
Gaussian curvature directs the distribution of
spontaneous curvature on bilayer membrane necks
Morgan Chabanon1 and Padmini Rangamani1,*

1Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
*padmini.rangamani@eng.ucsd.edu

ABSTRACT

Formation of membrane necks is crucial for fission and fusion. In this work, we aim to answer the following
fundamental question: what is the relationship between spontaneous curvature and the Gaussian curvature at a
membrane neck? We use the Helfrich model for lipid bilayers and solve the shape equation on catenoids to find the
field of spontaneous curvature that will stabilize the membrane neck. In this case, the shape equation reduces to a
variable coefficient Helmholtz equation for spontaneous curvature, where the source term is proportional to the
Gaussian curvature. We show how this latter quantity is responsible for non-uniform distribution of spontaneous
curvature in minimal surfaces. We then explore the energetics of catenoids with different spontaneous curvature
boundary conditions and geometric asymmetries to show how heterogeneities in spontaneous curvature distribution
can couple with Gaussian curvature to result in membrane necks of different geometries.

Introduction
Neck-like structures are a necessary geometric intermediate for fusion and fission in cellular membranes and play
important roles in membrane trafficking (both in endo- and exocytosis) and transport within the endomembrane
system1–4. Furthermore, the formation of necks is a critical step in the interaction of toxins and viral fusion proteins
with cellular membranes5–8. These structures are also observed in synthetic membrane systems such as in giant
unilamellar vesicles subject to osmotic stress9, 10, lipid heterogeneities11, 12, protein insertion or crowding13, 14, and
membrane-substrate interactions15. As shown in Fig. 1(a), the mechanisms producing neck structures are as diverse
as the underlying biological processes. Despite this diversity, their formation is subject to similar biophysical
constraints, and most often requires bending the membrane in the presence of compositional in-plane heterogeneities.
These membranes heterogeneities can be produced in many ways, resulting in a preferred curvature known as the
spontaneous curvature16–20. The mechanisms inducing spontaneous curvature on the membrane can broadly be
classified into five categories: lipid asymmetry across the leaflets, hydrophobic insertion due to proteins, scaffolding
due to proteins, oligomerization, and crowding due to proteins or other external moieties. The local value of
spontaneous curvature that influences the formation of neck-like structures can then be interpreted as the combined
result of several of these mechanisms.

Despite the wide variety of neck formation mechanisms, some unifying features of membrane necks can be
identified. Geometrically, necks are characterized by having a saddle splay shape at every point (see Fig. 1(b)).
This is expressed mathematically by a negative Gaussian curvature (two principal curvatures of opposite sign)
everywhere on their surface. Most often, necks are assumed to adopt a catenoid-like geometry21–24. Although this
assumption may appear simplistic, it has been shown helpful in the understanding of biophysical principles of neck
formation21–24. Catenoids are minimal surfaces; they minimize the surface energy subject to the boundary conditions
and have negative Gaussian curvature everywhere, which is required for the formation of neck7.

In this work, we seek to understand how spontaneous curvature interacts with the Gaussian curvature of catenoid-
shaped membrane necks. At the continuum scale, the energy of a lipid bilayer is commonly described by the Helfrich
energy18, 25–27. This model and its extensions relate the bending energy of a lipid membrane to its mean, spontaneous,
and Gaussian curvatures. In most studies, the contribution of the Gaussian curvature is not significant because of the
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NOTATIONS
A Area of the catenoid
C Spontaneous curvature
C0 Spontaneous curvature at the lower boundary of the catenoid
C1 Spontaneous curvature at the upper boundary of the catenoid when different from C0
H Mean curvature
H0 Height of the catenoid
K Gaussian curvature
k Bending modulus
kG Gaussian modulus
L Total arclength of the symmetric catenoid
l0 Length truncated from the total arclength in the asymmetric catenoid
λ Surface tension (Lagrange multiplier)
λ0 Reference surface tension
p Pressure difference across the membrane (Lagrange multiplier)
r Radial coordinate in axisymmetry
rn Neck radius of the catenoid
s Arclength variable of the catenoid
T Oscillator period (Appendix)
T ∗ Critical oscillator period (Appendix)
θ α Surface coordinates (α = 1,2)
W Energy of the membrane
w Energy of the membrane per unit area
ω Angular frequency of the harmonic oscillator (Appendix)
ω∗ Critical angular frequency of the harmonic oscillator (Appendix)
z Axial coordinate in axisymmetry

Gauss-Bonnet theorem28, 29, which states that the integral of the Gaussian curvature over a surface only depends on
the variations of the boundaries and topology of this surface. While this certainly means that the Gaussian curvature
will not influence the energy of a system with fixed or no boundaries such as a closed vesicle, this is not the case, in
general, for open boundaries or necks. Particularly, in the case of minimal surfaces such as catenoids where the
mean curvature is zero, the Gaussian curvature is the only contribution of the curvature tensor to the energy, and
therefore plays a critical role in the determination of the equilibrium state of the system.

