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Abstract 
Cell-to-cell communication networks have critical roles in diverse organismal processes, 
such as coordinating tissue development or immune cell response. However, compared 
to intracellular signal transduction networks, the function and engineering principles of 
cell-to-cell communication networks are far less understood. Here, we study cell-to-cell 
communication networks using a framework that models the input-to-output relationship 
of intracellular signal transduction networks with a single function—the response-time 
distribution. We identified a prototypic response-time distribution—the gamma 
distribution—arising in both experimental data sets and mathematical models of signal-
transduction pathways. We discover that a range of cellular behaviors, including cellular 
synchronization, delays and bimodal responses, can emerge from simple cell-to-cell 
communication networks. We apply our modeling approach to provide a plausible 
explanation for otherwise puzzling data on cytokine secretion onset times in a T cell 
population. Our approach can be used to predict communication network structure 
using experimentally accessible input-to-output measurements and without detailed 
knowledge of intermediate steps. 
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Introduction 
In multicellular organisms, cells live in communities and constantly exchange signaling 
molecules. Prominent examples of short-range communication are diffusible ligands shaping 
immune responses [1] and the tumor microenvironment [2], notch-delta mediated signals [3] and 
micro-vesicles [4]. In the mammalian immune system, cell-to-cell communication networks often 
consist of 10’s of cytokine species (small diffusive messenger proteins), several types of T cells 
and other immune cells like neutrophils and macrophages, and also epithelial cells [1,5]. 
Interestingly, the levels of various cytokine species vary by an order of magnitude or more 
between supernatants of isolated cells and cell populations [6,7], demonstrating pronounced 
intercellular interaction.   

On the cellular level, extensive research has identified many molecules and pathways involved 
in signal transduction and, in many cases, has also developed an understanding of their 
function. In particular, the identification and analysis of generic network motifs has led to an 
understanding of how certain interaction topologies can function to suppress noise, amplify 
signals or provide robustness [8–11]. For this purpose, mathematical models of simplified 
systems have often been an important driving force, which have helped to reveal engineering 
principles such as feedback control and perfect adaptation [12–14]. However, on the level of 
cell-to-cell communication, the mapping from general network motif to function is poorly 
understood. It is unclear how well models that focus on specific cases, such as for of IL-2 [15–
18], IFN-γ [19,20] or TNF-α [21,22] signaling networks, can be used to infer properties of 
general network motifs. Further, intracellular networks—which are the building blocks of 
intercellular networks—may themselves be quite complex. Can we investigate behaviors of 
intercellular networks without requiring knowledge of detailed intracellular networks, whose 
parameters are inaccessible with current experimental approaches? 

We propose response-time modeling as a framework to unify and interpret knowledge on 
intracellular and intercellular signaling pathways (Fig. 1). In this framework, the input-to-output 
response statistics of intracellular signaling networks are captured by a single function: the 
response-time distribution. This distribution, which describes the dynamics of cell-state 
switching, can be either measured directly or calculated from models describing the network. 
Importantly, focusing on response-time distributions allows us to elide detailed descriptions of 
intermediate intracellular signaling steps and focus on population-level behaviors that emerge 
from connecting cell-state outputs to each other via intercellular networks. Below, we first 
characterize response-time distributions that can arise from intracellular networks and find that, 
in many cases, these distributions and cellular output characteristics can be well-modeled by a 
gamma distribution (Fig. 2). Second, we use this observation to analyze common cell-to-cell 
communication network motifs, and discover that different interaction topologies can regulate a 
rich set of dynamic behaviors, including delayed, synchronized and bimodal cellular responses 
to a stimulus (Fig. 3). Finally, we apply our approach to investigate a recent data set on cytokine 
secretion onset times (Fig. 4). 
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Results 

Response-time modeling of cell-state dynamics 
In cell-to-cell communication networks, each cell comprises a large network of intracellular 
processes in addition to intercellular interaction, making it impossible to derive a complete, 
mechanistic mathematical description. This situation is analogous to an (elementary) chemical 
reaction (Figure 1A): To fully describe the process, one would need to know the positions and 
velocities of all molecules at all times [23]. However, the process can be well approximated by a 
single phenomenological parameter, the reaction rate constant (Figure 1A). The times at which 
individual reactions occur are random variables, which follow an exponential distribution defined 
by that rate parameter, and are therefore constrained to a standard deviation equal to the 
average reaction time.  

