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Abstract 

Cell-to-cell communication networks have critical roles in diverse organismal processes, such as 

coordinating tissue development or immune cell response. However, compared to intracellular 

signal transduction networks, the function and engineering principles of cell-to-cell communication 

networks are far less understood. Here, we study cell-to-cell communication networks using a 

framework that models the input-to-output relationship of intracellular signal transduction 

networks with a single function—the response-time distribution. We identify a prototypic 

response-time distribution—the gamma distribution—arising in both experimental data sets and 

mathematical models of signal-transduction pathways. We find that simple cell-to-cell 

communication circuits can generate bimodal response-time distributions, and can control 

synchronization and delay of cell-population responses independently. We apply our modeling 

approach to explain otherwise puzzling data on cytokine secretion onset times in T cells. Our 

approach can be used to predict communication network structure using experimentally 

accessible input-to-output measurements and without detailed knowledge of intermediate steps. 
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Introduction 

In multicellular organisms, cells live in communities and constantly exchange signaling molecules. 

Prominent examples of short-range communication are diffusible ligands shaping immune 

responses [1] and the tumor microenvironment [2], notch-delta mediated signals [3] and micro-

vesicles [4]. In the mammalian immune system, cell-to-cell communication networks often consist 

of 10’s of cytokine species (small diffusive messenger proteins), several types of T cells and other 

immune cells like neutrophils and macrophages, and also epithelial cells [1,5]. In many cases, 

cytokines secreted by one cell type act on other cell types, but at the same time have effects on 

the original cell type as well: an important example is IFN-γ which is secreted by Th1 cells (a sub-

class of T cells), stimulates macrophages and also induces the differentiation of T cells toward 

Th1 cells. Accordingly, the levels of various cytokine species vary by an order of magnitude or 

more between supernatants of isolated cells and cell populations [6,7], demonstrating pronounced 

effects of intercellular interaction networks on the cytokine milieu.   

On the cellular level, extensive research has identified many molecules and pathways involved in 

signal transduction and, in many cases, has also developed an understanding of their function. In 

particular, the identification and analysis of generic network motifs has led to an understanding of 

how certain interaction topologies can function to suppress noise, amplify signals or provide 

robustness [8–12]. For this purpose, mathematical models of simplified systems have often been 

an important driving force, which have helped to reveal engineering principles such as feedback 

control and perfect adaptation [13–15]. However, on the level of cell-to-cell communication, the 

mapping from general network motif to function is poorly understood. It is unclear how well models 

that focus on specific cases, such as for IL-2 [16–19], IFN-γ [20,21] or TNF-α [22,23] signaling 

networks, can be used to infer properties of general network motifs. Further, intracellular 

networks—which are the building blocks of intercellular networks—may themselves be quite 

complex. Can we investigate behaviors of intercellular networks without requiring knowledge of 

detailed intracellular networks, whose parameters are often inaccessible with current 

experimental approaches? 

Here we propose response-time modeling as a framework to unify and interpret knowledge on 

intracellular and intercellular signaling pathways. In this framework, the input-to-output response 

statistics of intracellular signaling networks are captured by a single function: the response-time 

distribution. This distribution, which describes the dynamics of cell-state switching, can be either 

measured directly or calculated from models describing the network. Importantly, focusing on 

response-time distributions allows us to elide detailed descriptions of intermediate intracellular 

signaling steps and focus on population-level behaviors that emerge from connecting cell-state 

outputs to each other via intercellular networks. Below, we first characterize response-time 

distributions that can arise from intracellular networks and find that, in many cases, these 

distributions and cellular output characteristics can be well modeled by a gamma distribution. 

Second, we use this observation to analyze common cell-to-cell communication network motifs, 

and discover that different interaction topologies can regulate a rich set of dynamic behaviors, 

including delayed, synchronized and bimodal cellular responses to a stimulus. Finally, we apply 

our approach to investigate a recent data set on cytokine secretion onset times. 
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Results 

Response-time modeling of cell-state dynamics 

Temporal heterogeneity has been widely observed for cellular processes that involve cell-to-cell 

communication, such as onset of cytokine secretion or cell differentiation (Figure 1A and Table 

1). The distributions of times at which cellular responses occur may not be described by a simple 

Poisson process, which would show exponentially distributed response times (Figure 1B) [24]. 

Rather, single-peaked and even bimodal distributions can occur, reflecting the complex networks 

underling many biological processes. 