Motivated by these considerations, we ask the following questions: Given a catenoid-shaped neck, what is the
spontaneous curvature field on this surface that minimizes the Helfrich energy? How is this spontaneous curvature
field influenced by the neck radius? And finally, how can we modulate the field of spontaneous curvature in order
to promote the necking process? To answer these questions, we use the classical Helfrich theory25 and conduct
simulations to identify how the Gaussian curvature and the spontaneous curvature are related in catenoid-shaped
necks.

Methods
Model development. In this section we briefly summarize the Helfrich theory of lipid bilayer and apply it to
catenoids. The Helfrich model is valid for deformations of the membrane that are much larger than the thickness
of the bilayer25, 26. In line with previous models18, 30, 31, we assume that the membrane is a purely elastic material,
ignoring the viscous contributions and the diffusion of proteins within the bilayer. Lipid bilayers are characterized by
a high stretching modulus32; therefore we represent the membrane as an incompressible surface and use a Lagrange
multiplier to implement this constraint. Finally we assume that the asymmetry across the bilayer can be represented
by a spontaneous curvature that locally captures the heterogeneity across the membrane17–19.
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Figure 1. Necks are ubiquitous in cellular membranes. (a) The formation of necks by cellular membranes is
critical for fission and fusion. A large variety of biological processes and molecular mechanisms are involved in the
formation of necks; however, a common feature of these structures is that they share a catenoid-like shape. Here, we
explore the relationship between catenoids and protein-induced spontaneous curvature and discuss the implications
for the formation of necks. (b) The local geometry of a surface can be described by its two principal curvatures κ1
and κ2. When these are of opposite signs, the Gaussian curvature K = κ1κ2 is negative, resulting in saddle shapes.
Additionally, when the principal curvatures have equal and opposite values, the mean curvature H = κ1 +κ2 is zero.
Surfaces with zero mean curvature are known as minimal surfaces and include catenoids.

The energy density of the membrane including the spontaneous curvature is given by

w(H,K,C) = k
[
H−C(θ 1,θ 2)

]2
+ kGK , (1)

where H is the mean curvature, K is the Gaussian curvature, k is the bending modulus, kG is the Gaussian modulus,
and C(θ 1,θ 2) is the spontaneous curvature field that can explicitly depend on the surface coordinates (θ 1,θ 2).

Minimizing the energy of the membrane allows us to obtain the equilibrium shape equation26, 27, 33, the solution
to which gives the relationship between the membrane geometry and constraints. For a membrane energy described
by Eq. 1 with spatially varying spontaneous curvature and no externally applied force, the shape equation –
corresponding to the normal variation of the energy – can be written as27, 31, 34

k∆(H−C)+2k(H−C)(2H2−K)−2kH(H−C)2 = p+2λH, (2)
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where p and λ are Lagrange multipliers that are interpreted as the pressure difference across the membrane, and
the surface tension respectively. In this work, the differential operators ∆(·) and ∇(·) refer to the surface Laplacian
and gradient respectively. The corresponding tangential equilibrium equation restricts the variations of the surface
tension27, 34 so that

∇λ = 2k(H−C)∇C. (3)

This equation is the membrane incompressibility condition.

Application to catenoids. Catenoids belong the to the mathematical family of minimal surfaces, which locally
minimize their surface energy everywhere29, 35, 36. These have been historically studied in the context of soap films
and the formation of membrane tethers28, 29, 37, 38 and more recently in the context of shapes adopted by organelle
membranes39–41.

We consider a catenoid of height H0 and neck radius rn such as the one depicted in Fig. 2(a). In axisymmetric
coordinates, this surface can be parametrized by

r = rn cosh(z/rn) with z ∈ [−H0/2;H0/2] . (4)

We seek the distribution of spontaneous curvature along the arclength s = rn sinh(z/rn) in the axial direction. We
choose the total arclength L = 2rn sinh(H0/rn), as the characteristic length of the catenoid.