Can we develop a similar theory for cellular-state changes? To this end, we have to take into 
account that cell-state changes are the consequence of intracellular multi-step processes: The 
response of a cell to an input signal is not a single-step reaction but rather a result of a reaction 
network (Figure 1B). The time until this observable state change happens is a random variable, 
just like the time until the next molecular event in a single-step reaction (Figure 1A and B)—
however, it is in general not exponentially distributed. Rather, this “response-time distribution” is 
a signature function depending on and describing the relevant intracellular processes, with no 
known a priori properties. Indeed, in single-cell experiments, non-monotonic and even-bimodal 
distributions have been reported (Table 1 and Figure S1A-B).  

Response-time modeling approach has the advantage that we do not need to take all details of 
intracellular dynamics into account, but rather focus on the key measurable events (see also 
[24,25]). Therefore, compared to models on the level of molecular species or even individual 
molecules, we can describe the behaviors of cell populations with a rather small number of 
parameters (few measurable response-time distributions instead of 100’s of poorly accessible 
rate parameters) (Figure 1C). To assess what insights response-time modeling can give us on 
the dynamics of cell-state networks, the first step was a characterization of response-time 
distributions resulting from simple intracellular multi-step processes—the building blocks of 
more complex networks. 

We note that throughout the paper, we refer to multi-step processes as “intracellular networks” 
and to their superposition as “cell-to-cell signaling”. In fact, in a mathematical sense, all these 
processes can be viewed as components of one large network; in many cases, it may be 
somewhat arbitrary which parts of that network are isolated and considered as “subnetworks” 
that are subsumed by a response-time distribution. In other circumstances, several cells in a 
certain micro-environment might form a community that interacts with other communities, for 
example via hormones or neural circuits. All those cases can, in principle, be treated 
analogously to the framework of response-time  modeling presented here.  

Simple intracellular networks induce single-peaked response-time distributions  
In a literature survey, we found that many reports of experimentally measured response-time 
distributions indicate a single-peaked type of distribution. Such distributions have been reported 
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for a wide range of cellular systems from gene transcription over cellular Ca2+ spikes to cytokine 
secretion (Table 1 and Figure S1A-B), with the exception of some processes where exponential 
distributions have been measured, and bimodal IFN-γ secretion onset times in T cells, which we 
discuss in detail later.  

Why does this widespread occurrence of single-peaked response-time distributions occur, and 
what does it mean for the typical dynamics of a cell population? Response times for single-step 
reactions are exponentially distributed (Figure 1A and Figure 2A, top). However, cellular signal 
transduction typically is driven by intracellular networks comprising phosphorylation cascades, 
feedback, crosstalk etc. As a simple illustration, consider a uniform, irreversible reaction chain, 
i.e. the cellular response is triggered after completion of n reaction steps all driven by the same 
rate constant 𝜇𝜇 = λ/n (Figure 2B, top). This process has the same average response time as a 
single reaction with rate λ, but the distribution of the response times over a cell population 
changes: The process can be regarded as a sum of n single-step processes (elementary 
reactions), and therefore the over-all response time is the n-fold convolution [26] (see  SI Text) 

𝜓𝜓𝑛𝑛(𝑡𝑡) =  [𝜇𝜇𝑒𝑒−𝜇𝜇𝜇𝜇 ∗ 𝜇𝜇𝑒𝑒−𝜇𝜇𝜇𝜇 ∗ … ]�������������
𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=
𝑡𝑡𝑛𝑛−1𝑒𝑒−𝜇𝜇𝜇𝜇𝜇𝜇𝑛𝑛

(𝑛𝑛 − 1)!
=  𝛾𝛾(𝑛𝑛, 𝜇𝜇; 𝑡𝑡) 

(1) 

where ‘*’ denotes convolution and 𝛾𝛾(𝛼𝛼,𝛽𝛽; 𝑡𝑡) is known as the gamma distribution with shape 
parameter α and rate parameter β (in general, 𝛼𝛼 can take non-integer values, see SI Text).  

Indeed, the single-peaked response-time distributions observed experimentally can be 
described by gamma distributions (Table 1), as for α>1, the gamma-distribution is an 
asymmetric (right-skewed) distribution with a single peak at t>0. The observed exponential 
distributions for single-enzyme kinetics, offset of transcription and intracellular Ca2+ puffs, 
indicate single-step processes (Figure 2A): All these processes are likely dominated by a single 
molecular reaction (binding of a metabolite to an enzyme, unbinding of a promoter from DNA, 
opening of a Ca2+ channel subunit).  