We wondered whether cell-to-cell communication networks could be modeled and analyzed in a 

way that abstracts molecular detail yet still captures essential dynamic properties. For example, 

to fully describe an elementary chemical reaction, one would need to know the positions and 

velocities of all molecules at all times [24]. However, the process can be well approximated by a 

single phenomenological parameter, the reaction rate-constant.  To develop an analogous 

approach for modeling cellular state changes, one must take into account that cell-state changes 

are the consequence of intracellular multi-step processes: the response of a cell to an input signal 

is not a single-step reaction but rather a result of a reaction network (Figure 1C). The time until 

this observable state change happens is a random variable, just like the time until the next 

molecular event in a single-step reaction (Figure 1B and C)—however, it is in general not 

exponentially distributed. Rather, this response-time distribution is a signature function depending 

on and describing the relevant intracellular processes, with no known a priori properties.  

Response-time modeling has the advantage that we do not need to take all details of intracellular 

dynamics into account, but rather focus on the key measurable events (see also [25,26]). 

Therefore, compared to models on the level of molecular species or even individual molecules, 

we can describe the behaviors of cell populations with a rather small number of parameters (few 

measurable response-time distributions instead of 100’s of poorly accessible rate parameters) 

(Figure 1D). To assess what insights response-time modeling can give us on the dynamics of 

cell-state networks, the first step was a characterization of response-time distributions resulting 

from simple intracellular multi-step processes—the building blocks of more complex networks. 

We note that throughout the paper, we refer to multi-step processes as “intracellular networks” 

and to their superposition as “cell-to-cell signaling”. In fact, in a mathematical sense, all these 

processes can be viewed as components of one large network, and in many cases, it is somewhat 

arbitrary which parts of that network are isolated and considered as “subnetworks” that are 

subsumed by a response-time distribution: In other circumstances, compartments inside a cell 

might be regarded as interacting subunits, or  several cells in a certain micro-environment might 

form a community that interacts with other communities—for example via hormones or neural 

circuits. All those cases can, in principle, be treated analogously to the framework of response-

time modeling presented here.  

Simple intracellular networks induce single-peaked response-time distributions  
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In a literature survey, we found that many reports of experimentally measured response-time 

distributions indicate a single-peaked type of distribution. Such distributions have been reported 

for a wide range of cellular systems from gene transcription over cellular Ca2+ spikes to cytokine 

secretion (Table 1 and Figure 1A), with the exception of some processes where exponential 

distributions have been measured, and bimodal IFN-γ secretion onset times in T cells, which we 

discuss in detail later.  

Why does this widespread occurrence of single-peaked response-time distributions occur, and 

what does it mean for the typical dynamics of a cell population? Response times for single-step 

reactions are exponentially distributed (Figure 1B and Figure 2A, top). However, cellular signal 

transduction typically is driven by intracellular networks comprising phosphorylation cascades, 

feedback, crosstalk etc. As a simple illustration, consider a uniform, irreversible reaction chain, 

i.e. the cellular response is triggered after completion of n reaction steps all driven by the same 

rate constant 𝜇 = λ/n (Figure 2B, top). This process has the same average response time as a 

single reaction with rate λ, but the distribution of the response times over a cell population 

changes: The process can be regarded as a sum of n single-step processes (elementary 

reactions), and therefore the over-all response time is the n-fold convolution [27] (see  SI Text) 

𝜓𝑛(𝑡) =  [𝜇𝑒
−𝜇𝑡 ∗ 𝜇𝑒−𝜇𝑡 ∗ … ]⏟            

𝑛 𝑡𝑖𝑚𝑒𝑠

=
𝑡𝑛−1𝑒−𝜇𝑡𝜇𝑛

(𝑛 − 1)!
=  𝛾(𝑛, 𝜇; 𝑡). 

(1) 

Here, ‘*’ denotes convolution and 𝛾(𝛼, 𝛽; 𝑡)  is known as the gamma distribution with shape 

parameter α and rate parameter β (in general, 𝛼 can take non-integer values, see SI Text).  

Indeed, the single-peaked response-time distributions observed experimentally can be described 

by gamma distributions (Table 1), as for α>1, the gamma-distribution is an asymmetric (right-

skewed) distribution with a single peak at t>0. The observed exponential distributions for single-

enzyme kinetics, offset of transcription and intracellular Ca2+ puffs, indicate single-step processes 

(Figure 2A): All these processes are likely dominated by a single molecular reaction (binding of a 

metabolite to an enzyme, unbinding of a promoter from DNA, opening of a Ca2+ channel subunit).  

