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Summary 

Hailstone et al. develop 

CytoCensus, a “point-and-

click” supervised machine-

learning image analysis 

software to quantitatively 

identify defined cell classes 

and divisions from large 

multidimensional data sets of 

c o m p l e x t i s s u e s . T h e y 

demonstrate its utility in 

a n a l y s i n g c h a l l e n g i n g 

developmental phenotypes in 

living explanted Drosophila 

larval brains, mammalian 

embryos and zeb ra f i sh 

organoids. They further show, 

in comparat ive tests, a 

significant improvement in 

performance over existing 

easy-to-use image analysis 

software.    
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Abstract 

A major challenge in cell and developmental biology is the automated identification and 

quantitation of cells in complex multilayered tissues. We developed CytoCensus: an easily 

deployed implementation of supervised machine learning that extends convenient 2D “point-

and-click” user training to 3D detection of cells in challenging datasets with ill-defined cell 

boundaries. In tests on these datasets, CytoCensus outperforms other freely available image 

analysis software in accuracy and speed of cell detection. We used CytoCensus to count stem 

cells and their progeny, and to quantify individual cell divisions from time-lapse movies of 

explanted Drosophila larval brains, comparing wild-type and mutant phenotypes. We further 

illustrate the general utility and future potential of CytoCensus by analysing the 3D organisation 

of multiple cell classes in Zebrafish retinal organoids and cell distributions in mouse embryos. 

CytoCensus opens the possibility of straightforward and robust automated analysis of 

developmental phenotypes in complex tissues.  

Highlights 

• CytoCensus: machine learning quantitation of cell types in complex 3D tissues  
• Single cell analysis of division rates from movies of living Drosophila brains in 3D 

• Diverse applications in the analysis of developing vertebrate tissues and organoids 

• Outperforms other image analysis software on challenging, low SNR datasets tested 

Key words: Bio-image Informatics; automated analysis; 4D; live imaging; supervised machine 

learning; random forest; mutant phenotypes; ex-vivo culture; neural stem cells; neuroblast; 

Drosophila; Zebrafish; mouse; organoids; screening; embryos 
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Introduction 

Complex tissues develop through regulated proliferation and differentiation of a small number of 

stem cells. For example, in the brain these processes of proliferation and differentiation lead to 

a vast and diverse population of neurons and glia from a limited number of neural stem cells, 

also known as neuroblasts (NBs) in Drosophila (Kohwi & Doe, 2013). Elucidating the molecular 

basis of such developmental processes is not only essential for understanding basic 

neuroscience, but is also important for discovering new treatments for neurological diseases 

and cancer. Modern imaging approaches have proven indispensable in studying development 

in intact zebrafish (Danio rario) and Drosophila tissues (Barbosa & Ninkovic, 2016; Dray et al., 

2015; Medioni et al., 2015; Rabinovich et al., 2015; Cabernard & Doe., 2013; Graeden & Sive, 

2009). Tissue imaging approaches have also been combined with functional genetic screens, 

for example to discover neuroblast (NB) behaviour underlying defects in brain size or tumour 

formation (Berger et al., 2012; Homem & Knoblich, 2012; Neumüller et al., 2011). Such screens 

have the power of genome wide coverage, but to be effective, require detailed characterisation 

of phenotypes using image analysis. Often these kinds of screens are limited in their power by 

the fact that phenotypic analysis of complex tissues can only be carried out using manual image 

analysis methods or complex bespoke image analysis. 

 Drosophila larval brains develop for more than 120 hours (Homem & Knoblich, 2012), a 

process best characterised by long term time-lapse microscopy. However, to date, imaging 

intact developing live brains has tended to be carried out for relatively short periods of a few 

hours (Lerit et al., 2014; Cabernard & Doe, 2013; Prithviraj et al., 2012) or using disaggregated 

brain cells in culture (Homem et al., 2013; Moraru et al., 2012; Savoian & Rieder, 2002; Furst & 

Mahowald, 1985). Furthermore, although extensively studied, a range of different division rates 

for both NB and GMCs are reported in the literature (Homem et al., 2013; Bowman et al., 2008; 

Ceron et al., 2006) and in general, division rates have not been systematically determined for 

individual neuroblasts. Imaging approaches have improved rapidly in speed and sensitivity, 

making imaging of live intact tissues in 3D possible over developmentally relevant time-scales. 

However, long term exposure to light often perturbs the behaviour of cells in subtle ways. 

Moreover, automated methods for the analysis of the resultant huge datasets are still lagging 
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behind the microscopy methods.  These imaging and analysis problems limit our ability to study 

NB development in larval brains, as well as more generally our ability to study complex tissues 

and organs. 

 Here, we describe our development and validation of ex vivo live imaging of Drosophila 

brains, and of CytoCensus, a machine learning-based automated image analysis software that 

fills the technology gap that exists for images of complex tissues and organs where 

segmentation and spot detection approaches can struggle. Our program efficiently and 

accurately identifies cell types and divisions of interest in very large (50 GB) multichannel 3D 

and 4D datasets, outperforming other state-of-the-art tools that we tested. We demonstrate the 

effectiveness and flexibility of CytoCensus first by quantitating cell type and division rates in ex 

vivo cultured intact developing Drosophila larval brains imaged at 10% of the normal 

illumination intensity with image quality restoration using patched-based denoising algorithms. 

Second, we quantitatively characterise the precise numbers and distributions of the different 

cell classes within two vertebrate tissues: 3D Zebrafish organoids and mouse embryos. In all 

these cases, CytoCensus successfully outputs quantitation of the distributions of most cells in 

tissues that are too large or complex for practical manual annotation. Our software provides a 

convenient tool that works “out-of-the-box” for quantitation and single cell analysis of complex 

tissues in 4D, and, in combination with other software (eg. FIJI), supports the study of more 

complex problems than would otherwise be possible. CytoCensus offers a practical alternative 

to producing bespoke image analysis pipelines for specific applications.  

Motivation and design 

We sought to overcome the image analysis bottleneck that exists for complex tissues and 

organs by creating easy to use, automated image analysis tools able to accurately identify cell 

types and determine their distributions and division rates in 3D, over time within intact tissues. 

To date, challenging image analysis tasks of this sort have largely depended on slow, 

painstaking manual analysis, or the bespoke development or modification of dedicated 

specialised tools by an image analyst with significant programming skills (Chittajallu et al., 

2015; Schmitz et al., 2014; Stegmaier et al., 2014; Homem et al., 2013; Myers 2012; Meijering, 
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2012; Meijering et al., 2012; Rittscher, 2010). Of the current freely-available automated tools, 

amongst the most powerful are Ilastik and the customised pipelines of the FARSIGHT toolbox 

and CellProfiler (Padmanabhan et al., 2014; Sommer,& Gerlich, 2013; Sommer et al., 2011; 

Roysam et al., 2008). However, these three approaches require advanced knowledge of image 

processing, programming and/or extensive manual annotation. Other software such as 

Advanced Cell Classifier are targeted at analysis of 2D data, whilst programs such as RACE, 

SuRVoS, 3D-RSD and MINS are generally tailored to specific applications (Luengo et al., 2017; 

Stegmaier et al., 2016; Lou et al., 2014; Cabernard & Doe, 2013; Homem et al., 2013; Arganda-

Carreras et al., 2017; Logan et al., 2016; Gertych et al., 2015). Recently, efforts to make deep 

learning approaches easily accessible have made great strides (Falk et al., 2019); such 

implementations have the potential to increase access to these powerful supervised 

segmentation methods, but at present hardware and installation requirements are likely to be 

too complex for the typical biologist. In general, we find that existing tools can be powerful in 

specific examples, but lack the flexibility, speed and/or ease of use to make them effective 

solutions for most biologists in the analysis of large time-lapse movies of 3D developing tissues.  