Intracellular signaling pathways are usually not simple irreversible chains, and therefore, we 
asked whether the observed single-peaked distributions can be generated by a broader class of 
intracellular network models. Indeed, single-peaked distributions have previously been reported 
for more realistic models of cellular signal transduction like kinetic proofreading [27], multiple 
phosphorylation [28] and Ca2+ signaling [29]. Here, we studied three additional simple network 
motifs in more detail:  The signaling cascade [8], a set of parallel irreversible chains reflecting m 
receptor molecules that each can trigger a cellular response as a “race to the nucleus” [28] 
(Figure 2C-D, top), and the reversible chain (Figure S1C). The response times of all those 
examples are well approximated by gamma distributions (Figure 2C-D and Figure S1C, blue 
fitting lines, and Figure S1D-F).  

Apart from intracellular networks, another complication is cellular heterogeneity: In a cell 
population, even a clonal one, we cannot expect that each cell has the same reaction rate for a 
certain intracellular process. Rather, gene expression and receptor expression levels show 
heterogeneity [30]. To investigate the effect of such heterogeneity on the response-time 
distribution, we using log-normal distributed reaction-rate parameters (Figure 2A-E and Figure 
S1C, bottom). In all models, the response-time distribution shifts towards longer tails and earlier 
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peaks after incorporating cellular heterogeneity, but is still well approximated by a gamma 
distribution (Figure 2A-D, blue fitting lines, and Figure S1D). Intuitively, adding cellular 
heterogeneity should reduce predictability; however, adding high-numbers of intermediate 
intracellular steps increases the predictability of the process due to the central limit theorem, 
which tightens the peak in the response time (Figure 2F-G, and S1E)[26].  

Thus far, we only studied unbranched multi-step processes.  A final interesting case is crosstalk 
within an intracellular multi-step process (Figure 2E). In this case, a bimodal response-time 
distributions can occur, but even here, heterogeneity of rate parameters shifts the distribution 
towards a gamma-distribution (Figure 2E, bottom panel), offering another explanation for the 
versatility of gamma distributions. Therefore, in the following discussion, we will focus on cell 
population responses that induce gamma-distributed response times. 

Response-time modeling of intercellular network motifs 
Having established the typical response-time patterns emerging from intracellular processes, we 
next asked how more general cell-state transitions shape dynamic response patterns of cell 
populations. For this purpose, we made use of response-time modeling (Figure 3A), which 
describes cell-state changes by a semi-Markov process defined by response-time distributions 
(aka first-passage times) 𝜓𝜓𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝜏𝜏), (see SI Text for precise definitions). Here we specifically 
chose gamma-distributed response times (Equation 1), because of their frequent occurrence in 
intracellular processes (Table 1 and Figure 2B-E). An advantage of this approach is that we can 
consider cell-to-cell interactions including feedback (e.g. by exchange of diffusible ligands) 
simply as a dependence of the parameters of the gamma distribution on the fraction of cells in a 
certain cellular state Sl: 

𝜓𝜓𝑖𝑖𝑖𝑖(𝑆𝑆𝑙𝑙(𝑡𝑡), 𝑡𝑡 − 𝜏𝜏) = 𝛾𝛾�𝛼𝛼𝑖𝑖𝑖𝑖(𝑆𝑆𝑙𝑙),𝛽𝛽𝑖𝑖𝑖𝑖(𝑆𝑆𝑙𝑙); 𝑡𝑡 − 𝜏𝜏�. (2) 

To completely determine the system, one needs do provide probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 for the execution of 
each possible reaction (with ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1)𝑗𝑗 , e.g. in the case of branching reactions. Note that in the 
basic framework presented here (Equation 2), we assume a “well-stirred” situation and do not 
take into account spatial effects like concentration gradients in diffusible messengers [16]. Using 
response-time modeling, we analyzed a set of simple toy models or “network motifs” that often 
appear in larger cell-to-cell communication networks (Figure 3B). In analogy to the simple multi-
step models studied in Figure 2, our main readout is the a posteriori distribution of arrival times 
in an absorbing state Sa (Figure 3C) (in general, every state of interest can be treated as an 
absorbing state by removing state changes leaving it from the network, see [26]). In contrast to 
the response-time distributions in Figure 2, the arrival-time distributions are not normalized, but 
are analyzed separately within each motif to reveal the effect of parameter values on the delay 
and synchronization time and on bimodality  (Figure 3D)(see Methods).  