The shape equation (Eq. 2) involves two geometrical invariants of the surface: the mean and the Gaussian
curvature. The mean curvature is zero everywhere on a catenoid; however the Gaussian curvature of a catenoid
depends on z and the neck radius as

K =−
[

1
rn cosh2(z/rn)

]2

=−
[

1
rn(1+(s/rn)2)

]2

. (5)

The Gaussian curvature of the catenoid is negative everywhere and is minimum when z = 0 or s = 0 (Figs. 2(b) and
3(b)). As the neck radius decreases, the Gaussian curvature at the neck decreases towards minus infinity, while it
tends to zero away from the neck.

For a minimal surface, the shape equation Eq. 2 and the incompressibility condition Eq. 3 reduce to

∆C−2KC = 0 , (6)

∇λ =−2kC∇C =−k∇(C2) . (7)

This system is subject to boundary conditions. These can either be the bending moments and tractions specified along
the boundary42, 43 or the spontaneous curvature specified at the boundary. Since our interest is in protein-mediated
effects, we specify the spontaneous curvature at the boundaries with the following Dirichlet boundary conditions:

C =

{
C0 at the lower boundary
C1 at the upper boundary

, (8)

where C0 and C1 are prescribed. These conditions represent, for instance, two reservoirs of spontaneous curvature-
inducing proteins connected to each side of the catenoid.

Non-dimensionalization and numerical implementation. We non-dimensionalize Eqs. 6, 7, and 8, using the
total arclength of the symmetric catenoid L, and the reference value of spontaneous curvature at one of the boundaries
C0. Accordingly, the geometric variables are scaled as θ̄ α = θ α/L, and K̄ = KL2, while the spontaneous curvature
is scaled as C̄ =C/C0. Eqs 6 and 7 therefore become

∆C̄−2K̄C̄ = 0, (9)
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Figure 2. Given a neck radius rn, a catenoid-shaped neck connected to two identical reservoirs of
curvature-inducing proteins shows a variation of spontaneous curvature along the arclength. (a) Geometry and
boundary conditions of the catenoid. The arclength s varies from −L/2 to L/2 and the boundary conditions are
C =C0. (b) Variation of dimensionless Gaussian curvature K/L2 on a catenoid of neck radius rn = 0.4L. (c)
Corresponding distribution of dimensionless spontaneous curvature. (d) Schematic of a possible spontaneous
curvature inducing protein distributed along a catenoid connecting two vesicles. The two spherical parts are protein
reservoirs imposing spontaneous curvature at the boundaries of the catenoid, and resulting in a distribution of
curvature-inducing proteins along the neck.

and
λ −λ0

kC2
0

=−C̄2 . (10)

with the non-dimensional boundary condition

C̄ =

{
1 at the lower boundary
C1/C0 at the upper boundary

. (11)

Eqs. 9-11 completely describe the system. Since Eq. 11 is decoupled from Eq. 9, the tension across the membrane
can be calculated post facto from the spontaneous curvature distribution. Therefore, we will not discuss the tension
in the catenoid going forward.

The total energy of the membrane is defined by the integral of the energy density over the catenoid surface

W =
∫ (

kC2 + kGK
)

dA . (12)

In non-dimensional form, the total energy is written

W
kC2

0L2 =
∫ (

C̄2 +
kG

k
1

C2
0L2 K̄

)
dĀ . (13)

Dividing by the non-dimensionalized area of the catenoid Ā = A/L2, the non-dimensional energy per area is
W/(kC2

0A). We use the value kG/k =−0.9 for the ratio of the Gaussian to bending modulus44 .
Eq. 9 is a variable coefficient Helmotz equation that, to our knowledge, lacks an analytic solution. Therefore,

we solve the system composed of Eqs. 9 and 11 with the finite element solver Comsol Multiphysics 5.2a, and the
‘Surface reaction’ module that has a built-in surface Laplacian. Parametric studies are conducted by exploiting the
COMSOL model with the ‘COMSOL with Matlab’ module.
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Figure 3. Constraining the neck of a catenoid induces a switch in the sign of spontaneous curvature at constant
total arclength and boundary conditions. (a) Axisymmetric geometry of six catenoids of various neck radii rn and
same total arclength L. (b) Dimensionless Gaussian curvature along the arclength s for various neck radii. (c)
Resulting spontaneous curvature along the arclength for C =C0 at both boundaries. (d) Corresponding distribution
of spontaneous curvature on the catenoid. (e, f) Schematics of a distribution of curvature inducing proteins on a
catenoid connecting two vesicles. (e) For a catenoid-shaped neck of radius larger than the critical radius rn > r∗n,
only proteins inducing a spontaneous curvature of the same sign as C0 are required to sustain the catenoid. (f) When
the neck radius is below the critical neck radius rn < r∗n, proteins with spontaneous curvature of opposite sign as C0
are necessary to sustain the catenoid-shaped neck.

