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Abstract 19 

 20 

Predictive models of signaling networks are essential tools for understanding cell 21 

population heterogeneity and designing rational interventions in disease. 22 

However, using network models to predict signaling dynamics heterogeneity is 23 

often challenging due to the extensive variability of signaling parameters across 24 

cell populations. Here, we describe a Maximum Entropy-based fRamework for 25 

Inference of heterogeneity in Dynamics of sIgAling Networks (MERIDIAN). 26 

MERIDIAN allows us to estimate the joint probability distribution over signaling 27 

parameters that is consistent with experimentally observed cell-to-cell variability 28 

in abundances of network species. We apply the developed approach to 29 

investigate the heterogeneity in the signaling network activated by the epidermal 30 

growth factor (EGF) and leading to phosphorylation of protein kinase B (Akt). 31 

Using the inferred parameter distribution, we also predict heterogeneity of 32 

phosphorylated Akt levels and the distribution of EGF receptor abundance hours 33 

after EGF stimulation. We discuss how MERIDIAN can be generalized and 34 

applied to problems beyond modeling of heterogeneous signaling dynamics. 35 

 36 
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Introduction  48 

 49 
Signaling cascades in genetically identical cells often respond in a 50 

heterogeneous manner to extracellular stimuli (Raj and van Oudenaarden 2008). 51 

This heterogeneity arises largely due to cell-to-cell variability in biochemical 52 

signaling parameters such as reaction propensities and chemical species 53 

abundances (Albeck, Burke et al. 2008, Spencer, Gaudet et al. 2009, Meyer, 54 

D'Alessandro et al. 2012, Llamosi, Gonzalez-Vargas et al. 2016, Kallenberger, 55 

Unger et al. 2017). This variability in parameters can have important functional 56 

consequences, for example, in fractional killing of cancer cells treated with 57 

chemotherapeutic drugs (Albeck, Burke et al. 2008, Spencer, Gaudet et al. 58 

2009). Therefore, the knowledge of the distribution over parameters is essential 59 

to understanding phenotypic heterogeneity in cell populations.  60 

Several experimental techniques such as flow cytometry (Wu and Singh 61 

2012), immunofluorescence (Wu and Singh 2012), and live cell assays (Meyer, 62 

D'Alessandro et al. 2012) have been developed to investigate the variability of 63 

biochemical species abundances. However, it is often difficult to estimate the 64 

distribution over biochemical parameters from these experimental 65 

measurements. The reasons for this challenge are primarily threefold. First, 66 

parameters such as protein abundances and reaction propensities vary 67 

substantially across cells in a population (Raj and van Oudenaarden 2008). For 68 

example, previous studies have reported the coefficients of variation of protein 69 

abundances in the range 0.1 – 0.6 (Niepel, Spencer et al. 2009). This would 70 

make the effective rates of signaling reactions vary substantially between cells as 71 

well (Chung, Sciaky et al. 1997, Meyer, D'Alessandro et al. 2012). Second, the 72 

multivariate parameter distribution can potentially have a complex shape. For 73 

example, as is often the case in single cell data, gene expression, and thus 74 

cellular abundance, of key signaling proteins may exhibit multimodality (Shalek, 75 

Satija et al. 2013). Finally, single cell measurements are typically not sufficient to 76 

uniquely infer the underlying parameter variability; the problem usually referred 77 

as parameter non-identifiability (Banks 2012). 78 
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Over the last decade, several computational methods have been 79 

developed to estimate the joint distribution over parameters consistent with 80 

experimentally measured cell-to-cell variability in biochemical species (Waldherr, 81 

Hasenauer et al. 2009, Hasenauer, Waldherr et al. 2011, Zechner, Ruess et al. 82 

2012, Hasenauer, Hasenauer et al. 2014, Zechner, Unger et al. 2014, Loos, 83 

Moeller et al. 2018, Waldherr 2018). Most of these methods circumvent the ill-84 

posed inverse problem of estimation of the parameter distribution (Banks 2012) 85 

by making specific ad hoc choices about the shape of the distribution. For 86 

example, Hasenauer et al. (Hasenauer, Waldherr et al. 2011, Hasenauer, 87 

Hasenauer et al. 2014) (see also (Waldherr, Hasenauer et al. 2009, Loos, 88 

Moeller et al. 2018)) approximate the parameter distribution as a linear 89 

combination of predefined distribution functions. Waldherr et al. (Waldherr, 90 

Hasenauer et al. 2009) approximate the parameter distribution using Latin 91 

hypercube sampling. Similarly Zechner et al. (Zechner, Ruess et al. 2012, 92 

Zechner, Unger et al. 2014) assume that the parameters are distributed 93 

according to a log-normal or a gamma distribution. Consequently, it may be 94 

difficult for these previously developed approaches to infer a complex 95 

multivariate parameter distribution of an unknown shape.  96 

Building on our previous work (Dixit 2013, Eydgahi, Chen et al. 2013), we 97 

developed MERIDIAN: a Maximum Entropy-based fRamework for Inference of 98 

heterogeneity in Dynamics of sIgnAling Networks. Instead of enforcing a specific 99 

functional form of the parameter distribution a priori, MERIDIAN uses data-100 

derived constraints to derive it de novo. The maximum entropy principle was first 101 

introduced more than a century ago in statistical physics (Dixit, Wagoner et al. 102 

2018). Among all candidate distributions that agree with imposed constraints, the 103 

maximum entropy principle selects the one with the least amount of over-fitting. 104 

Maximum entropy-based approaches have been successfully applied previously 105 

to a variety of biological problems, including protein structure prediction (Weigt, 106 

White et al. 2009), protein sequence evolution (Mora, Walczak et al. 2010), 107 

neuron firing dynamics (Schneidman, Berry et al. 2006), molecular simulations 108 

(Dixit, Jain et al. 2015, Tiwary and Berne 2016), and dynamics of biochemical 109 
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reaction networks (Dixit 2018).  110 

Following a description of the key ideas behind MERIDIAN, we illustrate 111 

its performance using synthetic data on a simplified model of growth factor 112 

signaling. Next, we use the framework to study the heterogeneity in the signaling 113 

network leading to phosphorylation of protein kinase B (Akt). Epidermal growth 114 

factor (EGF)-induced Akt phosphorylation governs key intracellular processes 115 

(Manning and Toker 2017) including metabolism, apoptosis, and cell cycle entry. 116 

Due to its central role in mammalian signaling, aberrations in the Akt pathway are 117 

implicated in multiple diseases (Herbst 2004, Manning and Toker 2017). We 118 

apply MERIDIAN to infer the distribution over signaling parameters using 119 

experimentally measured levels of phosphorylated Akt (pAkt) and cell surface 120 

EGFR (sEGFR) in MCF10A cells (Soule, Maloney et al. 1990) following EGF 121 

stimulation. We then demonstrate that the obtained parameter distribution allows 122 

us to accurately predict the heterogeneity in single cell pAkt levels at late time 123 

points, as well as the heterogeneity in cell surface EGFRs in response to EGF 124 

stimulation. Finally, we discuss the generalizations of the framework to study 125 

problems beyond modeling heterogeneity in signaling networks.  126 

 127 

Results 128 

Outline of MERIDIAN 129 

 We consider a signaling network comprising N chemical species whose 130 

intracellular abundances we denote by �� � ���, ��, … , ���. We assume that the 131 

molecular interactions among the species are described by a system of ordinary 132 

differential equations 133 ��	 ��
	, ��� � 

��, ���                                                           
1� 
where 

��, ��� is a function of species abundances �� . Here, �� � ���, ��, … � is a 134 

vector of parameters that describe the dynamics of the signaling networks. We 135 

denote by ��
	, ��� the solution of equations (1) for species “a” at time t with 136 

parameters ��. 137 
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 Our computational approach is illustrated in Figure 1. We use 138 

experimentally measured cell-to-cell variability of protein species “a” at multiple 139 

experimental conditions, for example, several time points, (illustrated by 140 

histograms in Figure 1) to constrain the parameter distribution �
���. Specifically, 141 

we first quantify the experimentally measured cell-to-cell variability by estimating 142 

bin fractions ���. In our notation, the index i specifies the experimental condition 143 

(measurement time, measured species, input conditions, etc.) and k indicates bin 144 

number. Every distinct dynamical trajectory ��
	, ��� (illustrated by red and blue 145 

curves in Figure 1) generated by specific parameter values �� passes through a 146 

unique set of bins (red curve through red bins and blue curve through blue bins in 147 

Figure 1) at multiple experimental conditions. Using MERIDIAN, we find a 148 

corresponding probability distribution over signaling parameters �
��� such that 149 

the distribution over trajectories ����
	, ���� is consistent with all experimentally 150 

measured bin fractions. Below, we present our development to derive the 151 

functional form of �
��� that is consistent with these constraints. 152 

 153 

Derivation of ����� using MERIDIAN 154 

 155 

For simplicity, we consider the case when the distribution of cell-to-cell 156 

variability in one species �� is available only at one time point t (for example, t = 157 

t1 in Figure 1). We denote by �� � ���, ��, … , ���  the fraction of cells whose 158 

experimental measurement of �� lies in individual bins. Here, given that we are 159 

considering only one experimental condition, for brevity we use only one index to 160 

indicate the bin fractions. Below, we first assume that there are no experimental 161 

errors in determining �� . Later, we demonstrate how to incorporate known 162 

experimental errors both in the inference procedure and in making predictions 163 

using �
���. 164 

Given a parameter distribution �
���,  the predicted fractions �� �165 ���, ��, … , ���  can be obtained as follows. Using Markov chain Monte Carlo 166 