As a first example, consider a single cell-state transition with feedback (Figure 3B-D, 
“feedback”). We found that positive feedback decreases and negative feedback increases the 
width of the arrival-time distribution (Figure 3C). To quantify this property, we defined the 
“synchronization time” as the minimal time frame in which a certain fraction of cells (here 75%) 
responds after an initial delay time (see Methods).  Feedback has only minor effects on this 
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delay time (Figure S2A). Thus, feedback regulation between cells is well suited to generate 
highly synchronized or desynchronized   responses across a cell population. 

Conversely, we asked whether a simple cellular communication network could control the delay 
without changing synchronization —a sort of “timer” circuit for the cellular population.  Indeed, 
we found that long delays can be achieved without increased synchronization times by adding a 
bottleneck, e.g. in terms of the positive interaction or “gate” motif (Figure 3B-D, “gate”, and 
Figure 3E). The gate motif increases delay even if the average response time is kept constant 
(Figure S2B). A bottleneck in the first of two consecutive cell-state changes is not sufficient for 
this effect, as the synchronization time still increases when adding delay (Figure 3E). Intuitively, 
the higher level of synchronization in the gate motif can be explained by the global positive 
interaction, which increases synchronization similar to the positive feedback case, and therefore 
compensates for the loss of synchronization due to a shorter time scale.   

Finally, we studied the redundant, coherent feed-forward loop. This motif is a simple model of 
the situation that cellular activation (reaching state Sa) can be induced in several different ways, 
for example by means of different types of cytokines. Quite interestingly, we found that this motif 
can generate a bi-modal distribution of arrival times in the absorbing state (Figure 3B-D, “feed-
forward”). Intuitively, that bimodality is caused by the contributions from the “direct” and the 
“indirect” (via S1) ways to reach Sa. However, substantial bimodality only arises if there is a time-
scale separation between the two routes to Sa, as implemented here by a longer average time in 
the process 𝑆𝑆1 → 𝑆𝑆𝑎𝑎; otherwise there is no clear separation between the two peaks, giving rise 
to a single long-lasting cellular response of moderate intensity (i.e. larger synchronization time, 
see Figure S2A). While bimodal distributions can also occur by crosstalk inside intracellular 
networks (essentially also a feed-forward loop)(Figure 2E), a feed-forward loop of elementary 
reactions is not sufficient for bimodality (Figure 3B-D, dashed lines)(SI Text). In general, our 
analysis suggests that at least three consecutive elementary steps are required for a bimodal 
response-time distribution (SI Text). 

In summary, we used the prototypic response-time distributions arising in intracellular signal 
transduction networks to analyze common network motifs of cell-state dynamics. We found that 
in the framework of response-time modeling, simple network motifs can control emergent 
behavior such as synchronization, bimodal response times and delay, which do not arise in the 
corresponding single-step model that neglects the multi-step nature of cell-state changes.  

Delay-induced persistence detection 
A network that rejects transient activation signals and only responds to persistent signals has 
been termed “persistence detector” [9,31]. We reasoned that a signaling motif with the 
properties of a “timer”—that is, the ability to generate delayed yet synchronized responses—is a 
natural candidate for persistence detection. Here, we studied cell-state transitions triggered by 
an external stimulus (Figure 3F) for the underlying “delay-inducing” gate (Figure 3B, middle) and 
transition (Figure 3E) network motifs. We modeled these motifs using our response-time 
approach (i.e. fit gamma distributions to their input-to-output relationship) and scaled the 
average response times for both motifs Figure 3so that they have the same delay (3 time units). 
Our simulations show that both delay-inducing motifs exhibit some degree of persistence 
detection compared with a simple, single-step process (Figure 3F, center). However, only the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/136952doi: bioRxiv preprint 

https://doi.org/10.1101/136952
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

gate motif allows for 100% of the cells to be activated for a long stimulus (e.g. 5 time units) while 
still rejecting a short stimulus (e.g. 3 time units) (Figure 3F, center). Moreover, the gate motif 
has a sharp transition in signal amplitude (Figure 3F, right).  