Results
The Gaussian curvature of the catenoid governs the distribution of spontaneous curvature. We begin our
analysis with the catenoid shown in Fig. 2(a) with a total arclength L and neck radius rn = 0.4L. The geometry of a
catenoid determines its Gaussian curvature along its arclength through Eq. 5. The Gaussian curvature of the catenoid
considered here is displayed in Fig. 2(b). As expected K is negative everywhere, with a maximum amplitude at
the neck. How does the Gaussian curvature affect the distribution of protein-induced spontaneous curvature? We
answer this question by solving the boundary value problem composed of Eq. 9 with C =C0 at both boundaries (see
Fig. 2(a)). The resulting field of spontaneous curvature is shown in Fig. 2(c). For this configuration, the spontaneous
curvature is positive everywhere with a maximum at the neck, following the intensity of Gaussian curvature.

In order to interpret this spatially varying spontaneous curvature, one can think of the inclusion of a single type
of conic protein into the lipid bilayer. In this case, a catenoid with fixed spontaneous curvature at the boundaries can
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Figure 4. The switch of spontaneous curvature at the neck is accompanied by an energy barrier of the catenoid. (a)
Normalized membrane spontaneous curvature at the neck as a function of the neck radius. (b) Energy per area of a
catenoid as a function of the dimensionless neck radius. (Color symbols correspond to neck radii configurations
shown in Fig. 3(a-c). Solid line is a visual guide.).

be schematically represented as in Fig. 2(d), where two reservoirs of the curvature-inducing protein are connected to
the boundaries. A variation of spontaneous curvature along the catenoid corresponds to a variation of protein surface
density along the neck. The value of C as a function of protein density depends on the protein and on the curvature
inducing mechanism18.

The energy required to maintain a catenoid-shaped membrane through spontaneous curvature presents a
barrier at a critical neck radius. The radius of the neck is an important geometric parameter of catenoids, and is
of particular interest to pre-fusion events in trafficking1–4. We next investigate how the neck radius influences the
distribution of spontaneous curvature along a catenoid. We vary the neck radius between rn = 0.1L and rn = 0.6L as
shown in Fig. 3(a). The resulting Gaussian curvatures along the arclength, presented in Fig. 3(b), show an increase
of the curvature intensity at the neck as the neck decreases. Away from the neck however, a smaller neck radius
produces a lower Gaussian curvature.

We solve the boundary problem for the spontaneous curvature, resulting in the distribution of C depicted in
Fig. 3(c). The boundary conditions are the same as the one shown in Fig. 2(a), with C = C0 at both boundaries,
corresponding to a neck connected to two equal reservoirs of curvature inducing proteins. Although the maximum
of spontaneous curvature intensity is always at the neck, its value is a non-monotonic function of the neck radius
and Gaussian curvature. For large neck radii, decreasing rn increases the maximum of C, until a critical neck
radius r∗n below which C at the neck switches signs. After this switch, further decreasing the neck radius lowers the
intensity of spontaneous curvature. Fig. 3(d) shows the distribution of spontaneous curvature on the catenoids for
the corresponding radii.

This non-intuitive switch-like behavior is surprising because neither the neck radius nor the resulting Gaussian
curvature show a discontinuity. Furthermore, the boundary conditions for the spontaneous curvature are constant
C = C0. An intuitive understanding of this behavior can be obtained by considering a simplified case where the
Gaussian curvature K is constant along the arclength, reducing the shape equation for minimal surfaces to a one-
dimensional simple harmonic oscillator. As shown in the Appendix, in this simplified case, reducing the neck radius
is equivalent to decrease the period of the oscillator, which, when subject to fixed non-zero boundary conditions,
leads to a series of diverging values for r∗n/L∼

√
2/[π(1+2n)], with n ∈ Z. For n = 0 we obtain r∗n/L' 0.45, close

to the value observed in Fig. 4 for the catenoid. Interestingly, the value of neck radius at which the switch occurs
does not depends on the value of the boundary condition, but only on the total arclength. Note that other critical
values are expected for n 6= 0, and although these are observed for a constant K (see Appendix), in the case of the
catenoid, K tends to zero away from the neck, suppressing the other possible switches.