(MCMC), we generate multiple parameter sets from �
���. For each sampled set 167 

of parameters ��, we solve equations (1) and find ��
	, ���, i.e. the predicted value 168 
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of the abundance at time t. Then, using the samples from the ensemble of 169 

trajectories, we estimate ��  as the fraction of sampled trajectories where 170 ��
	, ��� passed through the kth bin. Mathematically, 171 

�� � � �� ���
	, ���� �
������                                                     
2� 
where ��
�� is an indicator function; ��
�� is equal to one if x lies in the kth bin and 172 

zero otherwise.  173 

 The central idea behind MERIDIAN is to find the maximum entropy 174 

distribution �
��� over parameters such that all predicted fractions �� agree with 175 

those estimated from experimental data, �� . Formally, we seek �
��� with the 176 

maximum entropy 177 

� � � � �
��� log �
���!
��� ���                                                             
3� 
subject to normalization (# �
��� ��� � 1) and data-derived constraints �� � �� for 178 

all k. Here, !
���  plays a role similar to the prior distribution in Bayesian 179 

approaches (Caticha and Preuss 2004). In this work, we choose !
��� to be a 180 

uniform distribution within literature-derived ranges of parameters, but other 181 

choices can be implemented as well. 182 

 To impose aforementioned constraints and perform the entropy 183 

maximization, we use the method of Lagrange multipliers. To that end, we write 184 

the Lagrangian function 185 

$ � � % & '� �
��� ��� � 1( � ) *� '� �� ���
	, ���� �
������ � ��(�

���

        
4� 
where & is the Lagrange multiplier associated with normalization and *� are the 186 

Lagrange multipliers associated with fixing the predicted fractions ��  to their 187 

experimentally measured values �� in all bins. Differentiating equation (4) with 188 

respect to �
��� and setting the derivative to zero, we obtain 189 

�,��-*�./ � 10 !
��� exp 4� ) *��� ���
	, �����

���

5                                        
5� 
where 0  is the partition function that normalizes the probability distribution. 190 

Equation (5) is a key conceptual foundation of this work. We use it to estimate 191 
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the parameter distribution from user-specified constraints. Here, for the sake of 192 

notational simplicity, we have restricted our discussion using measurement at a 193 

single time point. Later, we discuss how to generalize the approach when 194 

abundances of multiple species are measured at several time points (Methods 195 

equations (S24)).  196 

Given the high dimensional nature of the parameter space in models of 197 

biological systems, the collected data is usually not sufficient to fully constrain the 198 

multidimensional parameter distribution (Banks 2012). As a result, the distribution 199 

inferred by MERIDIAN reflects both the true biological variability in parameters as 200 

well as parameter non-identifiability.  201 

 202 

Numerical estimation of Lagrange multipliers  203 

 204 

The Lagrange multipliers in equation (5) need to be numerically optimized 205 

such that the predicted bin fractions are consistent with the experimentally 206 

estimated ones. Notably, the search for the Lagrange multipliers is a convex 207 

optimization problem (Methods) and we solve it using an iterative algorithm 208 

proposed in (Tkacik, Schneidman et al. 2006) (see Figure 2). Briefly, we start 209 

from a randomly chosen point in the space of Lagrange multipliers. In the nth 210 

iteration of the optimization algorithm, using the current vector of the Lagrange 211 

multipliers *�	
�, we estimate the predicted bin reactions using MCMC (Methods). 212 

Next, we estimate the error vector 7�	
� � ��	
� � �� for the nth iteration. We then 213 

update the multipliers for the n+1st iteration as *�	
��� = *�	
� % 8	
�7�	
� (see Figure 214 

2). The positive “learning rate” 8	
� is chosen to minimize the error 7�	
��� 215 

(Methods). Given that the data is likely to have experimental errors (see below) 216 

and that the signaling network model (described by equations (1)) is an 217 

approximation to a real biological system, it may not be possible to achieve a 218 

complete agreement between data and model fits. Thus, we terminate the 219 

iterative optimization procedure once the error reaches a predefined accuracy 220 

cutoff. 221 

 222 
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Making predictions using �����  223 

 224 

Here, we show how to make predictions using the inferred parameter 225 

distribution. In the discussion so far, we assumed that experimentally measured 226 

cell-to-cell variability had no errors. However, single cell experiments are often 227 

subject to uncertainty. Thus, we consider that the measurements are 228 

characterized by their mean values ��  as well as the standard errors of the 229 

mean 9�, which are estimated using several experimental replicates.  230 

Let us denote by :�  the vector of optimized Lagrange multipliers (see 231 

Figure 2), and by ��
:�� the predicted bin fractions of species variability across 232 

cells (Figure 1). We represent the experimental errors in the estimated bin 233 

fractions using a distribution over the Lagrange multipliers themselves. We 234 

express the posterior distribution over of Lagrange multipliers *� as (Methods) 235 

�,*�/ ; exp 4� ) ,��,*�/ � ��/�29��
�

���

5.                                        
6� 
In equation (6), we have assumed (1) that the errors are normally distributed and 236 

(2) a uniform prior over Lagrange multipliers; both these assumptions can in 237 

principle be relaxed. The distribution over model parameters taking into account 238 

the errors in the measurement is then given by 239 

�
��� � � �,.��-*�/�,*�/ �*�                                                   
7� 
where �,.��-*�/ is given by equation (5) and the full distribution �
��� is given by 240 

averaging over the distribution of Lagrange multipliers �,*�/. 241 

Equations (5-7) can be used, in principle, to make model predictions. For 242 

example, consider any quantity of interest >
���  that depends on model 243 

parameters. The mean ? of >
��� is then given by   244 

? � � @,*�/�,*�/�*�.                                                               
8� 
where  245 

@,*�/ � � >
����,��|*�/���.                                                         
9� 
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Similarly, the uncertainty D given by 246 

D� � '� @,*�/��,*�/�*� ( � ?�.                                                
10� 
  In practice it may be challenging to numerically integrate equations (8-10), 247 

because this requires sampling over multiple sets of Lagrange multipliers *�, 248 

which in turn requires the estimation of ��,*�/ using MCMC (see equation (6)). 249 

However, estimates of the mean and the uncertainty can be analytically obtained 250 

if experimental errors are small (median error is 9% in our data). In this case, the 251 

model prediction ? is simply given by: 252 ? � @
:��                                                                    
11� 
In equation (11), :� are the optimized Lagrange multipliers. Equation (11) is the 253 

maximum posterior estimate of equation (6). In Methods, we show that the 254 

estimate of the uncertainty D in the mean prediction is given by 255 

D� � ) ) F�F

GH*�H*
I � GH*�IGH*
I�.�


��

�

���

                          
12� 
In equations (12) H*� � *� � :�  and GH*�H*
I � GH*�IGH*
I is the corresponding 256 

covariance matrix among Lagrange multipliers. In equation (12), the “couplings” 257 F� are given by 258 

F� � G�� ���
	, ���� >
���I � ��
:��@
:��.                                  
13� 
F�  quantifies the correlation between the quantity of interest >
���  and the 259 

constraints �� ���
	, ����.  In Methods we show that  260 

GH*�H*
I � GH*�IGH*
I � �
J���KLF,9����/
J����
�


.                           
14� 
In equation (14) J�  is the Moore-Penrose pseudo-inverse of the covariance 261 

matrix J. J is given by:  262 

J�
 � G�� ���
	, ���� �
 ���
	, ����I � ��
:���

:��                           
15� 
In equations (12-15), the averages denoted by angular brackets are calculated 263 

using equation (5) with the Lagrange multipliers :� fixed at their optimized values.  264 

To use the aforementioned approach in our calculations, we first estimate 265 

mean bin fractions �� and the corresponding standard errors in the mean 9� from 266 
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experimental data. Then, by using the iterative scheme described in Figure 2, we 267 

estimate the optimized Lagrange multipliers :�  in equation (5) and the 268 

corresponding predictions ��
:��. We then compute the covariance matrix J and 269 

its pseudo-inverse J�  (equation 15), and the covariance among the Lagrange 270 

multipliers (equation 14). Finally, for any quantity of interest >
���, we compute 271 

the couplings F�  (equation 13). The predicted mean value and the associated 272 

uncertainty are given by equation (11) and equation (12) respectively.  273 

 274 

MERIDIAN performance on synthetic data 275 

 276 

First, we use synthetic data to illustrate the utility of MERIDIAN and 277 

compare its performance with a previously developed discretized Bayesian (DB) 278 

approach by Hasenauer et al. (Hasenauer, Waldherr et al. 2011). In DB, a crucial 279 

step is to approximate the joint parameter distribution as a linear combination 280 

�
��� � ) M�N�
���                                                     
16� 
where N�
���  are a set of predefined distribution functions and M� O 0  are the 281 

corresponding weights. In principle, if a sufficiently large number of such basis 282 

functions are chosen, their linear combination can capture any complex 283 

probability distribution. DB discretizes the multidimensional parameter space 284 

using a Cartesian grid and assumes that N�
���  are multivariate Gaussian 285 

distributions centered at grid points. The weights M�  are sampled from their 286 

posterior distribution given the data. Because several other methods (Hasenauer, 287 