Persistence detection in cell-to-cell communication has recently been demonstrated in the 
context of a paracrine signal induced by opto-genetic tools, which can precisely control the 
timing of an input stimulus [32]. As the mechanism of that persistence detection is still to be 
resolved, we wondered whether it could be explained by the delay caused by early cytokine 
secretion onset (Figure S3A), whose response-time distributions have often been shown to be 
gamma-distributed in our literature survey. (Table 1). We fit the delay-induced persistence 
model (Figure 3F, left) with the response-time distribution reported for IL-2 (Figure S1A) [33] 
and a stimulus-duration of 1 hr or 2 hr, as in Toettcher et al. [32]. We found that gamma-
distributed response times, but not the single-step reaction model, yields a strong difference in 
cell activation between the 1 hr and 2 hr stimuli (Figure S3B-C).  

A feed-forward loop motif can explain reported bi-modal IFN-γ secretion onset 
times  
In our literature survey (Table 1), a striking example of a response-time distribution that deviates 
from the commonly observed single-peaked pattern is the bimodal IFN-γ secretion onset times 
[33](Figure S1B). Our analysis of intercellular communication networks suggested that a feed-
forward loop motif can evoke a bimodal response-time distribution (Figure 3B-D, feed-forward). 
As it is known that IL-2 stimulates IFN-γ secretion of CD8+ T cells [34,35], we next examined 
whether a combination of direct (antigen driven) and indirect (IL-2 mediated) stimulation of IFN-γ 
secretion is sufficient to explain the bi-modal distribution.  

Response-time modeling allows annotating cell-state models by directly using measured 
transition probabilities and response-time distributions. That way, we were able to completely 
specify the process (except for the IL-2 interaction strength) based on a published data-set [33] 
(Figure 4A and Table S1): The onset times of IL-2 secretion are well described by a gamma-
distribution, and the same is true for the early IFN-γ onset times. For late (indirect) IFN-γ 
secretion, we used the same distribution modified by IL-2 interaction (Figure 4B, Model 
1)(Methods). The reasoning was that likely similar pathways are involved in the production and 
secretion of IFN-γ in both the direct and indirect case, only that they are activated either directly 
by antigen or indirectly via IL-2 (possibly after weak antigenic pre-stimulation). To simulate the 
process (Figure 4C), we used a generalized Gillespie algorithm [36],  which is necessary here 
because some of the input gamma distributions have a small non-integer valued shape 
parameter (see Methods). 

Clearly, the response-time distribution generated by Model 1 is not bi-modal, and does not 
explain the data even qualitatively (Figure 4C). The reason is that the initial onset time 
distributions for IL-2 and IFN-γ are too similar, and therefore their combination leads to a single 
broad peak rather than a second peak in the response times (cf. Figure 3C, feed-forward loop). 
Thus, we reasoned that another mechanism must account for this observed delay. In fact, 
unstimulated T cells express only very limited amounts of the high-affinity IL-2 receptor CD25, 
and therefore we asked whether stimulation-induced CD25 up-regulation may cause that 
additional delay (Figure 4B, “Model 2”). For this process, we used CD25 expression kinetics of 
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CD8+ T cells measured in [37], which are also well described by a gamma distribution (Figure 
4A). Indeed, model 2 generates a bimodal distribution for IFN-γ secretion onset, and is in good 
qualitative agreement with the reported values (Figure 4C). The corresponding single-step 
reaction model (dashed line) cannot reproduce the bimodal shape of the distribution, 
demonstrating that our approach using the full response-time distribution, instead of single-step 
reaction models using only average response times, is necessary to explain the data.  

 
Discussion  
Response-time distributions have been explored earlier for model reduction techniques [24,25] 
and to analyze specific biological systems [20,22,38–41], applications including gene 
expression dynamics, viral infection and noise propagation in signaling pathways. Those studies 
demonstrate that many complex biological systems cannot be adequately described by rate 
equation (ODE) models, or at least not in their physiological environment. The reason is not only 
that biological networks are incompletely understood, so that known pathway maps are 
incomplete – rather, the fundamental problem is that the parameters needed to describe cellular 
networks (e.g. reaction rate parameters for all sub-processes involved in expression of a gene) 
cannot all be determined in vivo. Using the response-time distributions of “mesoscopic”, i.e. 
measurable processes, circumvents that problem by abstracting from the underlying 
microscopic network, in analogy to single-step reaction kinetics (Figure 1). Another modeling 
effort using response-time distributions is the “cyton” or stochastic competition model [42,43], 
which postulates several competing processes within each cell, and only the first completed 
process is executed (e.g. either division or cell death). Although such stochastic competition has 
been demonstrated in some cases, our approach is more general by not making such an 
assumption. Instead, in the case of branching reactions, we assigned probabilities for each of 
the possible outcomes (which all may follow separate response-time distributions), and such 
probabilities are often available from flow cytometry data, for example.   