Intracellular signaling pathways are usually not simple irreversible chains, and therefore, we 

asked whether the observed single-peaked distributions can be generated by a broader class of 

intracellular network models. Indeed, single-peaked distributions have previously been reported 

for more realistic models of cellular signal transduction like kinetic proofreading [28], multiple 

phosphorylation [29] and Ca2+ signaling [30]. Here, we studied three additional simple network 

motifs in more detail:  The signaling cascade [8], a set of parallel irreversible chains reflecting m 

receptor molecules that each can trigger a cellular response as a “race to the nucleus” [29] (Figure 

2C-D, top), and the reversible chain (Figure S1A). The response times of all those examples are 

well approximated by gamma distributions (Figure 2C-D and S1A, blue fitting lines, and Figure 

S1B and C).  

Apart from intracellular networks, another complication is cellular heterogeneity: In a cell 

population, even a clonal one, we cannot expect that each cell has the same reaction rate for a 

certain intracellular process. Rather, gene expression and receptor expression levels show 
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heterogeneity [31]. To investigate the effect of such heterogeneity on the response-time 

distribution, we used log-normal distributed reaction-rate parameters (Figure 2A-E and Figure 

S1A, bottom). In all models, the response-time distribution shifts towards longer tails and earlier 

peaks after incorporating cellular heterogeneity, but is still well approximated by a gamma 

distribution (Figure 2A-D, blue fitting lines, and Figure S1B). This is expected: Intuitively, adding 

cellular heterogeneity should reduce predictability; however, adding high-numbers of intermediate 

intracellular steps increases the predictability of the process due to the central limit theorem, 

which tightens the peak in the response time (Figure 2F-G)[27].  

Thus far, we only studied unbranched multi-step processes.  A final interesting case is cross-talk 

within an intracellular multi-step process (Figure 2E). In this case, a bimodal response-time 

distribution can occur, but even here, heterogeneity of rate parameters shifts the distribution 

towards a gamma-distribution (Figure 2E, bottom panel), offering another explanation for the 

versatility of gamma distributions. Therefore, in the following discussion, we will focus on cell 

population responses that induce gamma-distributed response times. 

Response-time modeling of intercellular network motifs 

Having established the typical response-time patterns emerging from intracellular processes, we 

next asked how more general cell-state transitions shape dynamic response patterns of cell 

populations. For this purpose, we made use of response-time modeling (Figure 3A), which 

describes a cell-state change from a state Si to Sj by a semi-Markov process defined by response-

time distributions 𝜓𝑖𝑗(𝑡 − 𝜏) (also known as first-passage times; see SI Text for precise 

definitions). Here we specifically chose gamma-distributed response times (Equation 1), because 

of their frequent occurrence in intracellular processes (Table 1 and Figure 2B-E). An advantage 

of this approach is that we can consider cell-to-cell interactions including feedback (e.g. by 

exchange of diffusible ligands) simply as a dependence of the parameters of the gamma 

distribution on the fraction of cells in a certain cellular state Sl: 

𝜓𝑖𝑗(𝑆𝑙(𝑡), 𝑡 − 𝜏) = 𝛾(𝛼𝑖𝑗(𝑆𝑙), 𝛽𝑖𝑗(𝑆𝑙); 𝑡 − 𝜏). (2) 

To completely determine the system, one needs to also provide probabilities 𝑝𝑖𝑗 for the execution 

of each possible reaction (with ∑ 𝑝𝑖𝑗 = 1)𝑖 , e.g. in the case of branching reactions. Note that in 

the basic framework presented here (Equation 2), we assume a “well-stirred” situation and do not 

take into account spatial effects like concentration gradients in diffusible messengers [17].  

Using response-time modeling, we analyzed a set of simple toy models or “network motifs” that 

often appear in larger cell-to-cell communication networks (Figure 3B). In analogy to the simple 

multi-step models studied in Figure 2, our main readout is the a posteriori distribution of arrival 

times in an absorbing state Sa (Figure 3C) (in general, every state of interest can be treated as 

an absorbing state by removing transitions leaving that state [27]). In contrast to the response-

time distributions in Figure 2, the arrival-time distributions are not normalized, but are analyzed 

separately within each motif to reveal the effect of parameter values on the delay and 

synchronization time and on bimodality  (Figure 3D)(see Methods).  
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As a first example, consider a single cell-state transition with feedback (Figure 3B-D, “feedback”). 