Waldherr et al. 2011, Hasenauer, Hasenauer et al. 2014, Loos, Moeller et al. 288 

2018) also use linear combination of known functions to approximate the 289 

parameter distributions, a comparison with DB highlights the potential 290 

advantages of MERIDIAN. 291 

 To compare MERIDIAN with DB, we used a simplified growth factor 292 

network model (Methods, Supplemental Information Figure 1). Specifically, the 293 

network included three chemical species: the ligand L, ligand-free inactive 294 

receptors R, and ligand bound active receptors P. Ligand binding to receptors 295 

leads to their activation. Inactive receptors are constantly delivered to the cell 296 
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surface, and active and inactive receptors are removed from the cell surface at 297 

different rates (Methods). In this model, the dynamics of the species was 298 

described by five parameters. 299 

 Using the aforementioned model, we generated synthetic single cell data 300 

by varying two key parameters: (1) rate of degradation of inactive receptors P��� 301 

and (2) rate of degradation of active receptors P���� . Notably, it was demonstrated 302 

that the processes that govern receptor trafficking on the cell surface are 303 

correlated at the single cell level (Kallenberger, Unger et al. 2017). To account 304 

for these correlations, we sampled the two parameters from a correlated bivariate 305 

exponential distribution (Iyer 2002). Using the joint parameter distribution we 306 

generated distribution of activated receptor levels corresponding to four different 307 

experimental conditions (ligand L = 2 ng/ml, L = 10 ng/ml, t = 10 minutes and 308 

steady state, Methods). Normally distributed random errors were then added to 309 

individual cell measurements. Mean bin fractions and standard errors in bin 310 

fractions were obtained using 5 separate synthetic datasets. These data were 311 

then used to infer the joint distribution �,P���, P���� / using both MERIDIAN and 312 

DB.  313 

There are two types of hyper-parameters in DB: (1) number of Cartesian 314 

grid points and (2) the width of the multivariate Gaussian distributions. We 315 

performed DB-inference using several sets of these hyper-parameters. For each 316 

set, we first found the maximum likelihood weights Q�. Next, we determined the 317 

optimal hyper-parameters using the Akaike information criterion (Akaike 1973). 318 

Using the optimal hyper-parameters, we sampled the posterior distribution over 319 

the weights M� and estimated the joint distribution over parameters �,P���, P���� / 320 

(Methods).  321 

 Notably, both MERIDIAN and DB were able to accurately fit the synthetic 322 

data (Methods, Supplemental Information Figure 2). The two approaches were 323 

also similar in capturing the Pearson correlation between the two rates (R�� S324 0.19 , R�������� S 0.18, and  R���� S 0.3� . However, they predicted substantially 325 

different parameter distributions. While MERIDIAN accurately captured both the 326 
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distributions �,P���/ and �,P���� /, the distribution inferred using DB were very 327 

different from exponential distributions (Figure 4).  328 

Next, we obtained the inferred parameter distributions using DB for 329 

several sets of inference hyper-parameters by sampling over the posterior 330 

distribution over the weights (Supplemental Information Table 4). We quantified 331 

the similarity between the inferred and true distributions using three different 332 

cumulative-based metrics. Notably, MERIDIAN outperformed a vast majority of 333 

the tested choices of DB hyper-parameters (more than 93%) (Methods, 334 

Supplemental Information Table 4, and Supplemental Information Figure 3).  335 

Finally, we note that applying the DB approach to realistic models of 336 

biological networks (with 10-30 parameters) may be computationally prohibitive. 337 

If we choose W�  grid points per dimension in an inference of a X dimensional 338 

parameter space, DB employs W�
� basis functions. For example, for a signaling 339 

network described by 20 parameters, employing 5 grid points per dimension will 340 

require ~1014 basis functions. 341 

 342 

 343 

Using MERIDIAN to study EGFR/Akt signaling 344 

 345 

Computational model of the EGFR/Akt signaling network 346 

 347 

 Signal transduction in the EGFR/Akt network is illustrated in Figure 4. 348 

Following stimulation of cells with EGF, the ligand binds to the cell surface 349 

EGFRs. Ligand-bound receptors dimerize with other ligand-bound receptors as 350 

well as ligand-free receptors. EGFR dimers then phosphorylate each other and 351 

phosphorylated receptors (active receptors, pEGFRs) on the cell surface lead to 352 

downstream phosphorylation of Akt (pAkt). Both active and unphosphorylated 353 

(inactive) receptors are internalized with different rates from the cell surface 354 

through receptor endocytosis. After addition of EGF in the extracellular medium, 355 

pAkt levels increase transiently within minutes and then, as a result of receptor 356 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/137513doi: bioRxiv preprint 

https://doi.org/10.1101/137513


endocytosis and action of phosphatases, both pAkt and surface EGFR (sEGFR) 357 

levels decrease within hours after EGF stimulation (Chen, Schoeberl et al. 2009). 358 

 To explore the cell-to-cell variability in this pathway, we used a dynamical 359 

model of EGF/EGFR dependent Akt phosphorylation based on Chen et al. 360 

(Chen, Schoeberl et al. 2009). The model includes reactions describing EGF 361 

binding to EGFR and subsequent dimerization, phosphorylation, 362 

dephosphorylation, internalization, and degradation of receptors. To keep the 363 

model relatively small, we simplified pEGFR-dependent phosphorylation of Akt 364 

by assuming a single step activation of Akt by pEGFR (Methods). We note that 365 

the first and second order rate constants employed the model should be treated 366 

as effective rates given that the law of mass action is only an approximation to 367 

describe the complex processes in the EGFR/Akt pathway. The model had 17 368 

chemical species and 20 parameters. See Supplemental Information Table 2 for 369 

a list of model parameters and Supplemental Information Table 3 for a list of 370 

model variables. The model equations are given in Methods. 371 

 372 

Numerical inference of the parameter distribution  373 

 374 

To estimate the signaling parameter distribution consistent with 375 

experimental data using MERIDIAN, we used experimentally measured cell-to-376 

cell variability in pAkt levels at early times after EGF stimulation. Specifically, we 377 

used measured pAkt levels after stimulation with five different EGF doses (0.1, 378 

0.316, 3.16, 10, and 100 ng/ml) at 4 early time points (5, 15, 30, and 45 minutes) 379 

(Lyashenko, Niepel et al. 2017).  Additionally, we used sEGFR levels without 380 

EGF stimulation and after 3 hours of EGF stimulation at 1 ng/ml. We used 11 381 

bins to represent each experimentally measured distribution; the bin sizes and 382 

locations were chosen to cover the entire range of observed variability 383 

(Supplemental Information Table 1). There were a total of 264 bin fractions and 384 

corresponding 264 Lagrange multipliers. We numerically determined the optimal 385 

Lagrange multipliers corresponding to the bin fractions using the procedure 386 

described above (see Figure 2, Methods). It took approximately 90 hours to learn 387 

the optimal Lagrange multipliers. 388 
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Notably, the optimal Lagrange multipliers accurately reproduced the 389 

experimentally measured bin fractions (Pearson’s r2 = 0.9, p < 10-10, median 390 

relative error ~ 14%). Furthermore, fitted bin fractions obtained in two 391 

independent calculations showed excellent agreement with each other as 392 

expected for a convex optimization problem (Pearson r2 = 0.99, p < 10-10, 393 

Supplemental Information Figure 4). In Figure 5, we show the temporal profile of 394 

measured cell-to-cell variability in pAkt levels (colored circles) at EGF stimulation 395 

of 10 ng/ml and the corresponding fits (dashed black lines) based on the inferred 396 

parameter distribution. The fits to all 24 distributions are given in Supplemental 397 

Information Figure 5. The marginal distributions of the individual parameters are 398 

given in Supplemental Information Figure 6 and the correlation structure amongst 399 

parameters is given in Supplemental Information Table 7. 400 

 401 

Prediction of single cell dynamics 402 

 403 

Akt is a key hub of mammalian cell signaling (Manning and Toker 2017). 404 

Naturally, sustained activity of phosphorylated Akt (pAkt) is implicated in diverse 405 

human diseases, such as psychiatric disorders (Gilman, Chang et al. 2012) and 406 

cancer (Vivanco and Sawyers 2002). Using the developed approach, we 407 

investigated whether we could predict pAkt levels hours after EGF stimulation 408 

using the parameter distribution inferred from pAkt variability at early times after 409 

EGF stimulation. To that end, we numerically sampled multiple parameter sets 410 

using the inferred parameter distribution and predicted pAkt levels at late time 411 

across a range of EGF stimulation levels corresponding to each parameter set. 412 

We compared predicted and experimentally observed distribution of pAkt levels 413 

across cells at late times (180 minutes) after sustained EGF stimulation (Figure 414 

6a,b, Supplemental Information Figure 7). Our simulations correctly predicted 415 

that a significant fraction of cells have high pAkt levels hours after stimulation; the 416 

predicted and observed coefficient of variation (CV) of the pAkt distributions in 417 

cells stimulated with 10 ng/ml EGF for 180 minutes were in good agreement, 418 

0.41 and 0.37 respectively. Notably, the inferred parameter distribution 419 

accurately captures the population mean and variability (Figure 6c) in pAkt levels 420 
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at late times across four orders of magnitude of EGF concentrations used to 421 

stimulate cells.  422 

Importantly, MERIDIAN allowed us to investigate the biochemical 423 

parameters that significantly correlate with high pAkt levels at steady state. 424 

Interestingly, across all simulated trajectories, the levels of cell surface EGFR 425 

showed the highest correlation with pAkt levels among all receptor-related 426 

parameters (Supplemental Information Table 6, Pearson r = 0.4, EGF stimulation 427 