The analysis of common network motifs has a long tradition in systems biology, and was used 
to elucidate metabolic networks [44] and gene regulatory networks [9,11,14], amongst others. 
The reasoning is that large, physiologic networks are composed of small, functional network 
motifs and can be rationalized based on these building blocks. To demonstrate such an 
approach for cell-to-cell signaling, we elucidated two published examples of intercellular 
interaction. We found: (i) that the paracrine persistence detector [45] can be explained by a 
delayed response-time distribution, which possibly stems from the onset of cytokine secretion; 
and (ii) our analysis of IFN-γ secretion onset times [33] revealed that the observed secondary 
response can be explained by a feed-forward loop motif consisting of IL-2 secretion and IL-2 
receptor up-regulation. That analysis provides a rationale for plausible mechanisms that can be 
tested in future research. Moreover, both examples demonstrate an advantage of our modeling 
approach, which is that no or very few free parameters need to be assigned if the response-time 
distributions of key processes are measured directly.  

Cell-to-cell interaction is crucial for many functions of higher organisms, and complex 
intercellular communication networks have been discovered over the last decades. While the 
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experimental capabilities to elucidate cellular responses to specific input stimuli are becoming 
increasingly available—sometimes even for spatiotemporal, single-cell analysis [46]—there will 
always be missing information. Response-time modeling offers a timely approach for predicting 
communication network structure and behavior using experimentally accessible input-to-output 
measurements even without detailed knowledge of intermediate steps. 

 

Materials and Methods 
All computer simulations are carried out in Matlab R2015a. The code is available from the 
authors upon request. 

Simple Models 
The model schemes in Figure 2B-E were translated into differential rate equations under the 
normalization condition  ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=0 = 1 and the initial condition x0(0)=1 and xi(0)=0 for i>0 (see SI 
Text for model equations). In all models with a single absorbing state (all except the parallel 
chain) and without cellular heterogeneity in the  reaction rate parameter, the response-time 
distribution can be obtained directly from the solution as a first-passage time [26], 𝜓𝜓𝑛𝑛(𝑡𝑡) =  𝑑𝑑𝑥𝑥𝑛𝑛

𝑑𝑑𝑑𝑑
. 

For the parallel chain, the probability to reach the final state n in the first-out-of-m parallel 
processes, 𝑓𝑓𝑚𝑚(𝑡𝑡) =  𝑚𝑚 𝜓𝜓𝑛𝑛(𝑡𝑡)(1 − ∫ 𝜓𝜓𝑛𝑛(𝑡𝑡′)𝑑𝑑𝑑𝑑′𝑡𝑡

0 )𝑚𝑚−1  [28], is taken as the response-time 
distribution. To account for cellular heterogeneity, we also considered a log-normal distributed 
rate parameter λ. In that case, the response-time distribution is obtained by stochastic 
simulation (n=20000) using Gillespie’s algorithm.   

Measures of response-time distributions 

Delay: We defined the delay time tdelay as the longest time before ≤ 5% of a cell population 
reach the active state, so it is the 5-percentile of the response-time distribution.  

Bimodality: To quantify bimodality, we used the standard error (root-mean square of the sum of 
residuals) of a best-fit to the gamma distribution, with the rational that a bimodal distribution 
cannot be fit by a single gamma distribution. This approach has been widely used with normal 
distributions (“dip-test” [47]). 

Synchronization: We characterized synchronization using the probability that an event occurs in 
(𝑡𝑡, 𝜏𝜏) but has not occurred before, the future life time P(𝑡𝑡, 𝜏𝜏) = 𝐹𝐹(𝑡𝑡+𝜏𝜏)−𝐹𝐹(𝑡𝑡)

1−𝐹𝐹(𝑡𝑡)
 , where F(t) is the 

cumulative probability distribution to the response-time distribution ψ(𝑡𝑡). The condition 𝑃𝑃(𝑡𝑡, 𝜏𝜏) =
𝑑𝑑, i.e. a fraction d of cells (here d= 75%) responds in (𝑡𝑡, 𝜏𝜏), together with the delay time tdelay, 
defines a “synchronization time” 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜏𝜏(𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑).  