We found that positive feedback decreases and negative feedback increases the width of the 

arrival-time distribution. To quantify this property, we defined the “synchronization time” as the 

minimal time frame in which a certain fraction of cells (here 75%) responds after an initial delay 

time (see Methods).  Feedback has only minor effects on this delay time (Figure S2A). Thus, 

feedback regulation between cells is well suited to generate highly synchronized or 

desynchronized responses across a cell population. Conversely, we asked whether a simple 

cellular communication network could control the delay without changing synchronization—a sort 

of “timer” circuit for the cellular population.  Indeed, we found that long delays can be achieved 

without increased synchronization times by adding a bottleneck, e.g. in terms of the positive 

interaction or “gate” motif (Figure 3B-D, “gate”). The gate motif increases delay without changing 

synchronization over a wide parameter range (Figure S2A). Adding delay by simply slowing down 

the intracellular processes that induce one or two consecutive cell-state changes   is not sufficient 

for this effect, as here the synchronization time increases substantially when adding delay (Figure 

S2B-D). Intuitively, the higher level of synchronization in the gate motif can be explained by the 

global positive interaction, which increases synchronization similar to the positive feedback case, 

and therefore compensates for the loss of synchronization due to a shorter time scale.   

Finally, we studied the redundant, coherent feed-forward loop. This motif is a simple model of the 

situation that cellular activation (reaching state Sa) can be induced in several different ways, for 

example by means of different types of cytokines. Quite interestingly, we found that this motif can 

generate a bimodal distribution of arrival times in the absorbing state (Figure 3B-D, “feed-

forward”). Intuitively, that bimodality is caused by the contributions from the “direct” and the 

“indirect” (via S1) ways to reach Sa. However, substantial bimodality only arises if there is a time-

scale separation between the two routes to Sa, as implemented here by a longer average time in 

the process 𝑆1 → 𝑆𝑎; otherwise there is no clear separation between the two peaks, giving rise to 

a single long-lasting cellular response of moderate intensity (i.e. larger synchronization time, see 

Figure S2A). While bimodal distributions can also occur by crosstalk inside intracellular networks 

(essentially also a feed-forward loop)(Figure 2E), a feed-forward loop of elementary reactions is 

not sufficient for bimodality (Figure 3B-D, dashed lines): In general, our analysis suggests that at 

least three consecutive elementary steps are required for a bimodal response-time distribution 

(SI Text). 

Cell-to-cell communication allows independent control of delay and synchronization 

Above, we used the prototypic response-time distributions arising in intracellular signal 

transduction networks to analyze common network motifs of cell-state dynamics. We found that 

in the framework of response-time modeling, simple network motifs can induce emergent behavior 

such as bimodal response times, which does not arise in the corresponding single-step model 

that neglects the multi-step nature of cell-state changes. Moreover, we found that circuits, such 

as the feedback or gate motif, can control synchronization and delay independently (Figure 4). 

Our simulations strongly indicate that independent control is not possible with intracellular multi-

step processes alone (Figure 4, blue line): in processes that can be described by a gamma 

distribution, synchronization and delay are closely related by a linear relation.  
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Delay-induced persistence detection 

A network that rejects transient activation signals and only responds to persistent signals has 

been termed a “persistence detector” [9,32]. Persistence detection in cell-to-cell communication 

has recently been demonstrated in the context of a paracrine signal induced by opto-genetic tools, 

which can precisely control the timing of an input stimulus [33]. The precise mechanism of 

persistence detection is still to be resolved, however we wondered whether it could be explained 

by the delay caused by early cytokine secretion onset (Figure 5A). In this model, the cell-state 

change of a silent “receiver cell” to a cell with detectable fluorescence signal is mediated by a 

paracrine cytokine signal, which is again triggered by the (time-controlled) opto-genetic stimulus. 

As mentioned before, cytokine-secretion onset times are often gamma-distributed (Table 1). 