10 ng/ml). This suggests that cells with high EGFR levels likely predominantly 428 

contribute to the sub-population of cells with high steady state pAkt activity. This 429 

demonstrates how MERIDIAN can be used to gain mechanistic insight into 430 

heterogeneity in signaling dynamics based on single cell data.  431 

We next investigated whether MERIDIAN could predict the heterogeneity 432 

in EGFR levels after prolonged stimulation with EGF. To that end, we compared 433 

the predicted and the experimentally measured the steady state EGFR levels 434 

across EGF stimulation doses. Similar to pAkt, the simulations accurately 435 

captured both the population mean and variability of the EGFR receptor levels 436 

across multiple doses of EGF stimulations (Figure 7c). The simulations and 437 

experiments demonstrate that in agreement with model prediction that even 438 

hours after the growth factor stimulation there is a significant fraction of cells with 439 

relatively high levels of EGFR (Figure 7a,b).  440 

 441 

Possible extensions of the MERIDIAN framework 442 

 443 

Using MERIDIAN with inherently stochastic networks 444 

 445 

A straightforward extension makes it possible to use the MERIDIAN 446 

framework for signaling networks when the time evolution of species abundances 447 

is intrinsically stochastic, for example, transcriptional networks and prokaryotic 448 

signaling networks with relatively small species abundances (Raj and van 449 

Oudenaarden 2008). To that end, we can modify the definition of the predicted 450 

bin fraction �� � # �,�
	, ��� � �-�� ./��� where �,�
	, ��� � �-�� ./ is the distribution of 451 

x values at time t with parameters ��. The distribution can be obtained numerically 452 
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using Gillespie’s stochastic simulation algorithm (Gillespie 2007) and its fast 453 

approximations (Cao and Grima 2018) or approximated using moment closure 454 

techniques (Gillespie 2009). Notably, we have previously implemented this 455 

generalization of MERIDIAN to understand intrinsic and extrinsic noise in a 456 

simple gene expression circuit in E. coli (Dixit 2013). 457 

 458 

Constraining moments in MERIDIAN  459 

 460 

MERIDIAN can also be used to infer parameter distributions when, instead 461 

of the entire abundance distributions only a few moments of the distribution are 462 

available, such as average protein abundances measured using quantitative 463 

western blots or mass spectrometry (Shi, Niepel et al. 2016). For example, we 464 

consider the case where the population mean m and the variance v of one 465 

species x are measured at a fixed time point t. Instead of constraining fractions 466 �� that represent cell-to-cell variability in different bins of the relevant abundance 467 

distribution, we can constrain the population mean Y� � # �
	, ����
��� ��� and the 468 

second moment Y� � # �
	, �����
��� ��� to their experimentally measured values 469 

m and v+m2 respectively. Entropy maximization can then be carried out with 470 

these constraints. In this case, we have 471 

�
��� � 10 !
��� exp
�*��
	, ��� � *��
	, �����                                        
17� 
 472 

Using MERIDIAN with high-dimensional data 473 

MERIDIAN can be used to infer parameter distributions when multiple 474 

chemical species are experimentally measured in single cells at the same 475 

experimental condition. It may be difficult to accurately estimate the 476 

multidimensional bin counts from multidimensional data. Therefore, one can 477 

apply the following approach. For example, two species x and y simultaneously 478 

are measured across several cells, in addition to constraining the one-479 

dimensional bin fractions ��	�� and ��	��, we can also constrain the cross-moment 480 
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Z � G�@I. With these three types of constraints, the maximum entropy distribution 481 

is given by 482 

�
��� � 10 !
��� exp [� ) *���	��
����

���

� ) \���	��
@���

���

� ]�@^.            
18� 
In equation (18), ��	��  and ���  are the indicator functions for species x and y 483 

respectively, _�  and _�  are the number of bins used in the x- and the y-484 

dimension, *�  and \� are Lagrange multipliers constraining the bin fractions ��	�� 485 

and ��	�� respectively, and ] is the Lagrange multiplier that constrains the cross-486 

moment. By adding cross-moment constraints for each pair of species, equation 487 

(18) can be easily generalized to multiple dimensions; this will add ~N2/2 488 

Lagrange multipliers where N is the number of measured species. 489 

 490 

Speeding up MERIDIAN inference using neural networks 491 

 492 

 A key numerical bottleneck in applying the MERIDIAN inference approach 493 

is the numerical optimization of a large number of Lagrange multipliers. It is a 494 

well-known problem in maximum entropy inference (Loaiza-Ganem, Gao et al. 495 

2017). To address this problem, recently Loaiza-Ganem et al. (Loaiza-Ganem, 496 

Gao et al. 2017) proposed a maximum entropy flow network approach based on 497 

approximate deep generative modeling. Briefly, instead of finding the continuous 498 

density of the maximum entropy distribution in equation (5), they find the 499 

approximate maximum entropy distribution within a parametric family. The family 500 

is parameterized by several layers of a neural network and was shown to be 501 

sufficiently accurate in approximating true maximum entropy distributions. 502 

Moreover, a recent extension of this approach (Bittner and Cunningham 2019) 503 

enables fast simultaneous sampling of maximum entropy distributions along with 504 

a distribution of Lagrange multipliers (equation (7)). We believe that these fast 505 

methods will be crucial when using the MERIDIAN approach to study large 506 

signaling networks with several experimentally measured single cell distributions.  507 

 508 
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Using MERIDIAN with live cell imaging data 509 

  510 

Finally, we discuss how we can use MERIDIAN to infer parameters from 511 

experiments where dynamics of species abundances within single cells are 512 

measured using live cell imaging (Meyer, D'Alessandro et al. 2012, Kallenberger, 513 

Unger et al. 2017). For example, consider that the time evolution of a species 514 �
	� is measured in `�  cells from time t = 0 to t = T. We can discretize the 515 

continuous time observations into K discrete times �	�, 	�, … ,  	��. At each time 516 

point ti, we can then divide the range of observed abundances in Bi bins. Then, 517 

each individual dynamical trajectory �
	� can be characterized by a vector of 518 

indices �
	�~b_���
, _���

, … , _���
c  where _���

is the index of the abundance 519 

distribution bin through which the trajectory �
	� passed at time point ti. Given a 520 

sufficiently large number of trajectories, we then can constrain the fraction of 521 

trajectories that populate a given sequence of bins to infer the parameter 522 

distribution. 523 

 524 

Discussion 525 

 526 

Cells in a population exhibit heterogeneity in part because of 527 

heterogeneity in signaling network parameters (Albeck, Burke et al. 2008, Niepel, 528 

Spencer et al. 2009, Spencer, Gaudet et al. 2009, Meyer, D'Alessandro et al. 529 

2012, Llamosi, Gonzalez-Vargas et al. 2016, Kallenberger, Unger et al. 2017). In 530 

this work, we developed a maximum entropy based approach to infer this 531 

parameter heterogeneity from single cell measurements of chemical species 532 

abundances. Notably, the inferred distribution combines two components: (1) the 533 

true biological parameter variability due to cell-to-cell heterogeneity and (2) the 534 

non-identifiability in parameter estimation given the single cell data. 535 

Consequently, the inferred distribution is likely to be broader compared to the 536 

true biological variability (Mukherjee, Seok et al. 2013). Notably, the non-537 

identifiability component can be further minimized by (1) optimally designing 538 

experimental conditions to reduce non-identifiability (Bandara, Schloder et al. 539 
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2009, Kreutz and Timmer 2009) or by (2) directly including constraints on 540 

population average measurements of rate constants and other parameters of the 541 

signaling network.  542 

We briefly discuss key differences between MERIDIAN and a previous 543 

maximum entropy based approach by Waldherr et al. (Waldherr, Hasenauer et 544 

al. 2009). Waldherr et al. employ the so-called Latin hypercube sampling (LHS) 545 

approach (Stein 1987). A potential advantage of LHS is that it avoids 546 

computationally expensive determination of the Lagrange multipliers. At the 547 

same time, LHS only sparsely samples the parameter space and generally 548 

cannot assign probabilities to arbitrary high dimensional parameter points. In 549 

contrast, an advantage of MERIDIAN is that the continuous density defined in 550 

equation (5) allows us to estimate the relative probability of any parameter point. 551 

Finally, unlike the LHS approach, MERIDIAN allows us to estimate the 552 

uncertainty in model predictions using measurement errors. 553 

Recent developments in cytometry (Chattopadhyay, Gierahn et al. 2014) 554 

and single cell RNA sequencing (Saliba, Westermann et al. 2014) make it 555 

possible to simultaneously quantify multiple species abundances in single cells. 556 

Elegant statistical approaches have been developed to reconstruct trajectories of 557 

intracellular species dynamics consistent with time-stamped single cell 558 

abundance data (Gut, Tadmor et al. 2015, Mukherjee, Jensen et al. 2017, 559 

Mukherjee, Stewart et al. 2017). Complementary to these statistical methods, our 560 

approach (1) allows us to infer the distribution over signaling parameters that 561 

describe mechanistic interactions in the signaling network and moreover (2) the 562 

inferred parameter distribution can be used to predict the ensemble of single cell 563 

trajectories for time intervals and experimental conditions beyond the measured 564 

abundance distributions.  565 

In this work, we applied the developed framework to signaling network 566 

data. However, it can also be used in other diverse research contexts. For 567 

example, the framework can be applied to computationally reconstruct the 568 

distribution of longitudinal behaviors from cross-sectional time-snapshot data in 569 
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fields such as public health, economics, and ecology or to estimate parameter 570 

distributions from lower dimensional statistics (Das, Mukherjee et al. 2015).  571 

 572 
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Figure Legends 749 

 750 

 751 

 752 
Figure 1. Illustration of the MERIDIAN inference approach. Cell-to-cell variability in 753 
protein “a” is measured at four time points t1, t2, t3, and t4. From the single cell data, we 754 
determine the fraction ���  of cells that populate the kth abundance bin in the ith 755 
experiment. The histograms show ��� at multiple experimental conditions. We find ����� 756 
with the maximum entropy while requiring that the corresponding distribution 757 
�����	, ���� over trajectories of ���	, ��� simultaneously reproduces all bin fractions. 758 
 759 
 760 
 761 