The switch in sign of the spontaneous curvature as a function of neck radius can be interpreted as a requirement
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Figure 5. A spontaneous curvature differential between the two boundaries determines the width of the associated
energy barrier but does not influence the position of the switch in spontaneous curvature. (a) Schematic of a
catenoid with unequal boundary conditions. (b) Distribution of spontaneous curvature along the arclength for
C1/C0 = 10 for various neck radii. (c) Distribution of spontaneous curvature along the arclength for C1/C0 =−5.
(d) Comparison of the energy per area of the catenoid for various boundary conditions. The larger the spontaneous
curvature differential at the boundary, the larger the energy barrier corresponding to the sign switch. (e) Contour plot
of the energy per area for C1/C0 varying between -15 and 15 as a function of the neck radius. The energy barrier
(warm colors) is located around a constant critical neck radius of about r∗n = 0.33L.

that another set of proteins with spontaneous curvature opposite to the one in the reservoir will be needed to minimize
the energy of catenoids with smaller necks. This idea is shown in Figs. 3(e) and (f), where possible distributions of
curvature-inducing proteins are depicted for necks larger and smaller than the critical radius.

To further identify the relationship between the switch in spontaneous curvature and the geometry, we plot in
Fig. 4(a) the spontaneous curvature at the neck as a function of rn. These results confirm the switch-like behavior
described above and in the vicinity of a critical neck radius r∗n ' 0.33L, the spontaneous curvature at the neck
diverges, with positive values above r∗n, and negative values below. In the two limits of large and small neck radii,
the spontaneous curvature tends to C0 everywhere. This is consistent with the two limit shapes of a catenoid: a
tube and two inverted cones, both of which have a zero Gaussian curvature, and therefore no spatial variation of
spontaneous curvature.

As show in Fig. 4(b), the energy to stabilize a catenoid-shaped neck through spontaneous curvature also shows
an energy barrier at the critical neck radius r∗n corresponding to the switch in C. Away from this energy barrier, the
radius of the neck can be reduced by small increases in the elastic energy of the system. The passage from one side
to the other of the energy barrier will require additional mechanisms such as relaxation of the boundary conditions,
external forces (e.g. actin pulling in clathrin mediated endocytosis45), or a transient geometrical deviation from a
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Figure 6. For boundary conditions where the spontaneous curvature have opposite values (C1 =−C0), the switch
in the sign associated with the neck radius is nullified, and the spontaneous curvature at the neck is zero. (a)
Spontaneous curvature along the arclength of a catenoid with C1 =−C0 for various neck radii. (b) Energy per area
of the catenoid as function of the neck radius; no energy barrier is observed for C1 =−C0. (c) Schematic of a
catenoid connecting two vesicles with curvature inducing proteins of opposite signs at the two spherical reservoirs.
The smooth transition from C0 to −C0 requires a zero spontaneous curvature at the neck.

symmetric catenoid. In the following, we investigate how the energy barrier in the catenoid-shaped neck can be
modulated by spontaneous curvature and geometry.

The differential in spontaneous curvature between the boundaries modulates the intensity of the energy
barrier. How do the boundary conditions influence the distribution of spontaneous curvature in the neck? We
consider the catenoid represented in Fig. 5(a), where the spontaneous curvature at the upper boundary is C1 6=C0.
This situation is likely to occur in a cellular context where the heterogeneous membrane composition may produce
a differential in spontaneous curvature across the neck. We find that the switch-like behavior in spontaneous
curvature persists independently of the ratio C1/C0. As shown in Figs. 5(b) and (c), the distribution of C is tilted to
accommodate the boundary conditions, and the sign of the extremum is determined by the boundary condition with
the largest absolute value. However the critical radius at which the switch occurs remain the same. This is better
seen in Fig. 5(d), where the critical radius associated with the energy barrier is independent of C1. This observation
is consistent with the expression for the critical neck obtained with the simple oscillator analogy that is independent
of the boundary conditions (see Eq. A6).

To fully explore the influence of the spontaneous curvature differential at the boundaries, we computed the
energy of the catenoid for a wide range of C1/C0 as a function of rn (Fig. 5(e)). The results confirm the behavior
described above, except for C1 = −C0 where a singularity seems to occur. The spontaneous curvature profile in
this case, where the boundary of the catenoid have opposite curvatures, is shown in Fig. 6(a). Here the switch in
spontaneous curvature is suppressed, and C = 0 at the neck independently of the neck radius. Correspondingly, the
energy barrier vanishes as seen in Fig. 6(b). Once again, this scenario can be interpreted as a neck connecting two
reservoirs of proteins with the same magnitude of curvature but in opposite directions (see Fig. 6(c)). The boundary
conditions produce smooth transition from C1 to C0 along the catenoid, transiting by C = 0 at the neck. This result is
evident from the simple oscillator analogy, where the spontaneous curvature at the neck is proportional to C0 +C1
(see Eq. A4), and is therefore invariably zero for C1 =−C0.