 In developing CytoCensus, we sought to design a widely applicable, supervised machine 

leaning-based, image analysis tool, addressing the needs of biologists to efficiently characterise 

and quantitate dense complex 3D tissues at the single cell level with practical imaging 

conditions. This level of analysis of developing tissues, organoids or organs is frequently difficult 

due to the complexity and density of the tissue arrangement or labelling, as well as limitations of 

signal to noise. We therefore aimed to make CytoCensus robust to these issues but also to 

make it as user friendly as possible. In contrast to other image analysis approaches that require 

the user to define the cell boundaries, CytoCensus simply requires the user to point-and-click 

on the approximate centres of cells. This single click training need only be carried out on a few 

representative 2D planes from a large 3D volume, and tolerates relatively poor image quality 

compatible with extended live cell imaging. To make the task very user friendly, we 

preconfigured most algorithm settings leaving a few, largely intuitive parameters, for the user to 

set. To improve performance, we enabled users to define regions of interest (ROIs), which 

exclude parts of a tissue that are not of interest or interfere with the analysis. We also 
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separated the training phase from the analysis phase, allowing efficient batch processing of 

data. CytoCensus then determines the probability of each pixel in the image being the centre of 

the highlighted cell class in 3D, based on the characteristics of the pixels around the site 

clicked. This proximity map is used to identify all of the cells of interest. Finally, to increase the 

ease of adoption, we designed CytoCensus to be easily installed and work on multiple 

platforms and computers with standard specifications, including generically configured laptops 

without any pre-requisites. Collectively, these improvements make CytoCensus an accessible 

and user-friendly image analysis tool that will enable biologists to analyse their image data 

effectively, increase experimental throughput and increase the statistical strength of their 

conclusions. 

Results 

Optimised time-lapse imaging of developing intact ex-vivo brains 

To extend our ability to study stem cell behaviour in the context of the intact Drosophila brain, 

we modified the methods of Cabernard & Doe (2013), revised in Syed et al., (2017), to produce 

a convenient and effective protocol optimising tissue viability for long-term culture and 

quantitative imaging. We first developed an isolation procedure incorporating scissor-based 

dissection of second or third-instar larvae, in preference to solely tweezer or needle-based 

dissection which can damage the tissue. We then simplified the culture medium and developed 

a convenient brain mounting technique that immobilises the organ using agar (Figure 1A; 

Materials & Methods). We also made use of bright, endogenously expressed fluorescently 

tagged proteins Jupiter::GFP and Histone::RFP marking microtubules and chromosomes 

respectively, to follow the developing brain (Figure 1B). We chose generic cytological markers 

as these are more consistent across wild-type (WT) and different mutants than more specific 

markers, such as Deadpan (Dpn), Asense (Ase) or Prospero (Pros), commonly used to identify 

NBs, GMCs and neurons. Finally, we optimised the imaging conditions to provide 3D data sets 

of sufficient temporal and spatial resolution to follow cell proliferation over time without 

compromising viability (see Materials & Methods). Significantly, to maximise temporal and 

   Page �                 Short Title: CytoCensus6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/137406doi: bioRxiv preprint 

https://doi.org/10.1101/137406


spatial resolution without causing damage, we reduced photo-damage by decreasing the laser 

excitation power by approximately 10 fold (see Materials & Methods) and subsequently 

restoring image quality using patch-based denoising (Carlton et al., 2010), developed by 

Kervrann and Boulanger (2006). This approach allowed us to follow the lineage and quantitate 

the divisions of NB and GMCs in the intact brain in 3D (Figure 1C, D).  

 To assess whether our culturing and imaging protocol supports normal development, we 

used a number of criteria. We found that by all the criteria we measured, brain development is 

normal in our ex vivo conditions. First, the cultured ex vivo brains do not show signs of damage 

during preparation, which can be easily identified as holes or lesions in the tissue that expand 

with time in culture. Second, our cultured larval brains consistently increase in size as they 

progress through development (Figure S1). Third, using our approach, we recorded average 

division rates of 0.66 divisions/hour (~90 min per cycle, Figure 1C) for the Type 1 NB of the 

central brain (Figure S1 A′), at the wandering third instar larval stage (wL3), as previously 

published (Homem et al., 2013; Bowman et al., 2008; Movies S1 and S2). We note here that 

experiments were performed at 21°C, which differs from some developmental studies 

performed at 25°C. Type I NBs were identified by location according to Homem & Knoblich 

(2012). Fourth, we rarely observed excessive lengthening or arrest of the cell cycle in NBs over 

a 22 h imaging period, which is approximately the length of the wL3 stage (Figure 1C). With 

longer duration culture and imaging, up to 48 h, we observe an increase in cell cycle length, 

which might be expected for wL3 brains transitioning to the pupal state (Homem et al. 2014). 

Finally, we observed normal and sustained rates of GMC division throughout the imaging period 

that correspond to the previously described literature in fixed brain preparations (Bowman et al. 

2010; Figure 1D; Movie S3). We conclude that our ex vivo culture and imaging methods 

accurately represent development of the Drosophila brain and support high time and spatial 

resolution imaging for quantitation of cell numbers and division rates.  

CytoCensus enables easy automated quantification of cell types in time-lapse movies of 

developing intact larval brains with modest training 

Progress in elucidating the molecular mechanisms of regulated cell proliferation during larval 
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brain development has largely depended on the characterisation and quantification of mutant 

phenotypes by painstaking manual image analysis (for example, Neumüller et al., 2011). 

However, the sheer volume of image data produced by whole brain imaging experiments 

means that manual assessment is impractical. Therefore, we attempted to use freely available 

image analysis tools in an effort to automate the identification of cell types. We found that none 

of the available off-the-shelf image analysis programs perform adequately on our complex 3D 

datasets, in terms of ease of use, speed or accuracy (Table 1A). Neuroblast nuclei are large 

and diffuse, which means that conventional spot detectors (e.g. TrackMate) struggle to identify 

them. Similarly, image segmentation tools (such as RACE, Ilastik and WEKA) struggle to 

segment NB marked by microtubule labels as they vary significantly in appearance with the cell 

cycle and cell boundaries may appear incomplete. To overcome these limitations, we developed 

CytoCensus, an easily deployed, supervised machine learning-based image analysis software 

(Figures 2; S2). CytoCensus facilitates automated detection of cell types and quantitative 

analysis of cell number, distribution and proliferation from time-lapse movies of multichannel 3D 

image stacks even in complex tissues. A full technical description of the algorithm and User 

Guide is available in the Supplemental Information.  

 To optimise its effectiveness, we developed CytoCensus with a minimal requirement for 

supervision during the training process. We developed an implementation of supervised 

machine learning (see Supplemental Information), in which the user trains the program in 2D on 

a limited number of images (Figure 2). In this approach the user simply selects, with a single 

mouse click, the approximate centres of all examples of a particular cell type within small user-

defined regions of interest in the image. This makes CytoCensus is more convenient and faster 

than other machine learning-based approaches, such as FIJI-WEKA (Arganda-Carreras et al., 

2016) or Ilastik, (Sommer et al., 2011), which require relatively extensive and time consuming 

annotation of the cells by their boundaries. However, this simple training regime requires 

assumptions of roundness, which precludes direct analysis of cell shape. We explore the extent 

of this limitation in subsequent sections.  