 762 
Figure 2. The workflow to numerically determine the values of Lagrange 763 

multipliers. In each iteration, we evaluate the error vector 
���� between the predicted 764 
bin fractions 
����  and the experimentally measured bin fractions using Markov chain 765 
Monte Carlo. We propose a new set of Lagrange multipliers based on the error vector. 766 
We repeat until the error reaches below a predefined accuracy cutoff. 767 
 768 

 769 

 770 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/137513doi: bioRxiv preprint 

https://doi.org/10.1101/137513


 771 

Figure 3. A comparison between the inferred parameter distributions and the data. 772 

We show the comparison between the true parameter distributions  in panel a) 773 

and  in panel b) (black lines) and the corresponding MERIDIAN-inferred 774 

distribution (blue lines) and the DB inferred distribution (dashed red lines).  775 

 776 

Figure 4. A schematic of the EGF/EGFR pathway leading to phosphorylation of 777 

Akt. Extracellular EGF binds to cell surface EGFRs leading to their dimerization. 778 

Dimerized EGFRs are autophosphorylated and in turn lead to phosphorylation of Akt. 779 

Receptors are also removed from cell surface through internalization into endosomes. 780 

See Methods for details of the model.  781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 
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 792 

 793 

 794 
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 797 
Figure 5. Experimental estimated cell-to-cell variability in pAkt levels used to infer 798 
the parameter distribution. We show distribution of pAkt levels at 0, 5, 15, 30, and 45 799 
minutes after exposure to 10 ng/ml EGF. The colored circles represent the 800 
experimentally measured pAkt distributions used in the inference of the parameter 801 
distribution. The black dashed lines represent fitted distributions. The inset shows the 802 
experimentally measured population average pAkt levels at multiple time points. Error 803 
bars represent standard deviation. Error bars in the inset represent population standard 804 
deviations. 805 
 806 
 807 

 808 
Figure 6. Prediction pAkt levels at late times. (a and b) Measured distributions (black 809 
circles and lines) and the corresponding predictions (red circles and dashed lines) of 810 
cell-to-cell variability in pAkt levels at 180 minutes after stimulation with 0.1 ng/ml and 10 811 
ng/ml EGF respectively. (c) Measured mean pAkt levels (red circles) and measured 812 
standard deviation in pAkt levels (blue circles) at 180 minutes after sustained stimulation 813 
with EGF (x-axis) and the corresponding predictions (dashed red lines). The error bars in 814 
experimental data represent standard deviation. The error bars in model predictions 815 
represent the estimated uncertainty. 816 
 817 
 818 
 819 
 820 
 821 
 822 
 823 
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 824 
Figure 7. Prediction of sEGFR levels at late times. (a and b) Measured distributions 825 
(black circles and lines) and the corresponding predictions (red circles and dashed lines) 826 
of cell-to-cell variability in sEGFR levels at 180 minutes after stimulation with 0.125 ng/ml 827 
and 0.25 ng/ml EGF respectively. (c) Measured mean sEGFR levels (red circles) and 828 
measured standard deviation in sEGFR levels (blue circles) at 180 minutes after 829 
sustained stimulation with EGF and the corresponding predictions (dashed red lines). 830 
The error bars in experimental data represent standard deviation. The error bars in 831 
model predictions represent the estimated uncertainty. 832 
 833 
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 868 
 869 

Methods 870 

 871 

 872 

 873 

Experimental Details 874 

 875 

In this work, we used distributions of cell-to-cell variability in 876 

phosphorylated Akt levels as well as cell surface EGFR levels. We used the 877 

experimental data on pAkt levels previously measured in Lyashenko et al. 878 

(Lyashenko, Niepel et al. 2017) We measured cell-to-cell variability in sEGFR 879 

levels in this work. Briefly, we describe the experimental methods here.  880 

MCF 10A cells (Soule, Maloney et al. 1990) were obtained from the 881 

ATCC. The cells were grown according to ATCC recommendations. We 882 

confirmed the cell identity by short tandem repeat (STR) profiling at the Dana-883 

Farber Cancer Institute. We tested the cells with MycoAlert PKUS mycoplasma 884 

detection kit (Lonza) and ensured that they were free of mycoplasma infection. 885 

For the experiments, we coated 96 well plates (Thermo Fisher Scientific) with 886 

type I collagen from rat tail (Sigma-Aldrich) by incubating plates with 65 microliter 887 

of 4mg/ml collagen I solution in PBS for two hours at room temperature. We 888 

washed the plates twice with PBS using EL406 Microplate Washer Dispenser 889 

(BioTek) and sterilized them under UV light for 20 minutes prior to use. Cells 890 

were harvested during logarithmic growth. We dispensed 2500 cells per well into 891 

collagen-coated 96 well plates using a EL406 Microplate Washer Dispenser. We 892 

grew the cells in 200 microliter of complete medium for 24 hours. The cells were 893 

serum-starved twice in starvation media (DMEM/F12 lemented with 1% penicillin-894 

streptomycin and 0.1% bovine serum albumin). Next, we incubated the cells in 895 

200 microliter of starvation media for 19 hours and again for one more hour. This 896 

time point constituted t=0 for all experiments.  897 

We created the EGF treatment solutions by dispensing the appropriate 898 

amounts of epidermal growth factor (EGF, Peprotech) into starvation media using 899 

a D300 Digital Dispenser (Hewlett-Packard). To fit the parameter distributions, 900 
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we used EGF concentrations of 0.1, 0.31, 3.16, 10, and 100 ng/ml for Akt 901 

phosphorylation measurements and EGF concentrations of 0, 1, and 100 ng/ml 902 

for surface EGFR measurements. At t=0 cells were stimulated with 100 microliter 903 

of 3x solution and incubated for indicated times (5, 15, 30, and 45 minutes for 904 

pAkt and 180 minutes for sEGFR). To test the model predictions, we collected 905 

pAkt distributions at 90 and 180 minutes after stimulation with 0.01, 0.031, 0.1, 906 

0.31, 1, 3.16, 10, 31.6, and 100 ng/ml EGF. We also measured sEGFR 907 

distributions at 180 minutes after stimulation with 0.0078, 0.0156, 0.0312, 908 

0.0625, 0.125, 0.25, 0.5, 1, and 100 ng/ml of EGF. All incubations were 909 

terminated by adding 100 µl of 12% formaldehyde solution (Sigma) in phosphate 910 

buffered saline (PBS) and fixing the cells for 30 min at room temperature.  911 

We performed all subsequent washes and treatments with the EL406 912 

Microplate Washer Dispenser. We washed the cells twice in PBS and 913 

permeabilized them with 0.3% Triton X-100 (Sigma-Aldrich) in PBS for 30 min at 914 

room temperature. Cells were washed once again in PBS, and blocked in 40 915 

microliter of Odyssey blocking buffer (LI-COR Biotechnology) for 60 min at room 916 

temperature. Cells were incubated with 30 microliter of anti-phospho-Akt (Cell 917 

Signaling Technologies, #4060, 1:400) or anti-EGFR (Thermo Fisher Scientific, 918 

MA5-13319, 1:100) over night at 4°C. We then washed the cells once in PBS and 919 

three time in PBS with 0.1% Tween 20 (Sigma-Aldrich; PBS-T for 5 min each and 920 

incubated with 30 microliter of a 1:1000 dilution of Alexa Fluor 647 conjugated 921 

goat anti-rabbit or goat anti-mouse secondary antibody in Odyssey blocking 922 

buffer for 60 min at room temperature. Next we washed the cells two times in 923 

PBS-T, once with PBS, and stained for 30 min at room temperature with whole 924 

cell stain green (Thermo Fisher Scientific) and Hoechst (Thermo Fisher 925 

Scientific). Finally, cells were washed three times in PBS, covered in 200 926 

microliter of PBS, and sealed for microscopy. We imaged cells with an Operetta 927 

high content imaging system (Perkin Elmer) and analyzed the resulting scans 928 

using the Columbus image data storage and analysis system (Perkin Elmer). We 929 

performed the experiments in biological triplicates for surface EGFR and 930 
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quadruplets for pAkt. To avoid potentially pathological bright cells, we removed 931 

the top 1% of the data in all single cell distributions.  932 

 933 

 934 

Computational details 935 

 936 

Incorporating experimental error in MERIDIAN  937 

 938 

In this section, we expand on the mathematical details of how to 939 

incorporate experimental errors in the MERIDIAN inference procedure. As in the 940 

main text, we denote by �� the experimentally estimated mean bin fractions and 941 

by 9� the corresponding standard errors in the mean. We assume that following 942 

an iterative procedure described in Figure 2, we have obtained an optimal set of 943 

Lagrange multipliers :�. We denote by ��
:�� the corresponding model predicted 944 

bin fractions.  945 

Any fixed set of Lagrange multipliers uniquely determines model 946 

predictions ��. Thus, the errors in experimental measurements are captured by a 947 

distribution over the Lagrange multipliers themselves. We write the probability of 948 

non-optimal Lagrange multipliers *� d :� as  949 

�,*�/ ; exp 4� ) ,��,*�/ � ��/�29��
�

���

5 e  exp [� ) ���,*�/ � ��
:����29��
�

���

^   
�1� 

Equation (S1) assumes that the errors are normally distributed and that 950 

the residuals 7� � ��
:�� � �� are small. We have also neglected the Jacobian 951 

determinant associated with changing the variables from ��,*�/  to *�.  Sampling 952 

Lagrange multipliers from equation (S1) is in principle possible but may be 953 

numerically inefficient. This is because it requires on-the-fly estimation of 954 

predicted bin fractions ��,*�/  for non-optimal Lagrange multipliers *� d :� . 955 

However, if we are interested the first two moments (means and uncertainties), 956 

we can approximate the distribution over Lagrange multipliers as a multivariate 957 

Gaussian distribution. This is equivalent to assuming that the experimental errors 958 9� are small compared to the mean values �� . In the EGFR/Akt data used in this 959 
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work, the standard errors in the mean are indeed small; median relative error is 960 

~9% and the mean relative error is ~11%. To express the distribution in equation 961 

(S5) as a Gaussian, we first write 962 

��,*�/ e ��
:�� % ) 4 ��*� ��,*�/5
 !�"!