Interestingly, the energy per unit area away from the barrier suggests that for a large spontaneous differential at
the boundaries, a small neck radius is energetically favorable compared to a large neck radius. This result contrasts
with the case C1 = C0, where large neck radii are favorable. The variation of spontaneous curvature differential
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Figure 7. Asymmetry along the catenoid arclength determines the value of neck radius at which the spontaneous
curvature sign switches. (a) Schematic of the geometry of the catenoid with a truncated arclength L− l0. (b, c)
Distribution of spontaneous curvature along the arclength for l0/L =0.3 (b) and l0/L =0.5 (c), for various neck radii.
(d) Comparison of the energy per area of the catenoid for various degrees of asymmetry. The more truncated, the
smaller value of the critical neck radius. For a half catenoid (l0/L = 0.5), the energy barrier and the sign switch
disappear. (e) Contour plot of the energy per area for l0/L varying between 0.1 and 0.6 as a function of the neck
radius.

across the neck may be a mechanism cells utilize to modulate the energy to form a neck. In particular, by accessing
the large heterogeneity available due to membrane lipid composition and proteins, cells can disrupt the energy barrier
associated with the transition from a large to a small neck radius, and vice versa.

The catenoid geometrical asymmetry modulates the location of the energy barrier. Thus far, we have only
considered catenoids that are geometrically symmetric, that is, both sides of the neck have equal arc length. Yet,
asymmetric catenoids are more common in the cellular environment. For instance, the neck connecting a tube to a
larger membrane reservoir is a catenoid partially truncated22, 46. We therefore ask how does geometric asymmetry
influence the distribution of spontaneous curvature and energy associated witht the switch?

We conduct simulations on truncated catenoids of arc length L− l0 as shown in Fig. 7(a), with both boundaries
subject to the same spontaneous curvature C0. The profile of spontaneous curvature along the arclength are shown for
different degrees of geometrical asymmetry in Figs. 7(b) and (c). We find that reducing asymmetry in the catenoid
modifies the critical neck radius at which the switch in spontaneous curvature occurs. As seen from Figs. 7(d) and
(e), where the energy of the catenoid is plotted as a function of the neck radius, the larger the degree of asymmetry
l0, the smaller the critical neck radius at which the energy barrier occurs. Once half or more of the catenoid is cut
off, corresponding to l0 ≥ L/2, the energy barrier completely vanishes, allowing the neck radius to transition from
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Figure 8. Total energy per unit area of catenoids in the parameters space defined by dimensionless neck radius
(rn/L), spontaneous curvature asymmetry (C1/C0), and geometrical asymmetry (l0/L). (a) Isosurfaces of the energy.
The two dashed planes correspond to the energy landscapes shown in Fig. 5(e) and 7(e). The dotted planes
correspond to energy landscapes for l0/L = 0.3 shown in (b), and C1/C0 =−10 shown in (c).

large to small values through spontaneous curvature mechanisms only.
For completeness, we fully explore all the combinations of spontaneous curvature differential and geometric

asymmetry of the catenoid by computing the corresponding energy space. As shown in Fig. 8(a), the results confirm
the behaviors described above, where the differential in C across the neck mainly influences the width and intensity
of the energy barrier, while the geometrical asymmetry determines the critical neck radius corresponding to the
energy barrier and the switch. This is further shown in the two energy isovalue planes presented in Figs. 8(b) and (c)
which have overall similar behaviors as those plotted in Figs. 5(e) and 7(e) respectively.

Discussion
Necks are ubiquitous in membrane biology, appearing as a necessary step in vesiculation processes and connecting
tubules to membranes reservoirs. These structures can be studied and understood as catenoids21, 24, which are
minimal surfaces with zero mean curvature and negative Gaussian curvature everywhere. The formation of necks has
been associated with line tension47, the change in Gaussian modulus12 and other forces, but the interaction between
spontaneous curvature and Gaussian curvature has not been explored until now.