Cellular state transition models 
In general, models with several reaction channels that show non-exponential response-time 
distributions lead to non-linear integral equations (SI Text), which is a numerically hard problem. 
Instead, we employed two different methods to simulate the process: (i) Linear chain trick (used 
in Figures 3 and S3): If the response-time distributions are well approximated by gamma 
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distributions with integer valued shape parameter (Equation 1), then one can replace each 
distribution by the corresponding irreversible n-step process, reducing the problem to an ODE 
system (see SI Text). (ii) Generalized Gillespie algorithm (Figures 4 and S4): This recently 
developed method [36] exploits some approximations valid for large numbers of responding 
cells to efficiently simulate the process with arbitrary input distributions (i.e. also gamma 
distributions with non-integer valued shape parameter can be used).  

Models with feedback and interaction 

Feedback and interaction are modelled by a dependence of the rate parameter β of the input 
gamma distribution (Equation 1) to the fraction of cells in a state 𝑆𝑆𝑙𝑙. For positive and negative 
feedback (Figure 3B-D, “feedback”), we used 𝛽𝛽(𝑆𝑆𝑙𝑙) = 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐾𝐾+𝜂𝜂𝑆𝑆𝑙𝑙

𝐾𝐾+𝑆𝑆𝑙𝑙
 in Equation 2, where βbase is 

the base-level rate parameter, and the fold-change η determines feedback type and strength 
(positive feedback: 𝜂𝜂 > 1 , negative feedback:  𝜂𝜂 < 1). For cellular interaction (Figure 3B-D, 
“gate”, and Figure 4B), we use 𝛽𝛽(𝑆𝑆𝑙𝑙) = 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑆𝑆𝑙𝑙

𝐾𝐾+𝑆𝑆𝑙𝑙
.  
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Tables 
Table 1: Literature survey of response-time distributions. 

Description average CV distribution Ref. 
Secretion onset of IL-2 6.3 hr 0.4 gamma (Figure S1A) [33] 

Secretion onset of TNF-α  3.6 hr 0.5 gamma (Figure S1A) [33] 

Secretion onset of IFN-γ  9.6 hr 0.4 bimodal (Figure S1B) [33] 

Production period IFN-γ (CD4+ 
T cells) 5.9 hr 0.61 gamma [48] 

Onset of IFN-β induction  3.3 hr 0.4 gamma [49] 

IL-2 receptor up-regulation 54 hr 0.35 gamma [18] 

transcription on times 5-20 min 1 exponential [50] 

transcription off times 0.5-3 hr 0.9 double-exponential [50] 

calcium interspike intervals in 
HEK cells 0.5-8 min 0.27 single-peaked [29] 

calcium interpuff intervals in 
HEK cells 0.5-2 sec 0.94 exponential or single-

peaked [51] 

Lambda induction in bacteria 
(lysis) 100 min 0.13 single-peaked [52] 

TLR4 endosome maturation time 4.4 hr 0.3 normal [53] 

Enzyme kinetics 10-50 ms 1-1.5 exponential or multi-
exponential [54] 

CV: Coefficient of variation. Note that normal, gamma and double- or multi-exponential 
distributions all fall into the class of ‘single-peaked’ distributions (Figure 2), as well as the non-
homogeneous Poisson distributions used in [29]. 
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Figure Legends 
Figure 1: Response-time modeling of cell-state dynamics.  

(A) A chemical reaction is well described by a simple rate equation, with a single rate parameter 
λ (concentration per time). However, the lack of information on microscopic properties like 
positions and velocities of reacting particles implies that the waiting time until the next reaction 
occurs (the response time) is a random variable. Chemical reaction kinetics dictate that the 
response times are exponentially distributed.   

(B) Cellular state changes require a set of chemical reactions forming an intracellular reaction 
network. That network can be described by differential equations for each reaction, whose 
solutions reveals the fraction of cells containing each molecular species at every time point. 
From that information, we can calculate the response-time distribution for a cell state of interest. 
That response-time distribution does not need to be exponential or monotonic, but can have one 
or even several peaks. 

(C) The response of a cell population to a stimulus is often not only dependent on intracellular 
networks, but may also evolve by intercellular communication. Response-time modeling uses 
the response-time distributions for all considered cell-state changes, and their dependence on 
other cell states, to characterize the intercellular communication network. 