,H*�/                              
�2� 
where H*� � *� � :�  is the deviation in *�  away from the optimal Lagrange 963 

multipliers. Using linear response theory from statistical physics (Hazoglou, 964 

Walther et al. 2015), the derivatives in equation (S2) can be expressed as 965 

ensemble average over the parameter space. We write 966 

 967 

4 ��*� ��,*�/5
 !�"!

� ��*� # �� ���
	, ���� !
��� exp �� ∑ :
�
 ���
	, �����

�� � ���

# !
��� exp �� ∑ :
�
 ���
	, �����

�� � ��� 
�3� 

 968 

g 4 ��*� ��,*�/5
 !�"!

� �J�� � � 'G�� ���
	, ���� �� ���
	, ����I !�"! � ��
:����
:��( 
�4� 

 969 

In equation (S4), J�� is the covariance matrix among the constraints. The 970 

average is computed using equation (5) in the main text with *� � :�.  971 

Combining equations (S1), (S2), and (S4), we obtain the Gaussian 972 

approximation to the distribution over Lagrange multipliers, 973 

�,*�/ ; exp 4� ) ,� ∑ J��,*� � :�/� /�29��
�

���

5.                                    
�5� 

The multivariate Gaussian distribution in equation (S5) is fully determined by the 974 

means and the covariance matrix of the Lagrange multipliers. We determine 975 

these next. 976 

Since we assume that the model can fit the data reasonably accurately, 977 

the average value of the deviation in Lagrange multipliers in equation (S5) is 978 GH*�I � 0 . Next, we estimate the covariance matrix among the Lagrange 979 

multipliers. Let us consider a particular bin fraction ��.  The model estimated 980 

uncertainty is given by      981 
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D�� � � ��,*�/��,*�/�*� – �
:���                                               
�6� 

e G[��
:�� � ) J��,H*�/
�

^
�

I �  �
:���                            
�7� 
� ) J��J
�,GH*�H*
I � GH*�IGH*
I/

�,


                                    
�8� 

The experimentally estimated uncertainty in ��  is 9��. Equating the two, we have 982 

9�� � ) J��J
�,GH*�H*
I � GH*�IGH*
I/
�,


                                    
�9� 

g GH*�H*
I � GH*�IGH*
I �  �
J���KLF,9����/
J����
�


                      
�10�  
In equation (S10), J� is the pseudoinverse of the covariance matrix.  983 

 These first two moments fully describe the multivariate Gaussian 984 

distribution over Lagrange multipliers (equation (S5)). Next, we show how to 985 

estimate mean predictions and uncertainty in model predictions.  986 

 Consider a variable >
��� that depends on model parameters ��. We are 987 

interested in estimating its mean predicted value “m” and the corresponding 988 

uncertainty “s”. Let us denote by @,*�/ � # >
����,��-*�./���  the model prediction 989 

when the Lagrange multipliers are fixed at *�. We have the mean prediction 990 

? � � @,*�/�,*�/�*� e @
:��                                               
�11� 
Next, we seek the estimated uncertainty (see equation 10 in the main text),      991 

D� � � @,*�/��,*�/�*� – ?�                                              
�11� 
e G�@
:� � ) F�H*���I !�"! �  @
:���                               
�12� 
� ) F�F
,GH*�H*
I � GH*�IGH*
I/

�,


.                                  
�13� 
In equation (S13), the couplings F� are given by 992 

F� �  �G>
�����I !�"! � G>
���I !�"!��
:���.                           
�14� 
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Equations (S11-S14)) show how to estimate model predictions and the 993 

corresponding uncertainty from the parameter distribution �
��|:�.� (equation (5) in 994 

the main text).  995 

In the theoretical development above, we restricted the Taylor series 996 

expansion to the first order in *� . More generally, higher order Taylor series 997 

expansions can also be included. Notably, similar to equation (S4), all higher 998 

order Taylor series coefficients can be estimated using MCMC calculations 999 

performed using the parameter distribution �
��|:�.�.  1000 

 1001 

Comparison between DB and MERIDIAN 1002 

 1003 

Simplified signaling network  1004 

 1005 

In this section, we describe the details of the simple growth factor model 1006 

used to generate synthetic data and the procedure to fit data to infer the 1007 

parameter distribution using the maximum entropy approach as well as the 1008 

discretized Bayesian approach of Hasenauer et al. (Hasenauer, Waldherr et al. 1009 

2011).  1010 

The model comprised three species: the extracellular ligand L, inactive 1011 

ligand-free cell surface receptors R, and active ligand-bound cell surface 1012 

receptors P. The dynamics of the three variables was dictated by five 1013 

parameters: the rate of ligand binding to inactive receptors P�, the rate of ligand 1014 

unbinding from active receptors P$� , the rate of removal of inactive receptors 1015 P��� , the rate of removal of active receptors P���� , and the steady state cell 1016 

surface receptor level in the absence of the ligand i� . See Supplemental 1017 

Information Figure 1 for an illustration.  1018 

In the model, the dynamics of the species are governed by the following 1019 

two equations: 1020 

 1021 

�%�&

��
� P��
 � P��$��i� % P$���� � P����i�    (S15) 1022 

�%'&

��
� P��$��i� � P$���� � P���� ���                      (S16) 1023 
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 1024 

 We simulated the model to generate synthetic data as follows. We fixed 1025 

three parameters P� � �

(�
 )
��

	


, P$� � 10/?K`, and i� � 5. We generated single 1026 

cell distribution by varying the rates P���  and P���� . The rate of delivery of 1027 

receptors to the cell surface was set equal to P��
 � i�P���. The rates were 1028 

sampled from a correlated bivariate exponential distribution (Iyer 2002). P��� was 1029 

restricted between 0.01/min and 0.05/min and P����  was restricted between 1030 

0.1/min and 0.5/min. The Pearson correlation between the sampled rates was set 1031 

to be 0.28. Using 50000 sampled rates, we solved the differential equations 1032 

(S15) and (S16) and generated single cell data on the number of activated 1033 

receptors at four conditions (L = 2 ng/ml and 10 ng/ml, and t = 10 minutes, and 1034 

steady state). A normally distributed random error was added to each single cell 1035 

readout P that represented 5% of the magnitude of the data point (� k � l1036 
1 % 0.05m� where X was a standard normal variable). The 50000 single cells 1037 

were split into five experiments of 10000 cells each. From these five 1038 

experiments, we estimated the mean bin fractions ��  and the corresponding 1039 

standard errors of the means 9� . There were a total of 44 bin fractions 1040 

(Supplemental Information Table 4).  1041 

We used these bin fractions to infer the parameter distribution using 1042 

MERIDIAN and a previously developed discretized Bayesian (DB) approach.  1043 

 1044 
Implementation of DB  1045 

 1046 

In the DB approach, we approximated the parameter distribution as a 1047 

linear combination 1048 

�,P���, P���� / � ) M�N�,P���, P���� /                                        
�17� 
where N�,P���, P���� / are bivariate Gaussian distributions situated on an equally 1049 

spaced NxN Cartesian grid and M� are the corresponding weights. Here, N is a 1050 

hyper-parameter of the inference procedure. In order to test the accuracy of the 1051 

DB approach, we used multiple values of the number of grid points (N = 5, 10, 1052 
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15, and 20). Another choice of hyper-parameter is the covariance matrix of the 1053 

Gaussians. We tested the covariance matrix of the Gaussians as: n �1054 

�KLF �9����� , 9����

� �  where 9���� � �

*
o +.+-

�
 and 9����


 � �

*
o +.-

�
. The hyper-1055 

parameter p  controls the width of the bivariate Gaussian distribution. We 1056 

scanned over multiple values of the parameter p (p  = 1, 2, 4, 8, 16, and 32). 1057 

Overall, we performed 24 DB inference calculations (4 N values x 6 p values).  1058 