 To further optimise the training, our training workflow outputs a “proximity” map. One may 

think of the proximity map as a probability of how likely it is that a given pixel is at the center of 
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one of the cells of interest. Using this proximity map the user can assess the accuracy of the 

prediction and, if necessary, provide additional training (Figure 2). This proximity map and the 

predicted locations of cell centres across the entire volume and time-series are saved and may 

be conveniently passed to ImageJ (FIJI), or other programs (Schindelin et al. 2012) for further 

processing (Figures 2; S2; S3). After this initial phase of manual user training, the subsequent 

processing of new unseen data is automated and highly scalable to large image data sets 

without any further manual user training. To determine the required training, the impact of 

training level (number of regions used in the training) was assessed on live imaging data sets 

(See Supplemental Information). The results show that detection accuracy was optimised even 

with a modest levels of training (Figure S4). 

Cytocensus is a significant advance in automated cell detection in challenging data sets 

We assessed the performance of CytoCensus at cell identification on challenging live imaging 

data sets that were manually annotated by a user to generate “ground-truth” results. Before 

comparison between applications, algorithm parameters were optimised for the different 

approaches to prevent overfitting (see Supplemental Information). In our tests we found that 

CytoCensus outperformed the machine learning based approaches Fiji-WEKA (p=0.005, t-test, 

n=3) and Ilastik (p=0.007, t-test, n=3), and other freely available approaches, in the accuracy of 

NB detection, speed and simplicity of use (Figure 3A; Table 1A). We calculated a metric of 

performance, intuitively similar to accuracy, which is known as the F1-score, with a maximum 

value of 1.0 (see Supplemental Information; Table 1A). We found that the best performing 

approaches on our complex datasets were Ilastik and CytoCensus, which are machine learning 

based. It is likely that both approaches might be further improved with additional bespoke 

analysis, specific to each data set, however this would limit their flexibility and ease of use. 

 To further critically assess the performance of CytoCensus, we used an artificially generated 

“neutral challenge” 3D dataset, which facilitates fair comparison (Figure 3B). We used a dataset 

of 30 images of highly clustered synthetic cells, in 3D, with a low signal to noise ratio (SNR), 

obtained from the Broad Bioimage Benchmark Collection (see Supplemental Information). We 

selected this dataset because it has similar characteristics to our live imaging data. Using this 
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dataset we directly compared the abilities of Ilastik (Figure 3B′′) and CytoCensus (Figure 3B′′′), 

to identify cell centres in 3D. In both cases we trained on a single image, optimised parameters 

on 5 images, and evaluated performance on the remaining 25 images. We found that 

CytoCensus (Table 1B, F1-score: 0.98±0.05) outperforms Ilastik (Table 1B, F1-score: 

0.21±0.13) in the accuracy of cell centre detection (Figure 3B) even after the Ilastik results were 

post-processed to aid separation of touching objects (Table 1B, revised F1-score: 0.88±0.09). 

We conclude that CytoCensus is significantly more accurate than Ilastik at identifying cells 

when both are tested out-of-the-box on neutral challenge data (Figure 3B′′′′ p<=0.0001, Welch’s 

t-test, n=25). 

 We conclude that CytoCensus represents a significant advance over the other current freely 

available methods of analysis, both in ease of use and in ability to accurately and automatically  

analyse cells of interest in the large volumes of data resulting from live imaging of an intact 

complex tissue such as a brain. This will greatly facilitate the future study of subtle or complex 

mutant developmental phenotypes. 

Using CytoCensus to analyse the over-growth phenotype of syncrip knockdown larval 

brains 

To demonstrate the power and versatility of using CytoCensus in the analysis of a complex 

brain mutant phenotype, we characterised the brain overgrowth phenotype of syncrip (syp) 

knockdown larvae (Figure 4A). SYNCRIP/hnRNPQ, the mammalian homologue of Syp, is a 

component of RNA granules in the dendrites of mammalian hippocampal neurons (Bannai, H., 

et al., 2004). Syp also determines neuronal fate in the Drosophila brain (Ren et al., 2017; Liu et 

al., 2015), NB termination in the pupa (Yang et al., 2017) and is required for neuromuscular 

junction development and function (McDermott et al., 2014; Halstead et al., 2014).  syp has 

previously been identified in a screen for genes required for normal brain development 

(Neumüller et al., 2011), although the defect was not characterised in detail. 

 In light of these studies, we wanted to understand the defect caused by Syp on brain 

development in more detail. We therefore examined syp -/- brains (eliminating Syp expression 

in the NB lineages) and found that in early wL3, brains were significantly enlarged compared to 
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WT larvae at the same stage of development (p<0.0001, t-test, Figures 4A, S5A). syp brain 

lobes exhibit a 23% increase in diameter (WT 206.5 µm ± 5.0, n = 10, syp 253.7 µm ± 11.0, n = 

5), and a 35% increase in central brain (CB) volume. Significantly, a more specific RNAi 

knockdown of syp driven under the inscuteable promoter, which is expressed primarily in NB, 

and GMCs, demonstrates a similar increase in CB diameter (p=0.002, 13% larger than WT; 234 

µm ± 17.0, n=12; Figure S5A). Our data begs the question as to how the removal of syp from 

the neural lineages causes such a significant increase in central brain size. 

 We tested whether this brain overgrowth is caused by additional ectopic NBs, as has been 

previously described for other mutants (Bello et al., 2006). We used CytoCensus to accurately 

determine the total number of NBs in the CB of fixed syp knockdown verses WT wL3 brains. 

Our results show that wL3 brains with syp RNAi knockdown have no significant difference in 

ventral NB number compared to WT (Figure 4B; WT 45.6 ± 1.3, n = 22, syp RNAi 44.1 ± 2.1, n 

= 15). We conclude that a change in NB number is not the underlying cause of brain 

enlargement observed in syp RNAi and hypothesise that a change in NB division rate or that of 

their progeny might be responsible. 

syp RNAi knockdown brains exhibit an increased NB division rate 

To investigate whether an increase in NB division rate contributes to the brain overgrowth 

observed in syp knockdown larvae, we examined the rate of NB division in living brains using 

our optimised culturing and imaging methods, followed by CytoCensus detection and tracking.  

 First we perform 3D NB detections using CytoCensus (as shown previously in Figure 3A), 

and we fed this input into TrackMate, a simple tracking algorithm. Without the CytoCensus 

detections, TrackMate spot detection performs poorly on the raw data (F1 score 0.11+0.09), 

and tracking is all but impossible. Applying TrackMate to the proximity maps generated by 

CytoCensus dramatically improves TrackMate detections (F1 score 0.92+0.02, Figure S6A). As 

a result, 16 out of 17 NB were successfully and accurately tracked for over 20 h in our tests 

(Figure 4C′,Figure S6AV). 

 In order to follow the NB cell cycle, we next showed CytoCensus can accurately identify  

individual dividing NBs in live image series, both in WT (Figure 4C′′) and in RNAi brains (Figure 

   Page �                 Short Title: CytoCensus11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/137406doi: bioRxiv preprint 

https://doi.org/10.1101/137406


S6B).  We detected dividing NB by training on NB with visible spindles using CytoCensus, and 

used this output to create plots of division for each NB (Figures 4C′′′, S6C-D). Using these plots, 

we measured the cell cycle length of NBs in wild type and syp RNAi brains and found that, on 

average, syp RNAi NBs have a 1.78-fold shorter cell cycle compared to WT (p=0.02, Welch’s t-

test, N=5 brains; Fig 4C′′′′). We propose that this shorter cell cycle length (i.e. an increased 

division rate) in the syp knockdown is the primary cause of its increased brain size. These 

results illustrate the potential of CytoCensus to analyse the patterns of cell division in a 

complex, dense tissue, live, in much more detail than conventional methods in fixed material.  