In this study, we explore the intricate relationship between Gaussian curvature, spontaneous curvature, and neck
geometry. We asked, given a neck geometry, what spontaneous curvature field would satisfy the minimum energy

11/17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137091doi: bioRxiv preprint 

https://doi.org/10.1101/137091
http://creativecommons.org/licenses/by/4.0/


Figure 9. Three features control the distribution of a spontaneous curvature along a catenoid-shaped neck, the neck
radius, the boundary conditions, and the asymmetry of the catenoid. These can be utilized to form or maintain buds
connected to a reservoir of curvature inducing proteins through a catenoid.

requirement for a bilayer. We found a rather non-intuitive answer: the spontaneous curvature field depends on the
Gaussian curvature and its intensity follows a switch-like behavior depending on the neck radius of the catenoid.
The catenoid-shaped neck has an energy barrier at a critical neck radius corresponding to the switch in the sign of
the spontaneous curvature. We further identified two mechanisms allowing the modulation of this energy barrier – (i)
amplifying the spontaneous curvature differential at the boundaries increases the intensity and width of the energy
barrier (Fig. 5) and (ii) the geometrical asymmetry of the catenoid determines the critical neck radius at which the
energy barrier is located (Fig. 7). Moreover we found that the switching behavior is lost in specific cases: when
the spontaneous curvature at the boundaries have opposite value (Fig. 6), and when half or more of the catenoid is
truncated (Fig. 7).

Spontaneous curvature of lipid bilayers can be produced by a variety of relatively well understood mecha-
nisms16, 19, 20. In particular, the insertion of amphiphatic α-helix into lipid bilayers is known to induce curvature and
is involved in several neck formation processes. Amphiphatic α-helixes is a conserved protein structure that can be
found in Arf1 (involved in COP vesicle intracellular trafficking48), Epsin (involved in actin and clathrin mediated
endocytosis49), and M2 proteins from influenza virus (involved in viral budding5, 8, 50). All of these proteins have
been shown to participate in membrane fission, which corresponds to the limiting shape of neck constriction4, 8, 48. A
similar mechanism is utilized by antimicrobial peptides (AMPs) to form buds and destabilize lipid membrane by
inducing negative Gaussian curvature6, 7, 51.

One of the main findings of this study is the existence of an energy barrier for catenoid-shaped necks at a
certain neck radius. This energy barrier is accompanied with a switch in the sign of spontaneous curvature along the
catenoid. This behavior can be related to several biological mechanisms relevant to neck formation and membrane
fission. Several studies have shown that lipids with negative spontaneous curvature are important during the fission
process7, 52–54. We found that a change in the sign of the spontaneous curvature is important to overcome the energy
barrier associated with reducing neck size. Therefore, it is possible that by harnessing the heterogeneity of lipid
species55, and chemical reactions that can lead to the formation of lipids with negative spontaneous curvature,
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pre-fission structures overcome the energy barrier associated with necks.
For instance, viral budding in influenza occurs in two main steps. First a neck is formed by a combination of

scaffolding and lipid phase separation originating from the viral envelope. This step can only produce a neck of
about 25 nm diameter, necessitating the action of another mechanism to further constrain the neck. During the
second step, M2 amphiphatic α-helix insertion induces negative Gaussian curvature enabling the neck radius to
reach values below 5 nm8, 50, at which point spontaneous membrane scission can occur2, 47. It should be noted that
no necking is possible with M2 amphiphatic α-helix only8. The requirement for two distinct mechanisms in two
regions of neck radii could be related to the energy barrier that we found as the neck radius of the catenoid decreases.
Other evidence of switch-like behaviors are found in endocytosis where multiple studies have reported the existence
of a snap-through instability30, 31, 56, 57. Furthermore, soap films, with no bending rigidity, also exhibit a structural
instability when held as catenoids37, 58. Taken together, these findings suggest that perhaps, cellular membranes may
utilize a fundamental geometric feature of catenoids to shape their membranes.

While our model assumes an idealized catenoid shape for membrane necks, it is possible that necks may
not remain as exact catenoids and the dynamics of the neck formation process, including biochemical reactions,
heterogeneity in membrane composition and moduli, forces exerted by proteins and cytoskeleton molecules, and
in-plane diffusion of lipids and proteins play an important role during fission and fusion. Despite these shortcomings,
we have identified some fundamental features of the interaction between Gaussian curvature and spontaneous
curvature in catenoids. We summarize our findings as a phase space where the spontaneous curvature, neck radius,
and the geometric asymmetry of the catenoid can be altered to obtain buds and necks of different radii (Fig. 9).
These variables might serve as design parameters for artificial membrane constructs and a stepping stone for further
investigation of how membrane geometry and proteins interact.