Here, we studied a simple model where cell-state transitions are executed with the response-time 

distribution measured for IL-2, and are triggered by an external stimulus that is present for either 

1 hr or two hr   as in [33]. Indeed, we found that the response-time model, but not the single-step 

model, yields a strong difference in cell activation between the 1 hr and 2 hr stimuli (Figure 5B 

and C), providing a plausible explanation for  the reported persistence detection. A more generic 

analysis revealed the benefit of signaling circuits that control delay independently of 

synchronization (Figure 4). Again, we assumed an input stimulus of limited duration (Figure S3A), 

now acting on a cell-state change controlled by an underlying “delay-inducing” gate or transition 

(Figure 4) network motif. We modeled these motifs using our response-time approach (i.e. fit 

gamma distributions to their input-to-output relationship) and scaled the average response times 

for both motifs so that they have the same delay (3 time units). Our simulations show that both 

delay-inducing motifs exhibit some degree of persistence detection compared with a simple, 

single-step process (Figure S3B), but only the gate motif allows for 100% of the cells to be 

activated for a long stimulus (e.g. 5 time units) while still rejecting a short stimulus (e.g. 3 time 

units). Moreover, the gate motif has a sharp transition in signal amplitude (Figure S3C).  

Bimodal IFN-γ secretion onset times  

In our literature survey (Table 1), a striking example of a response-time distribution that deviates 

from the commonly observed single-peaked pattern is the bimodal IFN-γ secretion onset times 

[34](Figure 1A). Our analysis of intercellular communication networks suggested that a feed-

forward loop motif can evoke a bimodal response-time distribution (Figure 3B-D, feed-forward). 

As it is known that IL-2 stimulates IFN-γ secretion of CD8+ T cells [35,36], we next examined 

whether a combination of direct (antigen driven) and indirect (IL-2 mediated) stimulation of IFN-γ 

secretion is sufficient to explain the bi-modal distribution.  

Response-time modeling allows annotating cell-state models by directly using measured 

transition probabilities and response-time distributions. That way, we were able to completely 

specify the process (except for the IL-2 interaction strength) based on a published data-set [34] 

(Figure 5D and Table S1): The onset times of IL-2 secretion are well described by a gamma-

distribution, and the same is true for the early IFN-γ onset times. For late (indirect) IFN-γ secretion, 

we used the same distribution modified by IL-2 interaction (Figure 5E, Model 1)(Methods). The 

reasoning was that likely similar pathways are involved in the production and secretion of IFN-γ 
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in both the direct and indirect case, only that they are activated either directly by antigen or 

indirectly via IL-2 (possibly after weak antigenic pre-stimulation). To simulate the process, we 

used a generalized Gillespie algorithm [37],  which is necessary here because some of the input 

gamma distributions have a small non-integer valued shape parameter (see Methods). 

Clearly, the response-time distribution generated by Model 1 is not bi-modal, and does not explain 

the data even qualitatively (Figure 5F). The reason is that the initial onset time distributions for IL-

2 and IFN-γ are too similar, and therefore their combination leads to a single broad peak rather 

than a second peak in the response times (cf. Figure 3C, feed-forward loop). Thus, we reasoned 

that another mechanism must account for this observed delay. In fact, unstimulated T cells 

express only very limited amounts of the high-affinity IL-2 receptor CD25, and therefore we asked 

whether stimulation-induced CD25 up-regulation may cause that additional delay (Figure 5E, 

“Model 2”). For this process, we used CD25 expression kinetics of CD8+ T cells measured in Ref. 

[38], which are also well described by a gamma distribution (Figure 5D). Indeed, model 2 

generates a bimodal distribution for IFN-γ secretion onset, and is in good qualitative agreement 

with the reported values (Figure 5F). The corresponding single-step model (dashed line) cannot 

reproduce the bimodal shape of the distribution. That demonstrates that our approach using the 

full response-time distribution is necessary to explain the data, and cannot be replaced by single-

step models using only average response times.  

Materials and Methods 

Simple Models 

The model schemes in Figure 2B-E were translated into differential rate equations by standard 

methods (see SI Text for model equations). In all models with a single absorbing state xn (all 

except the parallel chain) and without cellular heterogeneity in the  reaction rate parameter, the 

response-time distribution can be obtained directly from the differential equation solutions as a 

first-passage time [27], 𝜓𝑛(𝑡) =  
𝑑𝑥𝑛

𝑑𝑡
. For the parallel chain, the probability to reach the final state 

n in the first-out-of-m parallel processes, 𝑓𝑚(𝑡) =  𝑚 𝜓𝑛(𝑡)(1 − ∫ 𝜓𝑛(𝑡
′)𝑑𝑡′

𝑡

0
)𝑚−1 [29], is taken as 

the response-time distribution. To account for cellular heterogeneity, we also considered a log-

normal distributed rate parameter λ. In that case, the response-time distribution is obtained by 

stochastic simulation (n=20000) using Gillespie’s algorithm.   

Cellular state-transition models 

In general, models with several reaction channels that show non-exponential response-time 

distributions lead to non-linear integral equations (SI Text), which is a numerically hard problem. 