GMC cell cycle length is slightly decreased in syp RNAi brains 

We also investigated GMC behaviour in the CB region of syp RNAi and WT larval brains, to test 

whether an aberrant behaviour of mutant GMCs could also contribute to a brain enlargement 

phenotype. Given that GMCs are morphologically indistinguishable from their immature 

neuronal progeny (which makes them particularly difficult to assess) we had to identify GMCs 

by tracking them from their birth in a NB division to their own division into two neurons. To 

achieve this goal required us to use high temporal resolution imaging and patch based 

denoising (Materials & Methods) which allowed us to confirm that normal, symmetric GMC 

divisions occurred with the correct timing and resulted in two daughter cells (which did not 

regrow or divide further), both in WT and syp RNAi (Figure 4D).  

 Using our refined culture and imaging conditions, we trained CytoCensus to successfully 

detect GMCs in denoised images (Figure 4E′-E′′) and, similarly to NB, track them with a trackpy 

based script (See Materials & Methods and Supplemental Information). Unlike in the case of NB 

tracking, GMCs do not go through repeated cycles of division, so following automated 

detection, for each GMC, we manually identified the birth and final division and additionally 

corrected any tracking errors. This semi-automated tracking allowed us to compare the cell 

cycle length of GMCs in multiple brains over 12h time-lapse movies for the first time (Figure 4E′′

′). In syp RNAi, we find a small but significant shortening (p=0.01, Welch’s t-test) of the cell 

cycle compared to WT (8.00h +/-0.89, n=8 WT; 6.25h +/-1.45, n=8 syp RNAi). However, while 

we conclude that GMC cell cycle length is decreased by 20%, GMCs terminally divide normally 
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(representative example, Figure 4D), and we see no evidence of further divisions in the 

neurons. We take this to mean that no additional cells are produced by GMC or neuron division 

and therefore brain size is not significantly affected. We conclude that the cause of the enlarged 

brain size in syp RNAi brains is an increase in NB division rate resulting in more GMCs and 

their progeny than in WT.  

NB division rate is consistently heterogenous in Drosophila brains  

Most current methods for measuring NB division rates produce an average rate for whole brains 

rather than providing division rates for individual NBs. It has previously been shown that NB 

lineages give rise to highly variable clone size (30-150 neurons for Type I neuroblasts). The 

origin of this diversity has primarily been attributed to patterned cell death (Yu et al., 2014), but 

the importance of NB division rate in determining clone size is less well understood. Using live 

imaging and CytoCensus, however, we were able to quantitate the behaviour of multiple 

individual NBs over time within the same brain to investigate whether cell division rates are 

constant or variable across the population. Interestingly, we found that each NB has a constant 

cell cycle period (Figure 5A), matching observations in vitro (Homem et. al., 2013). However, 

there is considerable variation in cell cycle length between NBs within the same brain lobe, 

(Figure 5A). Given the scale of this variation, which covers more than 2-fold difference in rate, 

we expect that the regulation of NB division rate is a key factor that contributes to the observed 

variation in NB lineage size.  By comparing the distribution of division rates in individual WT and 

syp RNAi brains, we found that syp knockdown NBs have a more consistent division rate in 

individual NBs (Figure 5B) and between brains (Figure 4C′′′), which suggests a role for syp in 

the regulation of NB division rate. Future work using CytoCensus and live imaging would allow 

one to explicitly link individual NB division rates to atlases of neural lineages and explain the 

contribution of division rate to each neural lineage. 

 We conclude that analysing live imaging data with CytoCensus can provide biological 

insights into developmental processes that would be difficult to obtain by other means. However 

it was important to establish the use of CytoCensus in other situations outside Drosophila 

tissues, especially in vertebrate models of development. 
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Directly quantifying cell numbers enhances the analysis of zebrafish retinal organoid 

assembly  

To test the utility of CytoCensus for the analysis of complex vertebrate tissue, we first analysed 

Zebrafish tissue, an outstanding model for studying development with many powerful tools, 

such as the Spectrum of Fates (SoFa) approach (Almeida et al., 2014), which marks cells from 

different layers of the Zebrafish retina by expression of distinct fluorescent protein labels. 

Previously published work by Eldred et al. (2017) studying eye development in artificial 

Zebrafish organoids, provided an excellent example of material that was previously analysed 

using bespoke MATLAB image analysis software that measured only the cumulative 

fluorescence at different radii from the organoid centre. While this was sufficient for a summary 

of organoid organisation, future research will require the ability to examine organoids at the 

single cell level, particularly in cases where layers are formed from a mixture of cell types or cell 

types are defined by combinations of markers. We deployed CytoCensus to this end, without 

the need for bespoke image analysis, in directly locating and counting cells (Figure 6A). 

 Using CytoCensus, we trained multiple models on subsets of the raw data (Figure 6A′, gift 

from the William Harris lab), corresponding to each of the different cell types. Applying our 

models to the remainder of the dataset, CytoCensus was able to identify individual cells (Figure 

6A, bottom panels), allowing an analysis of cellular distribution that would not be possible from 

cumulative fluorescence measurements. We then calculated the number of cells found at 

different distances from the center of the organoid (Materials & Methods, Figure 6A′′-A′′′). Using 

this approach, we reproduced the previously published analysis (Eldred et al., 2017), mapping 

the different cell distributions in the presence and absence of retinal pigment epithelium cells. 

We show that CytoCensus produces similar results to Figure 2 of Eldred et al. (2017), but with 

identification of individual cells and without the need for a dedicated image analysis pipeline 

(Figure 6A′′-A′′′). In particular, we are able to produce an estimate of the distribution of the 

photoreceptor (PR) cell class, which is defined by a combination of markers (Crx::gapCFP, 

Ato7::gapRFP) that could not be separated from other cell types in the original analysis.  

 Given that the SoFa markers support the study of live organoid development, and 
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CytoCensus can be used to identify cells based on the SoFa markers, we expect CytoCensus 

could easily be used to analyse live organoid development along similar lines to our Drosophila 

analysis. We conclude that CytoCensus is an effective tool to investigate the distribution of cell 

types in the assembling retinal organoid, with the potential to analyse other complex Zebrafish 

tissues. 

CytoCensus facilitates rigorous quantification of TF expression patterns in mouse 

embryos 

Mouse models are widely used to understand developmental processes in the early embryo. In 

such work, genetic studies have been fundamental in understanding the molecular mechanisms 

underlying important lineage decisions (Piliszek et al., 2016; Arnold & Robertson, 2009). 

However, assessment of changes in cell numbers and distribution frequently relies on manual 

counting and qualitative estimation of phenotypes. We tested the ability of CytoCensus to 

provide quantitative data on the number of transcription factor positive cells in the early post-

implantation embryo for each of the transcription factors Brachyury, Lhx1 and Sox2. Using 

CytoCensus we quantitated the number of cells that express each of these transcription factors 

in two regions of interest: the visceral endoderm (VE) and the proximal posterior epiblast (PPE), 

where primordial germ cells (PGCs) are specified. We also analysed the distribution of Blimp1-

mVenus in membranes in both the VE and PGCs (Ohinata et al., 2008; Figure 6B′, B′′).  

