genes (in red) and silenced genes (in blue) in HSC. Varying sizes of dots 

correspond to H3K36me3 levels, the bigger the size is, the higher the H3K36me3 

level is.  
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