Instead, we employed two different methods to simulate the process: (i) Linear chain trick (used 

in Figures 3 and S2): If the response-time distributions are well approximated by gamma 

distributions with integer valued shape parameter (Equation 1), then one can replace each 

distribution by the corresponding irreversible n-step process, reducing the problem to an ODE 

system (see SI Text). (ii) Generalized Gillespie algorithm (Figure 5): This recently developed 

method [37] exploits some approximations valid for large numbers of responding cells to efficiently 
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simulate the process with arbitrary input distributions (i.e. also gamma distributions with non-

integer valued shape parameter can be used).  

Models with feedback and interaction 

Feedback and interaction are modelled by a dependence of the rate parameter β of the input 

gamma distribution (Equation 1) to the fraction of cells in a state 𝑆𝑙. For positive and negative 

feedback (Figure 3B-D, “feedback”), we used 𝛽(𝑆𝑙) = 𝛽
𝑏𝑎𝑠𝑒 𝐾+𝜂𝑆𝑙

𝐾+𝑆𝑙
 in Equation 2, where βbase is the 

base-level rate parameter, and the fold-change η determines feedback type and strength (positive 

feedback: 𝜂 > 1, negative feedback:  𝜂 < 1). For cellular interaction (Figure 3B-D, “gate”, and 

Figure 5E), we use 𝛽(𝑆𝑙) = 𝛽
𝑏𝑎𝑠𝑒 𝑆𝑙

𝐾+𝑆𝑙
.  

Measures of response-time distributions 

Delay: We defined the delay time tdelay as the longest time before ≤ 5% of a cell population reach 

the active state, so it is the 5-percentile of the response-time distribution.  

Bimodality: To quantify bimodality, we used the standard error (root-mean square of the sum of 

residuals) of a best-fit to the gamma distribution, with the rational that a bimodal distribution cannot 

be fit by a single gamma distribution. This approach has been widely used with normal 

distributions  (“dip-test” [39]). 

Synchronization: We characterized synchronization using the probability that an event occurs in 

(𝑡, 𝜏) but has not occurred before, the future life time P(𝑡, 𝜏) =
𝐹(𝑡+𝜏)−𝐹(𝑡)

1−𝐹(𝑡)
 , where F(t) is the 

cumulative probability distribution to the analyzed arrival-time distribution. The condition 𝑃(𝑡, 𝜏) =

𝑑, i.e. a fraction d of cells (here d= 75%) responds in (𝑡, 𝜏), together with the delay time tdelay, 

defines a “synchronization time” 𝑡𝑠𝑦𝑛𝑐 = 𝜏(𝑡𝑑𝑒𝑙𝑎𝑦).  

Discussion  

Response-time distributions have been explored earlier for model reduction techniques [25,26] 

and to analyze specific biological systems [21,23,40–42], applications including gene expression 

dynamics, viral infection and noise propagation in signaling pathways. Those studies demonstrate 

that many complex biological systems cannot be adequately described by single-step rate 

equation models, or at least not in their physiological environment. The reason is not only that 

biological networks are incompletely understood, so that known pathway maps are incomplete – 

rather, the fundamental problem is that the parameters needed to describe cellular networks (e.g. 

reaction rate parameters for all sub-processes involved in expression of a gene) cannot all be 

determined in vivo. Using the response-time distributions of “mesoscopic”, i.e. measurable 

processes, circumvents that problem by abstracting from the underlying microscopic dynamics, 

in analogy to chemical reaction kinetics (Figure 1). In case of branching reactions, we additionally 

assign probabilities for taking each path (Figures 3B and 5E). That approach is more general than 
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assuming stochastic competition [43,44] (meaning that the earliest event wins), and branching 

probabilities are often available from end-point data such as flow-cytometry measurements.  

The analysis of common network motifs has a long tradition in systems biology, and was used to 

elucidate metabolic networks [45] and gene regulatory networks [9,11,15], amongst others. The 

reasoning is that large, physiologic networks are composed of small, functional network motifs 

and can be rationalized based on these building blocks. To demonstrate such an approach for 

cell-to-cell signaling, we elucidated two published examples of intercellular interaction. We found: 

(i) that the paracrine persistence detector [33] can be explained by a delayed response-time 

distribution, which possibly stems from the onset of cytokine secretion; and (ii) our analysis of 

IFN-γ secretion onset times [34] revealed that the observed secondary response can be explained 

by a feed-forward loop motif consisting of IL-2 secretion and IL-2 receptor up-regulation. Those 

results provide a rationale for plausible mechanisms that can be tested experimentally in future 

research. Moreover, both examples demonstrate an advantage of our modeling approach, which 

is that no or very few free parameters need to be assigned if the response-time distributions of 

key processes are measured directly.  