In any given calculation, for every value of the index j (indicating one 1059 

Gaussian basis function) we sampled Nsim = 104 parameter points from the 1060 

bivariate Gaussian distribution N�,P���, P���� /  and estimated the predicted bin 1061 

fractions qr�. For any set of weights �M��, the overall predicted bin fractions for the 1062 

ith bin is then expressed as the linear combination 1063 

�� � ) M�q��

�

                                                      
�18� 
In order to decide which DB hyper-parameters to use for further analysis, 1064 

we used the Akaike information criterion (AIC) (Akaike 1973). The AIC balances 1065 

the accuracy with which a model fits the data and the number of parameters in 1066 

the model. We determined the AIC for a given set of DB hyper-parameters as 1067 

follows. First, we found the maximum likelihood set of weights by maximizing the 1068 

log-likelihood 1069 

$$ � � ) 129�� [) M�q�� � ��

�

^
�

�

                                    
�19� 
In equation (S19), ��  is the mean “experimental” bin fractions in the ith 1070 

experiment and 9�  is the corresponding standard error of the mean. Next, we 1071 

calculated the AIC as AIC = 2N2 – 2LL where N2 was the total number of free 1072 

parameters in each model (the N2 weights). For further analysis, we used the set 1073 

of hyper-parameters that minimized the AIC. This corresponded to N = 10 grid 1074 

points per dimension and p  = 4. The statistical characterization of all tested 1075 

models is presented in Supplemental Information Table 4.  1076 

To account for the non-identifiability in the parameter distribution, we 1077 

sampled the full posterior distribution over the weights using MCMC. The 1078 
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posterior distribution was given by the exponential of the log likelihood in 1079 

equation (S19). For this calculation, we used a total of 4x107 MCMC steps in the 1080 

space of weights M� . The first half of the simulation was discarded as 1081 

equilibration. In the second half of the MCMC, we stored weights every 10000th 1082 

step. For each set of weights, we sampled 250 bivariate Gaussian variables by 1083 

first sampling 50 grid points according to a multinomial distribution with the 1084 

weights as probabilities and then sampling 5 bivariate Gaussian variables per 1085 

sampled grid point. 1086 

 1087 

Implementation of MERIDIAN 1088 
 1089 

The optimal Lagrange multipliers :� for MERIDIAN were inferred using an 1090 

iterative procedure described below. In the iterative search, the predicted bin 1091 

fractions ��,*�/ were estimated using direct integration using the trapezoidal rule. 1092 

We note that integration using trapezoidal rule is not possible for a high 1093 

dimensional parameter space. In order to incorporate the errors in experimental 1094 

data, we sampled over the posterior distribution over Lagrange multipliers. First, 1095 

we approximated the posterior distribution as a multivariate Gaussian distribution 1096 

(see equation (S5), (S9), and (S14)). Next, we sampled 5000 sets of Lagrange 1097 

multipliers using this multivariate Gaussian distribution. For each set of Lagrange 1098 

multipliers, we performed MCMC calculations using the Metropolis criterion (see 1099 

below for details) to samples through the parameter space using equation (5) in 1100 

the main text. Briefly, 105 steps of MCMC were used for equilibration and 104 1101 

steps were used to save parameters. Parameters were saved every 500th step.  1102 

 1103 

Comparing MERIDIAN and DB 1104 

 1105 

We used three different metrics to compare the marginal parameter 1106 

distributions �,P���/ and �,P���� / predicted using MERIDIAN and DB. First, we 1107 

collected 50000 parameter samples from the parameter distributions using both 1108 

MERIDIAN and DB. Next, we binned these samples using intervals 1109 

0.01:0.0005:0.05 and 0.1:0.005:0.5 for P��� and P����  respectively using the hist 1110 
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function in MATLAB. Using these bins, we found the cumulative distributions 1111 s�,P���/ and s�,P���� / respectively. Here, the subscript “M” denotes the method 1112 

(MERIDIAN and DB). We defined three different errors between the predicted 1113 

distributions and the ground truth exponential distributions (GT).  1114 

(1) t� � 0.5 l �us�,P���/ � s��,P���/u
�

% us�,P���� / � s��,P���� /u
�
�  is 1115 

the average L2 norm of the difference between the predicted 1116 

cumulative distribution s�
v� and the ground truth s��
v�. This is the 1117 

square root of the Cramér-von Mises metric. 1118 

(2) t� � 0.5 l ,∑-s�,P���/ � s��,P���/- % ∑-s�,P���� / � s��,P���� /-/ is the 1119 

average sum of the absolute difference between the predicted 1120 

cumulative distribution s�
v� and the ground truth s��
v� 1121 

(3) t. � 0.5 l ,max-s�,P���/ � s��,P���/- % max-s�,P���� / � s��,P���� /-/  1122 

is the average of the maximum difference between the predicted 1123 

cumulative distribution s�
v� and the ground truth s��
v�. This is the 1124 

Kolmogorov-Smirnov metric. 1125 

The performance of DB and MERIDIAN based on these three errors can 1126 

be found in Supplemental Information Table 4. 1127 

 1128 

Applying MERIDIAN to EGFR/Akt pathway  1129 

 1130 

Inference of Lagrange multipliers from data is convex  1131 

 1132 

 The entropy functional  1133 

� � � � �
��� log �
��� ���                                             
�20� 
is convex with respect to the probability distribution �
��� . Moreover, the 1134 

constraints that impose normalization and bin fractions are linear with respect to 1135 

the probability distribution and are thus convex with respect to �
��� as well. 1136 

Consequently, entire Lagrangian function (equation (4) of the main text) 1137 

$��
���� � � % & '� �
��� ��� � 1( � ) *� '� �� ���
	, ���� �
������ � ��(�

���

    
�21� 
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 is also convex. Let us consider the dual problem in the space of Lagrange 1138 

multipliers. We substitute the maximum entropy probability distribution �
��� from 1139 

equation (5) of the main text. We have the dual 1140 

$x*�y � log 0 ,*�/ � ) *���.                                         
�22��

���

 

Given that the original objective function is convex, the maximization of the dual 1141 

(equation S22) is equivalent to the problem of maximizing the original objective 1142 

function (the entropy). Moreover, since the original problem is convex, the dual is 1143 

convex as well (Bertsimas 1997). This can be easily checked because the 1144 

Hessian of the Lagrangian function in equation (S22) is simply  1145 z,$x*�y/
�


� G���
I ! � ��,*�/�
,*�/                                  
�23� 
the covariance matrix between bin fraction indicator functions evaluated at *�. The 1146 

covariance matrix is by construction a positive semi-definite matrix. This provides 1147 

another evidence that the problem of finding Lagrange multipliers is a convex 1148 

one.  1149 

 1150 

Generalization of equation (5) for multiple species 1151 

 1152 

Here, we give a generalization of equation (5) in the main text when the 1153 

single cell distributions measured from multiple chemical species are used to 1154 

constrain the parameter distribution. Consider that we have measured cell-to-cell 1155 

variability in n different experimental conditions. The experimental conditions are 1156 

identified by several indicators including identity of the measured species, input 1157 

level, time of measurement, etc. We avoid multiple subscripts to specify these 1158 

various indicators and denote the experimental conditions as ���, ��, … , �
�. We 1159 

consider that the single cell distribution at each measurement “a” is binned in Ba 1160 

bins. The maximum entropy parameter distribution is given by (see equation (5) 1161 

in the main text) 1162 

�
��� � 10 !
��� exp [� ) ) *����� ���
������

���




���

^.                               
�24� 
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In equation (S24), ���
�� is the indicator function corresponding to the kth bin for 1163 

the ath experimental condition, Ba is the number of bins representing the ath 1164 

experimental condition, and *�� is the corresponding Lagrange multipliers.  1165 

 1166 

Model of the EGFR/Akt signaling pathway 1167 

 1168 

In this section, we describe in detail the dynamical model used to simulate 1169 

levels of phosphorylated Akt as well as cell surface EGFRs after stimulation of 1170 

cells with EGF. 1171 

The model of EGF/EGFR dependent phosphorylation of Akt was based on 1172 

the previous work of Chen et al. (Chen, Schoeberl et al. 2009). We retained the 1173 

branch of the Chen et al. model that leads to phosphorylation of Akt subsequent 1174 

to EGF stimulation. The model had 17 species and 20 parameters. The 1175 

description of the species is given in Supplemental information Table 3. The 1176 

description of the parameters is given in Supplemental information Table 2. A 1177 

system of ordinary differential equations describing dynamics of concentrations 1178 

of species participating in signaling is given below (equations S24-S39). The 1179 

model described EGF binding to EGFRs, subsequent receptors dimerization, 1180 

phosphorylation, dephosphorylation, receptors internalization, degradation and 1181 

delivery to cell surface and activation of Akt. We denote by active receptors 1182 

phosphorylated receptors and by inactive receptors all other receptor states. In 1183 

agreement with the literature only cell surface-localized phosphorylated receptors 1184 

were allowed to activate Akt (Nicholson and Anderson 2002). We simplified the 1185 

phosphorylation of pAkt through pEGFR; we implemented direct interaction 1186 

between pEGFR and Akt leading to phosphorylation of Akt.  1187 

 1188 

 1189 

 1190 

 1191 

 1192 

 1193 
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 1194 

 1195 

Binning single cell data 1196 

To infer the joint distribution over model parameters, we used 24 1197 

measured distributions of cell-to-cell variability (20 pAkt distributions, 1 pAkt 1198 

background fluorescence distribution and 3 sEGFR distributions, see below). For 1199 

each measured distribution we used 11 bins. The locations and widths of the bins 1200 

were chosen to fully cover the observed abundance range while also ensuring 1201 

reliable estimates of the bin fractions ��. See Supplementary Information Table 1 1202 

for bin locations and experimentally estimated bin fractions. 1203 

We detected a small but significant pAkt signal in the absence of EGF 1204 

stimulation. This background fluorescence signal likely originated from off target 1205 

binding of pAkt-detecting antibodies. We assumed that the fluorescent readouts 1206 
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of pAkt/sEGFR levels in individual cells were equal to the sum of EGF dependent 1207 

pAkt/sEGFR levels as computed using the signaling network model and the cell-1208 

dependent, but time-independent background fluorescence signal. In case of 1209 

pAkt levels, the distribution of the background fluorescence was fitted to the 1210 

experimentally measured distribution of the background fluorescence (pAkt 1211 

readout without EGF stimulation). Unlike pAkt levels that respond to stimulation 1212 

with EGF, cells maintain a high number of EGF receptors on the cell surface in 1213 

the absence of EGF. As a result, we did not have experimental access to 1214 

‘background fluorescence’ distribution for sEGFR-detecting antibodies. We 1215 

determined the range of background sEGFR fluorescence levels as follows. At 1216 

the highest saturating dose of EGF (100 ng/ml) majority of the cell surface 1217 

EGFRs are likely to be removed from the cell surface and degraded. At this dose, 1218 

we assumed that the sEGFR background fluorescence can account for half of 1219 

the measured fluorescence. We did not fit the distribution of background sEGFR 1220 

levels to a specific distribution.  1221 

 1222 

Numerical inference of Lagrange multipliers 1223 

 1224 

The numerical search for Lagrange multipliers that are associated with bin 1225 

fractions is a convex optimization problem (see above). We resorted to a 1226 

straightforward and stable algorithm proposed in (Tkacik, Schneidman et al. 1227 

2006). The algorithm proceeded as follows. We started the calculations with an 1228 

initial guess for the Lagrange multipliers at zero   for each of the 11 bins of the 24 1229 

fitted distributions. In the nth iteration, using the Lagrange multipliers *�	
� , we 1230 

estimated the predicted bin fractions  ��	
�  using Markov chain Monte Carlo 1231 