Appendix: Simple Oscillator Analogy
In order to study the behavior of Eq. 6 in simplified conditions, let us consider the case where K is a constant. In
one-dimension, Eq. 6 can now be written as

d2C
ds2 =−ω

2C , (A1)

where ω2 =−2K is a positive constant, and s ∈ [−L/2;L/2]. This is the equation of a simple harmonic oscillator of
period T = 2π/ω = π

√
−2/K, which has for general solution

C(s) = Acos(ωs)+Bsin(ωs) , (A2)

A and B being constants determined by the boundary conditions. With boundary conditions C(−L/2) = C0 and
C(L/2) =C1 the solution is

C(s) =
C0 +C1

2cos(ωL/2)
cos(ωs)− C0−C1

2sin(ωL/2)
sin(ωs) . (A3)

From Eq. A3 we have that the value of C at the neck (s = 0) is

C(0) =
C0 +C1

2cos(ωL/2)
, (A4)

which diverges for ω∗ = (π +2nπ)/L, where n ∈ N. Or in terms of the oscillator period, the solution diverges for

T ∗ =
2L

1+2n
. (A5)

Eq. A3 is plotted in Fig. 10 for various periods T . The value of C within the interval [−L/2;L/2] is positive for
T > T ∗(n = 1), and negative below. To decrease the oscillator period is conceptually equivalent to increase the
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Figure 10. The switch-like behavior in spontaneous curvature observed for catenoids can be conceptually
understood with a simple oscillator. The solution of a simple harmonic oscillator (Eq. A3) with C1 =C0 depends on
the oscillator period T =−π/K. Decreasing values of the oscillator period correspond to increasing values of K,
and therefore decreasing values of the neck radius. C diverges for T ∗/L = 2/(1+2n) (marked by purple diamonds),
and changes mode for T ∗/L = 1/(1+n) (indicated by green triangles).

absolute value of K, or to decrease the neck radius of the catenoid. For a catenoid, the Gaussian curvature at the neck
is K(s = 0) =−1/r2

n. Taking ω2 = 2/r2
n, the positive value of the neck radius for which the spontaneous curvature

diverges is

r∗n =

√
2L

π(1+2n)
. (A6)

For n = 0, we have r∗n/L' 0.45. From Eq. A6, it is clear that the value of the critical neck radius is independent of
the boundary conditions.

References
1. Hurley, J. H. & Hanson, P. I. Membrane budding and scission by the ESCRT machinery: It’s all in the neck. Nat. Rev. Mol.

Cell Biol. 11, 556–566 (2010). DOI 10.1038/nrm2937.

2. Campelo, F. & Malhotra, V. Membrane Fission: The Biogenesis of Transport Carriers. Annu. Rev. Biochem. 81, 407–427
(2012). DOI 10.1146/annurev-biochem-051710-094912.

3. Kukulski, W., Schorb, M., Kaksonen, M. & Briggs, J. A. G. Plasma Membrane Reshaping during Endocytosis Is Revealed
by Time-Resolved Electron Tomography. Cell 150, 508–520 (2012). DOI 10.1016/j.cell.2012.05.046.

14/17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/137091doi: bioRxiv preprint 

https://doi.org/10.1101/137091
http://creativecommons.org/licenses/by/4.0/


4. Messa, M. et al. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-
coated pits. eLife 3, e03311 (2014). DOI 10.7554/eLife.03311.

5. Mishra, A., Gordon, V., Yang, L., Coridan, R. & Wong, G. HIV TAT Forms Pores in Membranes by Inducing Saddle-Splay
Curvature: Potential Role of Bidentate Hydrogen Bonding. Angewandte Chemie Int. Ed. 47, 2986–2989 (2008). DOI
10.1002/anie.200704444.

6. Schmidt, N., Mishra, A., Lai, G. H. & Wong, G. C. Arginine-rich cell-penetrating peptides. FEBS Lett. 584, 1806–1813
(2010). DOI 10.1016/j.febslet.2009.11.046.

7. Schmidt, N. W. & Wong, G. C. L. Antimicrobial peptides and induced membrane curvature: Geometry, coor-
dination chemistry, and molecular engineering. Curr. Opin. Solid State Mater. Sci. 17, 151–163 (2013). DOI
10.1016/j.cossms.2013.09.004.

8. Martyna, A. et al. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Sci.
Reports 7 (2017). DOI 10.1038/srep44695.
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