Cell-to-cell interaction is crucial for many functions of higher organisms, and complex intercellular 

communication networks have been discovered over the last decades. While the experimental 

capabilities to elucidate cellular responses to specific input stimuli are becoming increasingly 

available—sometimes even for spatiotemporal, single-cell analysis [46]—there will always be 

missing information. Response-time modeling offers a timely approach for predicting 

communication network structure and behavior using experimentally accessible input-to-output 

measurements even without detailed knowledge of intermediate steps. 
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Figure and Table Legends 

Table 1: Literature survey of response-time distributions.  

Note that normal, gamma and double- or multi-exponential distributions all fall into the class of 

‘single-peaked’ distributions. CV: Coefficient of variation. 

Figure 1: Response-time modeling of cell-state dynamics.  

(A) Cytokine secretion onset times in CD8+ T cells from Han et al. [34]. Data were taken from the 

original publication and re-normalized to probability distributions. For TNF-α and IL-2, also best-

fit curves to the gamma distribution and the exponential distribution are shown (fitting parameters 

in Table S1).  

(B) An elementary chemical reaction is well described by a simple rate equation, with a single 

rate parameter λ (concentration per time). However, the lack of information on microscopic 

properties like positions and velocities of reacting particles implies that the waiting time until the 

next reaction occurs (the response time) is a random variable. Chemical reaction kinetics dictate 

that the response times are exponentially distributed.   

(C) Cellular state changes require a set of chemical reactions forming an intracellular reaction 

network. That network can be described by differential equations for each reaction, whose 

solutions reveals the fraction of cells containing each molecular species at every time point. From 

that information, we can calculate the response-time distribution for a cell state of interest. That 

response-time distribution does not need to be exponential or monotonic, but can have one or 

even several peaks. 

(D) The response of a cell population to a stimulus is often not only dependent on intracellular 

networks, but may also evolve by intercellular communication. Response-time modeling uses the 

response-time distributions for all considered cell-state changes, and their dependence on other 

cell states, to characterize the intercellular communication network. 

Figure 2: Intracellular reaction networks are often well described by gamma-distributed 

response times.  

(A-E) Response-time distributions of multi-step models. (top): In the shown models, each arrow 

represents an  elementary (i.e. single-step) reaction (see SI Text for model equations). Response-

time distributions are computed by solving the corresponding system of differential equations and 

normalizing by the distribution average. (bottom): To account for cellular heterogeneity, the rate 

parameter λ is drawn from a log-normal distribution (standard deviation=mean), and normalized 

response-time distributions are obtained by stochastic simulation. For all models, heterogeneous 

λ results in longer tails and earlier peaks. Blue lines: Best-fit gamma distributions. Parameters: 

n=10, λ=1, l=1. 

(F) Plots of the gamma distribution (Equation 1) with rate parameter β=1/α (i.e. the average time 

is constant) and shape parameter as indicated.  
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(G) Shape parameter α of best-fit gamma distributions to the indicated models (panel A-D and 

Figure S1A). “No. steps”: Parameter n in the models. Cellular heterogeneity: Coefficient of 

variation of the log-normal distribution generating λ.  

Figure 3: Network motif analysis using response-time modeling. 

(A) Illustration of response-time modeling: Each reaction arrow represents an intracellular multi-

step process represented by a gamma-distribution 𝛾(𝛼, 𝛽; 𝑡) (Equation 1).  The process is started 

in state S0 and continues until all cells reach the absorbing state Sa. Dashed arrow: Positive 

feedback. Arrival time: A posteriori distribution of the times to reach state Sa considering feedback.  

(B-D) Simple models (network motifs) of cell-to-cell communication. To keep the response-time 

models and single-step models comparable, we scaled the rate parameter of the gamma 

distributions as 𝛽 → 𝛼𝛽, so that the average of the distribution is 1/β independently of α. Feedback 

and interaction (gate motif) are modeled by Michaelis-Menten type equations (see Methods). 