 Using CytoCensus we identified all Blimp1 expressing cells and mapped them to structures 

of interest using a 3D ROI (Figure 6B′ marked regions). We then used CytoCensus to identify 

cells expressing both Blimp1 and Brachyury in the proximal posterior epiblast (PPE) (Figure 6B′′ 

and insert). We note that CytoCensus could be used to successfully detect cells of the VE and 

PGCs, despite the fact that they are frequently far from round. CytoCensus is able to detect 

these cells, almost as well as truly round cells, by integrating information from the nuclear and 

membrane markers to produce robust cell centre detections. Our analysis highlights the 

enrichment of Brachyury in the developing PGCs and their almost complete absence from the 

VE, which matches well with manual 2D quantification (Figure 6B′′′). Repeating this analysis for 

the transcription factors Sox2 and Lhx1 highlights a differential expression of the transcription 
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factors (Figure 6B′′′′-V). These proportions match well with qualitatively reported expression 

patterns in the field (Piliszek et al., 2016). Our results demonstrate how CytoCensus can be 

used to produce a robust and detailed quantitation of cell type and TF expression in specific 

complex mouse tissues using standard markers, improving on the standard qualitative analysis. 

 Taking our results in their entirety, in Drosophila, Zebrafish and mouse, we illustrate the wide 

applicability of CytoCensus to transform the quantitative analysis of any complex tissue. 

CytoCensus makes it possible without bespoke programming to quantitate cell numbers and 

their divisions in complex living or fixed tissues in 3D. 

Discussion and Limitations 

Progress in understanding the development and function of complex tissues and organs has 

been limited by the lack of effective ways to image cells in their native context over extended 

developmentally relevant timescales. Furthermore, a major hurdle has been the difficulty of 

automatically analysing the resulting large 4D image series. Here, we describe our 

development of culturing and imaging methods that support long term high resolution imaging 

of all the cells in intact living explanted Drosophila larval brains. This progress relies on 

optimised dissection and mounting protocols, a simplified culture medium for extending brain 

viability and the use of patch-based denoising algorithms to allow high resolution imaging at a 

tenth of the normal illumination intensity. We next describe our development of CytoCensus: a 

convenient and rapid image analysis software employing a supervised machine learning 

algorithm. CytoCensus was developed to identify neural stem cells and other cell types, both in 

order to quantitate their numbers and distribution and to enable analysis of the rate of division 

on an individual cell level, from complex 3D and 4D images of cellular landscapes. We 

demonstrate the general utility of CytoCensus in a variety of different tissues and organs. 

 To image all the cells in an explanted brain, we used very bright generic markers of cellular 

morphology, which offer major advantages over specific markers of cell identity, as they are 

more abundant and brighter, allowing the use of low laser power to maximise viability. Markers 

of cell morphology can also be used in almost all mutant backgrounds in model organisms, 

unlike specific markers of cell identity, whose expression is often critically altered in mutant 
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backgrounds. However, imaging all the cells in a tissue or organ with generic markers leads to 

complex images, in which it is very challenging to segment individual cells using manual or 

available image analysis tools. In contrast to other approaches, we demonstrate that 

CytoCensus allows the user to teach the program, using only a few examples, by simply 

clicking on the cell centres. CytoCensus outperforms, by a significant margin, the other freely 

available approaches that we tested, so represents a step change in the type and scale of 

datasets that can be effectively analysed by non-image analysis experts. Crucially, CytoCensus 

analysis combined with cell tracking in extensive live imaging data allows parameters such as 

cell cycle length to be determined for individual cells in a complex tissue, rather than 

conventional methods that provide snapshots or an ensemble view of average cell behaviour.  

 The image analysis approach we have developed depends critically on the use of 

“supervision” or training regimes which are, by definition, subjective and user dependent. 

Supervised machine learning methods (Luengo et al., 2017; Arganda-Carreras et al., 2017; 

Logan et al., 2016; Chittajallu et al., 2015; Sommer et al., 2011) require the user to provide 

training examples by manually identifying (annotating) a variety of cells or objects of interest, 

often requiring laborious “outlining” of features to achieve optimal results. However, our use of a 

“point and click” interface (Figure S2), to simplify manual annotation, and proximity map output, 

makes it quick and easy for a user to train and retrain the programme. Using our approach, a 

user can rapidly move from initial observations to statistically significant results based upon bulk 

analysis of data.  

 We show the value of CytoCensus in three key exemplars. In Drosophila, we measure cell 

cycle lengths ex vivo in two key neural cell types, revealing the significant contribution of 

neuroblast division rate to the syp RNAi overgrowth phenotype. In Zebrafish organoids, we 

illustrate that CytoCensus is generally applicable and compatible with other cell types and live 

imaging markers. We show it is possible to easily characterise organoid organisation at the 

cellular level, including analysis of cell type which was not previously quantified (Eldred et al. 

2017). Finally, we quantify TF expression in images of mouse embryos, illustrating how 

qualitative phenotypes can be straightforwardly converted into quantitative characterisations, 

even in epithelial tissue which differs from the typical assumptions of round cells. 
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 A technical limitation of our “point and click” strategy is that the program “assumes” a roughly 

spherical cell shape. This means that cellular projections, for instance axons and dendrites of 

neurons, would not be identified, and other programs (e.g. Ilastik, etc.) may be more 

appropriate to answer specific questions that require knowledge of cell shape or extensions. 

However, we find that the robustness of the CytoCensus cell centres, even with irregular or 

extended cells can be a useful starting point for further analysis. To this end we configured the 

output data from CytoCensus to be compatible with other programs, such as FIJI (ImageJ), 

allowing a user to benefit from the many powerful plug in extensions available to facilitate 

further extraction of information for defined cell populations from bulk datasets.  

  With the increased availability of high throughput imaging, there is a greater unmet need for 

automated analysis methods. Ideally, unsupervised methods will remove the need for manual 

annotation of datasets, but at present, the tools required are in their infancy. In this context, 

methods that require minimal supervision, such as CytoCensus are desirable. Machine learning 

approaches, such as CytoCensus, offer the potential to analyse larger datasets, with 

statistically significant numbers of replicates, and in more complex situations, without the need 

for time-consuming comprehensive manual analysis. Easing this rate limiting step will empower 

researchers to make better use of their data and come to more reliable conclusions. We have 

demonstrated that analysis of such large live imaging datasets with CytoCensus can provide 

biological insights into developmental processes in Drosophila that would be difficult to obtain 

by other means, and that CytoCensus has a great potential for the characterisation of complex 

4D image data from other tissues and organisms.  
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Figure 1. Extended 3D time-lapse imaging of live ex-vivo cultured brains. A) Diagram of 

the chamber and sample preparation for long-term time-lapse imaging on an inverted 

microscope (see Materials & Methods). B) 24 h, confocal 3D time-lapse imaging of a 

developing larval brain lobe (inset, top left, shows orientation and region of the brain imaged) 

labelled with Jupiter::GFP and Histone::RFP, and registered over time to account for movement. 

Arrowheads indicate NBs (magenta) and progeny (cyan), enlarged in the top right insets; a 

dashed white line indicates the boundary to the optic lobe. C′) A typical individual dividing NB 

from a confocal time-lapse image sequence of the brain lobe.  The NB is outlined (dashed white 

line) and indicated with a magenta arrowhead, the progeny (GMC) is indicated by a cyan 

arrowhead. C′′) Plot of NB division rate for cultured L3 brains shows that division rate of NB 

does not significantly decrease over at least 22 h under imaging conditions (ns, one-way 

ANOVA), calculated from measured cell cycle lengths. D′) Typical GMC division in an intact 

larval brain. The first row of panels shows production of a GMC (cyan arrowhead) by the 

dividing NB (magenta arrowhead, dashed white outline). Second row of panels, GMCs are 

displaced over the next 6 to 8 h by subsequent NB divisions, the path of displacement is 

indicated by the dashed yellow arrow. The last two panels (10 to 18 min) show the division of a 

GMC (green arrowhead, progeny yellow arrowheads). D′′) Plot showing the rate of GMC 

division in the ex vivo brain does not change with time in culture (ns, one-way ANOVA), 

calculated from the number of GMC division events in 4 hours. Error bars on plots are standard 

deviation. Scale bars B 50 µm; C, D 10 µm. See also Figure S1. 