 

Figure 2: Intracellular reaction networks are often well described by gamma-distributed 
response times.  

(A-E) Response-time distributions of multi-step models. (top): In the shown models, each arrow 
represents an  elementary (i.e. single-step) reaction (see SI Text for details). Response-time 
distributions are computed by solving the corresponding system of differential equations (see 
Methods) and normalizing by the distribution average. (bottom): To account for cellular 
heterogeneity, the rate parameter λ is drawn from a log-normal distribution (standard 
deviation=mean), and normalized response-time distributions are obtained by stochastic 
simulation. For all models, heterogeneous λ results in longer tails and earlier peaks. Blue lines: 
Best-fit gamma distributions. Parameters: n=10, λ=1, l=1. 

(F) Plots of the gamma distribution (Equation 1) with rate parameter β=1/α (i.e. the average time 
is constant) and shape parameter as indicated.  

(G) Shape parameter α of best-fit gamma distributions to the indicated models (panel A-D and 
Figure S1C). “No. steps”: Parameter n in the models. Cellular heterogeneity: Coefficient of 
variation of the log-normal distribution generating λ.  

 

Figure 3: Network motifs using response-time modeling. 

(A) In response-time models, each reaction arrow represents an intracellular multi-step process 
represented by a gamma-distribution 𝛾𝛾(𝛼𝛼,𝛽𝛽; 𝑡𝑡) (Equation 1).  The process is started in state S0 
and continues until all cells reach the absorbing state Sa (see Methods). Dashed arrow: Positive 
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feedback. Arrival time: A posteriori distribution of the times to reach state Sa considering 
feedback.  

(B-D) Simple models (network motifs) of cell-to-cell communication using gamma distributions 
(see A). To keep the response-time models and single-step models comparable, we scaled the 
rate parameter of the gamma distributions as 𝛽𝛽 → 𝛼𝛼𝛼𝛼, so that the average of the distribution is 
1/β independently of α. Feedback and interaction (gate motif) are modeled by Michaelis-Menten 
type equations (see Methods). Parameter values used in (C) are indicated by small color-coded 
arrows in (D). ‘Average time’: Average 1/βbase of the gamma distribution representing the 
respective reaction. Parameters not stated otherwise: α=10 (‘response-time’) or α=1 (‘single-
step’, i.e. the exponential distribution is used), K=0.1, βbase=1, feedback fold-change η=5 
(positive feedback) and 0.2 (negative feedback). In the feed-forward loop motif, the branching 
probability is 𝑝𝑝01 = 𝑝𝑝02 = 0.5.  

(E) Comparison of the gate and feedback motifs (panel B-D), and the single or double state 
transition motifs (Figure S2legend). Only the gate motif allows for long delays without losing 
synchronization.  

(F) Model of a delay-induced persistence detector. Cells transition to an active state S1 while a 
stimulus is present (duration as indicated), and with a certain response-time distribution 
inducing delay. Simulations are carried out with the best-fit gamma distributions to the arrival-
time distributions arising in the gate, single transition and double transition motifsFigure S2, all 
with the same delay value of 3. Dashed line (“single-step”): Exponentially distributed response 
time. “Amplitude”: Maximal fraction of activated cells in left panel.  

 

Figure 4: Response-time model of bi-modal IFN-γ secretion onset in CD8+ T cells 

(A) Input data used for the models (see also Table S1). IL-2 and IFN-γ secretion onset times 
were taken from [33] (Figure S1A-B), and the initial IFN-γ secretion onset times were obtained 
by cutting after the dip at 10 hr and renormalizing. Kinetics of CD25 (α-subunit of IL-2R) up-
regulation were taken from [37] and normalized to maximal expression. Fitting lines show best-
fit curves to gamma and exponential distributions (for CD25, the corresponding cumulative 
distribution function was used).  

(B) Response-time models of IL-2 and IFN-γ secretion onset. Solid arrows represent an 
intracellular multi-step process represented by a response-time distribution (Figure S5) and a 
probability to execute each of the branching reactions (see Table S1). Dashed arrows represent 
positive interaction. 

(C) Simulation of the models in (B): A posteriori arrival times to reach state “IFN-γ+”, i.e. initiate 
IFN-γ secretion. “Response-time”: Simulations with best-fit gamma distributions (here non-
integer valued shape parameters are possible); “single-step”: Simulations with best-fit 
exponential distributions (i.e., only the average response time is extracted from data instead of 
the full distribution).   
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