Parameter values used in (C) are indicated by small color-coded arrows in (D). ‘Average time’: 

Average 1/βbase of the gamma distribution representing the respective reaction. Parameters not 

stated otherwise: α=10 (“response-time model”) or α=1 (“single-step model”, i.e. the exponential 

distribution is used), K=0.1, βbase=1, feedback fold-change η=5 (positive feedback) and 0.2 

(negative feedback). In the feed-forward loop motif, the branching probability is 𝑝01 = 𝑝02 = 0.5.  

Figure 4: Independent control of delay and synchronization. 

Comparison of the gate and feedback motifs (Figure 3 B-D), and the single or double state 

transition motifs (Figure S2B-D). The gate motif allows for variable delays for the same degree of 

synchronization while, conversely, the feedback motif allows variable synchronization for the 

same delay. Synchronization and delay cannot be decoupled for the single transition, 

representing intracellular multi-step processes alone (see Figure 2). All curves are generated by 

changing the time-scale or feedback strength parameters as in Figure 3D or Figure S2D. 

Figure 5: Persistence detection and bimodal IFN-γ secretion onset.  

(A) Persistence detection: The experiment by [33] was simulated with a stimulus ON-time of either 

1hr or 2hr, triggering a cell-state change that is governed by the response-time distribution 

measured for secretion onset of the early cytokine IL-2 (Figure 1A). In the original experiment, 

receiver cells show a fluorescent signal (a state-change) when exposed to an opto-genetic 

stimulus for 2 hr but not after 1 hr stimulation, and a paracrine signal was essential for the effect. 

(B-C) Simulation of the model in (A) with the best-fit gamma distribution (“response-time model) 

or the best-fit exponential distribution (“single-step model). “Fold change”: Relative increase in 

maximal activity from short to long stimulus. 

(D) IFN-γ secretion onset: Input data used for the models (see also Table S1). IL-2 and IFN-γ 

secretion onset times were taken from [34] (Figure 1A), and the initial IFN-γ secretion onset times 

were obtained by cutting after the dip at 10 hr and renormalizing. Kinetics of CD25 (α-subunit of 

IL-2R) up-regulation were taken from [38] and normalized to maximal expression. Fitting lines 
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show best-fit curves to gamma and exponential distributions (for CD25, the corresponding 

cumulative distribution function was used).  

(E) Response-time models of IL-2 and IFN-γ secretion onset. Solid arrows represent an 

intracellular multi-step process represented by a response-time distribution (Figure S5) and a 

probability to execute each of the branching reactions (see Table S1). Dashed arrows represent 

positive interaction. 

(F) Simulation of the models in (E): A posteriori arrival times to reach state “IFN-γ+”, i.e. initiate 

IFN-γ secretion. Note that the probabilities pij for each differentiation path (IL-2+, CD25+, IFN-g+) 

are determined independently of the response-time distributions (see Table S1), and therefore 

the shown arrival times are normalized to the corresponding fraction of cells: Given a certain 

differentiation path, it is certain that the new state will be reached eventually. “Response-time 

model”: Simulations with best-fit gamma distributions (here non-integer valued shape parameters 

are possible); “single-step model”: Simulations with best-fit exponential distributions.   
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Tables and Figures 

Description average CV distribution Ref. 

Secretion onset of IL-2 6.3 hr 0.4 
gamma (Figure 

1A) 
[34] 

Secretion onset of TNF-α  3.6 hr 0.5 
gamma (Figure 

1A) 
[34] 

Secretion onset of IFN-γ  9.6 hr 0.4 
bimodal (Figure 

1A) 
[34] 

Production period IFN-γ 

(CD4+ T cells) 
5.9 hr 0.61 Gamma [21] 

Onset of IFN-β induction  3.3 hr 0.4 gamma [47] 

IL-2 receptor up-

regulation 
54 hr 0.35 gamma [19] 

transcription on times 5-20 min 1 exponential [48] 

transcription off times 0.5-3 hr 0.9 
double-

exponential 
[48] 

Calcium interspike 

intervals in HEK cells 
0.5-8 min 0.27 single-peaked [30] 

Calcium interpuff 

intervals in HEK cells 
0.5-2 sec 0.94 

exponential or 

single-peaked 
[49] 

Lambda induction in 

bacteria (lysis) 
100 min 0.13 single-peaked [50] 

TLR4 endosome 

maturation time 
4.4 hr 0.3 normal [51] 

Enzymatic reaction 10-50 ms 1-1.5 
exponential or 

multi-exponential 
[52] 

Cell-cycle time of retinal 

progenitor cells 
56 hr 0.34 normal [53] 

 

Thurley et al. Table 1  
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