   Page �                 Short Title: CytoCensus29

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/137406doi: bioRxiv preprint 

https://doi.org/10.1101/137406


   Page �                 Short Title: CytoCensus30

Fig.2 CytoCensus analysis workflow

1: Input images to program

2: Training on regions in 2D

4: Input bulk data for batch processing

5: Output data for further analysis

Processing 
region

3: Assess proximity map

Refine

Training

Bulk Data Input

Proximity Map 
Output

Multichannel
XYZT data Input

Predicted Object
Centers Output

Region to 

Process

DAPI

Dpn

Ase

DAPI

Dpn

Ase

Training

region

+

+
++

+

HIGHLOW

Accept

Decline

XY center
Co-ordinates

Proximity
maps

XY Center
Plots

Apply 

annotations

manually

Select 

region to 

score

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/137406doi: bioRxiv preprint 

https://doi.org/10.1101/137406


Figure 2. CytoCensus analysis workflow. Refer to the Main Text and Materials & Methods 

for details. Training is performed by single click annotation (yellow crosses) within a user 

defined region of interest (ROI, white dashed square) to identify the cell class of interest. The 

resultant proximity map for cell class identification (~probability score for object centres) is 

evaluated manually to assess the success of training (white arrows indicate good detections 

and circles indicate where more training may be required). A successful identification regime 

(Model) is saved and may be used to batch process multiple image data sets. Multiple outputs 

are produced including a list of the co-ordinates of identified cells. Multiple identification regimes 

can be sequentially applied to identify multiple cell classes from a single data set. See also 

Figure S2.  
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TABLE 1: CytoCensus outperforms other freely available programs for cell class identification 

(A) Comparison of NB detection by different approaches for a typical 4D brain dataset. 

(B) Comparison of Algorithm performance for automated detection in neutral challenge data. 

Manual Fiji/auto

local

threshold

TrackMate 

Spot  

Detection

RACE Ilastik 

(1.17)

Fiji 

WEKA 

CytoCensus 

 V0.1

Total Parameters 

to select

- 1 4 8 67

(48)

25 6

Handles 4-D 

easily

- NO YES YES YES NO YES

Time to Train 

model (min.)

- N/A N/A N/A 15 18 6

Time to Run 

(min. including 

postprocessing)

550  

(equivalent)

5 1 16 70 105 19

F1-score - FAIL 0.11
±.09

0.17
±.01

0.76
±.01

0.62
±.07

0.96
±.01

Ilastik (1.17)  

(raw)

Ilastik

(1.17)  

(post-processed)

CytoCensus

V0.1

CPU time (hours) 82 83 12

Precision 

(True Positive Rate)
0.39±0.19 0.86±0.10 0.98±0.05

Recall 

(Positive Predictive Value)
0.15±0.10 0.90±0.07 0.98±0.05

F1-score (max =1.0) 0.21±0.13 0.88±0.09 0.98±0.05
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Table 1. Cytocensus out-performs other freely available programs for cell class 

identification. A) Performance assessment for a series of freely available tools in identifying 

NB from a typical 4D live-imaging time-series of the generic cytological markers Jupiter::GFP / 

Histone::RFP, expressed in larval brains. Comparison to CytoCensus is made on the same 

computer, including time taken to provide user annotations for a standard data set (150 or 35 

time-points, 30-Z). B) Direct comparison of Ilastik vs CytoCensus in automatically identifying 

cell centres in a crowded 3D data set. To facilitate fair comparison, a “neutral challenge dataset” 

was used (Main Text). F1 score is intuitively similar to accuracy of detection. Values ± standard 

deviations are shown, n=25 images. Computer specifications: MacBook Pro11,5; Intel Core i7 

2.88GHz; 16GB RAM. For manual annotations, the time taken to annotate the full dataset was 

estimated from the time to annotate 10 time-points. Values ± standard deviations are shown, n 

= 3. Fiji, ImageJ  V1.51d (Schindelin et al. 2012; FIJI, local threshold V1.16.4 (http://imagej.net/

Auto_Local_Threshold); FIJI-WEKA, WEKA 3.2.1 (Arganda-Carreras et al., 2016); RACE 

(Stegmaier et al. 2016); TrackMate (Tinevez et al. 2016); Ilastik (V1.17) (Logan et al., 2016; 

Sommer et al., 2011). 

   Page �                 Short Title: CytoCensus33

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/137406doi: bioRxiv preprint 

https://doi.org/10.1101/137406


 

   Page �                 Short Title: CytoCensus34

Ilastik (raw)

Fig. 3: Validation of CytoCensus performance
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Figure 3. Validation of CytoCensus performance. A) Performance in identifying NB from 3D 

confocal image data of a live brain labelled with Jupiter::GFP, Histone::RFP. A′) Ground Truth 

manual identification of NB centres. A′′ to ′′′′) Output images comparing NB identification by 

Ilastik, Fiji-Weka and CytoCensus, white overlay. Av) Plot comparing object centre detection by 

TrackMate spot detection, RACE, Fiji-Weka, Ilastik and CytoCensus (error bars are standard 

deviation). CytoCensus achieves a significantly better F1-score than Ilastik (p=0.01, n=3) and 

FIJI (p=0.005, n=3). (one-way RM-ANOVA with post hoc t-tests) B) Comparison of algorithm 

performance for a 3D neutral challenge data set (B′, see Supplemental Information). B′′, B′′′) 

Output images comparing object centre determination by Ilastik and CytoCensus. Segmentation 

results are shown as green outlines, object centre determination is show as a cyan point. B′′′′) 

Plot comparing object centre determination accuracy for the 3D neutral challenge dataset (error 

bars are standard deviation; p<=0.0001, Welch’s t-test, n=25). Scale bars B 20 µm; A′ 50 µm. 

See also Figures S3, S4. 
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Figure 4. Knockdown of Syncrip protein in NB causes larval brain enlargement. A) 

Brightfield images of freshly isolated brains from third instar WT (OregonR) and syp RNAi 

larvae, respectively. Inserts in (A) show the region of the brain imaged and the measurements 

taken to compare brain size. B) Chart comparing NB numbers showing that syp RNAi 

knockdown does not have a significant effect on NB number/brain (ns, t-test, WT n = 22; RNAi 

n = 15). NB were identified by Dpn labelling and the average count for a comparable volume of 

a single optic lobe CB region is shown. C) Automated identification of NB division using 

CytoCensus: C′) Tracking of NB centres, based on CytoCensus detections, over 14 hours; C′′) 

raw image showing single timepoint from live, 3D time-lapse, confocal imaging (insert = single 

dividing NB, showing CytoCensus prediction of a dividing NB); C′′′) graph of division of a single 

tracked NB over 14h; C′′′′) average NB (6-9 NB/brain) cell cycle length is reduced in syp RNAi 

knockdown brains (p=0.02, Welch’s t-test, n=5 brains). D) Sequence of confocal images from a 

typical 3D time-lapse movie showing that in syp RNAi brains, GMCs divide normally to produce 

two equal sized progeny that do not divide further. E) Semi-automated analysis of GMC division 

by CytoCensus shows that GMC cell cycle length is reduced in syp RNAi brains. E′) Single 

image plane taken from a 3D time-lapse, confocal image data set (imaged at one Z-stack / 2 

min). showing raw image data (top) and denoised (bottom). E′′) CytoCensus GMC detections 