(MCMC) sampling.  1232 

MCMC sampling in each iteration was performed as follows. We 1233 

propagated 50 parallel chains starting at random points in the parameter space. 1234 

Individual MCMC chains in the parameter space were run as follows. In the 1235 

MCMC, on an average 10 parameters were changed in a single Monte Carlo 1236 

step. The parameters were constrained to be within the upper and lower limits 1237 

determined individually for each parameter based on available literature 1238 
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estimates (see Supplemental Information Table 2). Each chain was run for 50000 1239 

MCMC steps. At each step, we solved the system of differential equations given 1240 

in equations (S25)-(S40) numerically with the proposed parameter assignment 1241 

using the ode15s function of MATLAB. We evaluated the pAkt and sEGFR levels 1242 

and accepted the proposed parameters using the Metropolis criterion applied to 1243 

equation (5) in the main text. Briefly, for any set of parameters, we defined the 1244 

energy 1245 

t
��� � � log �
��� � ) ) *����� ���
���� % J{`D	.��

���




���

                         
�41� 
Starting from any parameter set ��, a new parameter set ��/ was proposed 1246 

as described above. Then, the differential equations describing system dynamics 1247 

were solved and the new energy t
��/� was computed. The difference in energy 1248 Ht � t
��/� � t
��� was used to probabilistically accept/reject the new parameter 1249 

set with an acceptance probability 1250 

 1251 |��� � ?K`
1, exp
�Ht��.                                            
�42� 
 1252 

Parameter points that predicted pAkt and sEGFR levels outside of the 1253 

ranges observed in experimental data were rejected (see Supplemental 1254 

Information Table 5 for allowed ranges). We discarded the first 5000 steps as 1255 

equilibration and saved parameter values every 50th iteration. At the end of the 1256 

calculation, parameter samples from all MCMC chains were combined together. 1257 

We also imposed a few realistic constraints on pAkt and sEGFR time courses 1258 

predicted by the model. All parameter sets that did not satisfy these constraints 1259 

were discarded. The constraints were as follows. (1) Given that EGF ligand 1260 

induces receptor endocytosis, we required that the surface EGFR levels at 180 1261 

minutes of sustained stimulation with 100 ng/ml EGF to be lower than the steady 1262 

state surface EGFR levels in the absence of EGF stimulation. (2) Similarly we 1263 

required that pAkt levels at 45 minutes were lower than pAkt levels at 5 minutes 1264 

for the highest EGF stimulation (100 ng/ml).  1265 
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Using the sampled parameters, we estimated the bin fractions ��
 as well 1266 

as the elements of the relative error vector 7�	
� � ��	
� � ��	
�  in the nth iteration. 1267 

For the n+1st iteration, we proposed new multipliers  *�	
��� � *�	
� % 8	
�7�	
� . The 1268 

multiplication constant 8	
�  was chosen as follows. First, the approximate 1269 

estimate of the predicted bin fractions for a given value of 8	
� was obtained 1270 

using the Taylor series expansion 1271 

��01��	
��� e ��	
� � 8	
�J	
�7�	
�                         (S43) 1272 

where J	
� is the covariance matrix with entries 1273 

J�
	
� � G���
I !��� � ��,*�	
�/�
,*�	
�/                                    (S44) 1274 

when the Lagrange multipliers are fixed at *�	
�. We chose 8	
�
 in the interval 1275 

[0.05, An] so as to minimize the predicted error }01��	
��� � ~��01��	
��� � ��~.  1276 

1000 MC steps took 5-10 minutes. At the end of the calculation, the 1277 

numerically inferred distribution over parameters captured with high accuracy the 1278 

individual bin fractions of the distributions that were used to constrain it 1279 

(Pearson’s r2 = 0.9, p < 10-10, median relative error = 14%). Notably, as seen in 1280 

SI Figure 3, the predicted bin fractions from two independent calculations to 1281 

determine the Lagrange multipliers were highly correlated with each other 1282 

(Pearson’s r2 = 0.99, p < 10-10) indicating that the calculations converged to the 1283 

same parameter distribution.  1284 

 1285 

 1286 
Inversion of covariance matrix (equation (S10)) 1287 

 1288 

In order to make predictions using MERIDIAN, we first sample several 1289 

parameter points from the parameter distribution �
��|:�.� (equation (5) in the main 1290 

text) using MCMC and the Metropolis criterion as described above. Using NS 1291 

parameter samples, we generate a sparse matrix with entries ��2 where a is the 1292 

index of the sample point (L � 
0, W3�� and b is the index of the bin (and the 1293 

experiment). There are a total of 24x11 = 264 bins used in this work and the b 1294 

index runs between 1 and 264. The entry ��2 � 1 only if the model solutions 1295 

pass through the bth bin for any given set of parameters. From the matrix M, we 1296 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/137513doi: bioRxiv preprint 

https://doi.org/10.1101/137513


estimate the 264x264 covariance matrix among the constraints. The entries of 1297 

the convariance matrix are given by 1298 J�
 � G���
I"! � ��
:���

:��                              (S45) 1299 

where P, � � �1, 264�. Next, we compute the inverse of the covariance matrix. 1300 

Since all bin fractions at any given experimental conditions add up to one by 1301 

definition, the covariance matrix is not full rank. Indeed, it has a total of 24 zero 1302 

eigenvalues corresponding to 24 redundancies in the constrained single cell 1303 

distributions. When inverting the covariance matrix, we neglect these 24 zero 1304 

eigenvalues. The resultant inverse J� is the so-called Moore-Penrose 1305 

pseudoinverse of the matrix.  1306 

 1307 

SI Figures 1308 
 1309 

 1310 

 1311 

 1312 
Supplemental Information Figure 1. Schematic of the simplified growth factor 1313 
model. Inactive receptors are delivered from the intracellular medium on the plasma 1314 
membrane. Receptors bind to the ligand and get activated. Both activated and 1315 
inactivated receptors are removed from the cell surface and degraded albeit at different 1316 
rates.  1317 
 1318 
 1319 
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 1320 
Supplemental Information Figure 2. Fitted bin fractions using DB and MERIDIAN. 1321 
We show the “ground truth” bin fractions (black lines) and the corresponding fits using 1322 
MERIDIAN (blue lines) and the DB approach (red lines) across four simulation 1323 
conditions. 1324 
 1325 
 1326 
 1327 
 1328 
 1329 
 1330 
 1331 
 1332 
 1333 
 1334 
 1335 
 1336 
 1337 
 1338 
 1339 
 1340 
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 1341 
Supplemental Information Figure 3. Inferred parameter distribution for top 10 DB 1342 
fits. Panels (a1-j1) show the inferred distribution �����	� and panes (a2-j2) show the 1343 

inferred distribution �����	

 � for top ten choices of method-parameters N (number of grid 1344 

points) and � (width of the Gaussian basis function) according to the Akaike information 1345 
score (dashed red line). The Akaike score and the likelihood are shown on the top of 1346 
each panel. Black lines indicate the “ground truth” distributions. 1347 
 1348 
 1349 
 1350 
 1351 
 1352 
 1353 
 1354 
 1355 
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 1356 
Supplemental Information Figure 4. Model predictions agree for two independent 1357 
calculations. The correlation between experimentally estimated bin fractions (x axis) 1358 
and predicted bin fractions (y axis) for two independent searches for the Lagrange 1359 
multipliers (red and blue dots).  1360 

 1361 

 1362 

Supplemental Information Figure 5. 21 fitted pAkt distributions and 3 fitted sEGFR 1363 
distributions used in parameter inference. We show all fitted single cell distributions 1364 
(pAkt fits in red, sEGFR fits in blue, experimental data in black) used in the inference. 1365 
Error bars represent experimentally estimated standard errors in the mean and model 1366 
estimated uncertainties. 1367 

 1368 

 1369 
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 1370 

Supplemental Information Figure 6. Inferred marginal distributions of all 20 model 1371 
parameters.  1372 

 1373 

 1374 

Supplemental Information Figure 7. Population dynamics has not reached steady 1375 
state at 45 minutes.  We plot single cell distributions of pAkt levels at 45 minutes (gray 1376 
lines) and at 180 minutes (experiments in black lines, model fit in red lines) across a 1377 
broad range of EGF doses. Error bars represent experimentally estimated standard 1378 
errors in the mean. For simplicity, we do not show the model estimated uncertainties. 1379 

 1380 
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 1385 
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