(cyan) with a single NB (magenta), and NB niche (dotted white line), shows GMCs are detected 

but neurons (green) are not. E′′′) Plot of GMC cell cycle length, which is decreased in syp RNAi 

brains compared to WT (p=0.01, Welch’s t-test, n=8 GMCs from 3 brains). Scale bars in A 50 

µm; C′ 20 µm;  C′′  50 µm; D 5 µm; E 25 µm. See also Figure S5, S6. 
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Figure 5. Direct analysis of NB division from time-lapse imaging of live explanted larval 

brains. A) Using the proximity map output of CytoCensus, individual NBs can be followed 

through their cell cycle. Arrows: Individual NB locations, and the corresponding proximity map 

output plotted over time for that NB. B) Comparison of WT and syp RNAi NB: B′) analysis of 

cell cycle over time for individual NBs from a syp RNAi brain; B′′) comparison of cell cycle 

lengths for individual NB in a single WT vs syp RNAi brain (p<0.001, Welch’s t-test, n=9). Scale 

bar 40 µm. See also Figure S6. 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Fig. 6: A widely applicable automated analysis tool to assess tissue development
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Figure 6. A generally applicable automated analysis tool to assess tissue development. 

A) Automated analysis of Zebrafish retinal organoids at the single cell level (Raw data from 

Eldred et al., 2017). A′ Top: brightfield image and diagram indicating the location of cells was 

defined as displacement from the organoid center. Middle: Cell fate marker expression 

(Crx:gapCFP; Ato7:gapRFP; PTf1a:cytGFP) and DAPI. Bottom: Cell centre identification by 

CytoCensus for the different cell types as defined by the labelling profiles (Bipolar, 

Photoreceptor, Retinal Ganglion, Amacrine/Horizontal, Live/Dead). (A′′-A′′′) Radial distribution 

of the different cell types determined from cell centre identifications by CytoCensus; the effects 

on organoid organisation of the presence (A′′) or absence (A′′′) of retinal pigment epithelium 

(RPE) cells is examined (ns, one-way ANOVA). RU = Radial Units, normalised to a radius of 

100 (see Materials & Methods) B) Automated quantification of TF expressing cells in a fixed 

early streak stage mouse embryo (e6.5) labelled for transcription factors, Blimp1-mVenus and 

DAPI. B′) A medial confocal section showing Brachyury in the primitive streak in the proximal 

posterior epiblast (PPE) and visceral endoderm (VE, highlighted cortical tracing). B′′) Cortical 

image of the same mouse embryo overlaid with total cell centre predictions by CytoCensus of 

Brachyury positive cells; insert to the right is a zoomed in image of the highlighted rectangle 

showing only cell centre predictions in a single medial plane. B′′′) Comparison of CytoCensus 

and manual Ground Truth (GT) measurements of the proportion of Brachyury positive cells from 

2D planes in the VE and PPE (ns, t-test, n=3). B′′′′-Bv) Proportion of transcription factor positive 

cells (TF) in, using CytoCensus measurements in 3D according to tissue regions (PPE and VE) 

defined in (B′). Scale bars 25 µm in A; 100 µm in B′. See also Figure S7. 
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Materials and Methods 

Fly strains 

Stocks were raised on standard cornmeal-agar medium at either 21 ºC or 25 ºC. To assist in 

determining larval age, Bromophenol Blue was added at 0.05% final concentration in cornmeal-

agar medium. The following Drosophila fly strains were used: [Wild-Type Oregon-R]; 

[Jupiter::GFP;Histone::RFP (recombination on the third)]; [AseGal4>UAS-MCD8-GFP]; 

[w11180;PBac(PB)sype00286/TM6B]; [Bloomington 9289, w11180 (homozygote syp Null)]; 

[Df(3R)BSC124/TM6B (crossed to BL 9289 for syp Null)]; [syp RNAi lines - w11180; P{GD9477}

v33011, v33012].  

Mouse Embryos 

Refer to Simon et al., (2017) for details on mouse embryo preparation. 

Fixed Tissue Preparation and labelling 

Flies of both genders were raised as described above and larvae from second instar to pre-

pupal stages collected and dissected directly into fresh 4% EM grade paraformaldehyde 

solution (from a 16% stock. Polysciences) in PBS with 0.3% TritonX-100 then incubated for 25 

min at room temperature (RT). Following fixation, samples were washed 3 times for 15 min 

each in 0.3% PBST (1x PBS containing 0.3% Tween) and blocked for 1 h at RT in 

Immunofluorescence blocking buffer (1% FBS prepared in 0.3% PBST). Samples were 

incubated with primary antibody prepared in blocking buffer for either 3 h at RT or overnight at 4 

̊C. Subsequently, samples were washed 3 times for 20 min each with 0.3% PBST followed by 

incubation with fluorescent labelled secondary antibodies prepared in blocking buffer for 1 h at 

RT. For nuclear staining, DAPI was included in the second last wash. Samples were mounted in 

VECTASHIELD (Vector Laboratories) for examination. For details on the preparation and 

labelling of mouse embryos, refer to Simon et al., (2017). 

Culture of live explanted larval brains on the microscope 

Brains were dissected from 3rd instar larvae in Schneider’s medium according to https://

www.youtube.com/watch?v=9WlIoxxFuy0 and placed inside the wells of a pre-prepared 
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culturing chamber (Figure 1A). To assemble the culturing chamber, 1% low melting point (LMP) 

agarose (ThermoFischer) was prepared as 1:1 v/v ratio of 1 x PBS and Schneider’s medium 

(ThermoFisher 21720024) then pipetted onto a 3 cm Petri dish (MatTek) dish and allowed to 

solidify. After solidification, circular wells were cut out using a glass capillary ~ 2 mm diameter. 

To secure the material in place, a 0.5% LMP solution [1% LMP solution brain diluted 1:1 with 

culturing medium (BCM)] was pipetted into the wells to form a cap. Finally, the whole chamber 

was flooded with BCM. BCM was prepared by homogenising ten 3rd instar larvae in 200 µl of 

Schneider’s medium and briefly centrifuge to separate from the larval carcasses. This lysate 

was added to 10 ml of 80% Schneider’s medium, 20% Foetal Bovine Serum (GibcoTM 

ThermoFisher), 10 µl of 10 mg/ml insulin (Sigma). A lid is used to reduce evaporation. For GMC 

imaging we used a solid-agar cap (1-2% LMP agarose) placed directly on top of the brains, 

which we found was more consistent at holding brains against the coverslip than our earlier 

approach. We note that care must be taken not to flatten brains during this process, as it 

appears to result in a higher rate of stalled NB divisions which are likely artefacts. This 

approach reduced movement in brains significantly, but did not eradicate it - it seems likely 

remaining movement is the primarily the result of thermal drift of the microscope focus, and is 

well corrected using image registration. 

Imaging 

Confocal, live imaging of Drosophila was performed using an inverted Olympus FV3000 six 

laser line spectral confocal fitted with high sensitivity gallium arsenide phosphide (GaAsP 

detectors), x30 SI 1.3 NA lens. The confocal pinhole was set to one airy unit to optimise optical 

sectioning with emission collection. Images were collected at 512x512 pixels using the resonant 

scanner (pixel size 0.207 µm) and x2 averaging). The total exposure time per Z stack (60) 

frames was ~20s. For live culture and imaging the sample was covered with a lid at 21±1°C. 

Imaging of the GMC cell cycle required increased temporal and spatial resolution, compared to 

imaging NB: 2 min. time-lapse with 0.2x0.2x0.5 µm resolution. Initial tests indicated that the 

resulting increased light dosage reduce the number of GMC divisions over time, which we 

consider to be a sign of phototoxicity. Therefore, we reduced the laser power by approximately 

a factor of 10 (to ~12µW at the objective for 488 nm, and 7µW for 561 nm), and used post 
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acquisition patch-based denoising (NDSAFIR, by Kervrann and Boulanger, 2006, implemented 

as part of PRIISM, with adapt=0, island=4, zt mode and iterations=3 by Carlton et al., 2010) to 

restore image quality. For details on imaging of mouse embryos (Figure 6) refer to Simon et al., 

(2017). Details of organoid imaging can be found in (Eldred et al., 2017). Additional live imaging 

was carried out on a GE Deltavision Core widefield system with a Lumencor 7-line illumination 

source, Cascade-II EMCCD camera and  x30 SI 1.3 NA lens 

 For imaging of fixed Drosophila material, either an Olympus FV1200 or FV1000 confocal 

was used with x20 0.75 dry or x60 1.4 NA. lenses. Settings were adjusted according to the 

labelling and were kept consistent within experiments. 

 For brightfield imaging (Figure S1, S5) a GE Deltavision Core widefield system, Cascade-II 

EMCCD camera and x30 SI 1.3 NA lens was used. Measurements of brain diameters were 

performed by hand in OMERO. Reported measurements are the average of one measurement 

along the longest axis of a brain lobe (passing through the central brain and optic lobe), and 

another at right angles to that (typically across the medulla). 

Image Analysis (Summary) 

All programs used for image analysis were installed on a MacBook Pro11,5; Intel Core i7 

2.88GHz;16GB RAM. Basic image handling and processing was carried out in FIJI (ImageJ 

V1.51d; http://fiji.sc, Schindelin et al. 2012). The CytoCensus software, and additional scripts 

were written in Python, a detailed technical description is given in the Supplemental Information 

section. 

Data and Software Availability 

The following freely available image analysis tools were used: Fiji, ImageJ V1.51d http://fiji.sc, 

Schindelin et al. 2012); Ilastik (V1.17) (http://ilastik.org; Logan et al., 2016; Sommer et al., 

2011). The CytoCensus software can be installed as a stand-alone program: full install available 

at www.GitHub.com/hailstonem/CytoCensus. Image data was archived in OMERO V5.3.5 

(Allan et al., 2012; Linkert et al., 2010); image conversions were carried out using the 

BioFormats plugin in Fiji (Linkert et al., 2010; https://imagej.net/Bio-Formats). 
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Quantification and Statistical Comparison 

Mutant comparisons were performed using an appropriate test in GraphPad Prism (see Figure 

legends for specific tests), typically a Student’s T test, following Shapiro-Wilk test to test normal 

distribution of the data. A p-value of <0.05 was considered significant. Numbers of replicates 

typically refer to the number of independent brains and are detailed in the figure legends and 

main text. Unless otherwise stated, error bars shown are standard deviation. 
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Table of Resources 

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Guinea pig anti-Syncrip (use 1:100)
I.Davis Lab (McDermott et al. 
2012) N/A

Mouse anti-Prospero (use 1:100) Abcam ab196361

Guinea pig anti-Asense (use 1:200) Gift from JA Knoblich N/A

Rat anti-Deadpan (use 1:100) Abcam ab195173

Goat anti-Mouse Alexa Fluor 488 (use 1:250) ThermoFischer A-11001

Goat anti-Guinea Pig Alexa Fluor 647 (use 
1:250) ThermoFischer A-21450

Goat anti-Rabbit Alexa Fluor 594 (use 1:250) ThermoFischer R37117

Goat anti-Mouse Alexa Fluor 647 (use 1:250) ThermoFischer A-32728

Chemicals, Peptides, and Recombinant Proteins

VECTASHIELD Antifade Mounting Medium VECTOR Laboratories H-1000

Formaldehyde, 16%, methanol free, Ultra 
Pure Polysciences, Inc. 18814-20

Low melting point agarose ThermoFischer v2111

Foetal Bovine Serum (FBS) Life Technologies Ltd 10500064

Schnider’s Medium ThermoFischer 21720024

Bromophenol Blue Sigma-Aldrich 116K3528

Experimental Models: Organisms/Strains

 Drosophila: Wild-Type, Oregon-R Bloomington 2376

Drosophila: Jupiter::GFP, Histone::RFP 
(recombined on the third) Ephrussi Lab N/A

Drosophila: AseGal4>>UAS-MCD8-GFP This article N/A

Drosophila: w11180;PBac(PB)sype00286/

TM6B
Harvard (Exelixis) e00286

Drosophila: w[11180]; Df(3R)BSC124/TM6B Bloomington 9289

Drosophi la :syp RNAi l ines w11180; 

P{GD9477}v33011, v33012
VRDC 33011, 33012

Drosophila: ase-GAL4 Gift from JA Knoblich N/A

Software and Algorithms
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Fiji,  ImageJ (V1.51d) Schindelin et al., (2012)
http://imagej.nih.gov/
ij

Ilastik (V1.17) Sommer et al., (2011) ilastik.org

CytoCensus This article
github.com/
hailstonem/
CytoCensus

SoftWoRx, Resolve3D GE Healthcare N/A

Microsoft Excel Microsoft Cooperation 150722

OMERO V5.3.5 Allen et al., (2012)
openmicroscopy.org/
omero/

Bio-Formats Linkert et al., (2010)
openmicroscopy.org/
bio-formats/

ND-SAFIR, PRIISM Carlton et al., (2010) N/A

Other

Superfine Vannas dissecting scissors WPI 501778

MatTek (or Eppendorf) 3 cm glass-bottom 
Petri- dish MatTek (or Eppendorf) P35G-1.5-14-C

Broad Bioimage Benchmark Collection 
Neutral Challenge Datasets

https://data.broadinstitute.org/

bbbc/; Svoboda et al., (2009)
BBBC024vl
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ADDITIONAL FILES  

Supplemental Movie 1: (See Figure 1B) Development of a live explanted larval brain under 

extended time-lapse imaging conditions. Time-series (12h) of one of the brain lobes, collected at 2 

minute intervals and displayed at 5 fps. Red: Histone::RFP; Green: Jupiter::GFP. Left: Registered 

and denoised movie. Right: Raw imaging data. Repeated asymmetric division of a NB regenerates 

a daughter NB and produces a smaller GMC. Scale bar 10 um. 

Supplemental Movie 2: (See Figure 1C) Neuroblast division in live explanted larval brains under 

extended time-lapse imaging conditions. Time-series (13h), collected at 6 minute intervals and 

displayed at 3 fps. Red: Proximity map for Dividing NB, Blue: Proximity map for non-dividing NB; 

Green: Jupiter::GFP. Note the bright flashes of red corresponding to NB divisions Scale bar 10 um. 

Supplemental Movie 3: (See Figure 1D) Tracking of GMCs in a live explanted larval brain under 

extended time-lapse imaging conditions, collected at 2 minute intervals and displayed at 5 fps. 

Red: Histone::RFP; Green: Jupiter::GFP. Coloured dots: Tracked GMC candidates, using 

CytoCensus and trackpy, identified by colour. GMC divisions are visible (e.g. 21s top left, 1:04 

centre). Scale bar 10 um.
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