
Integrated time-course omics analysis distinguishes immediate therapeutic 
response from acquired resistance 

Genevieve Stein-O’Brien1,2*, Luciane T Kagohara3*, Sijia Li3*, Manjusha Thakar3, Ruchira Ranaweera3,4, 

Hiroyuki Ozawa5, Haixia Cheng6, Michael Considine3, Alexander V Favorov3,7, Ludmila V Danilova3,7, Joseph A 

Califano8, Evgeny Izumchenko9, Daria A Gaykalova9, Christine H Chung3,4,+, Elana J Fertig3,+. 

Affiliations: 

1. Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA 
2. Lieber Institute for Brain Development, Baltimore, MD, USA 
3. Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 

Baltimore, MD, USA 
4. Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA 
5. Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, 

Japan 
6. Department of Surgery - Otolaryngology–Head and Neck Surgery, University of Utah, Salt Lake City, UT 
7. Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian 

Academy of Sciences, Moscow, Russia 
8. Department of Surgery, UC San Diego Moores Cancer Center, La Jolla, CA, USA 
9. Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA 
 
* These authors contributed equally for this manuscript. 
+ Co-corresponding authors	
 
Email addresses: 
Genevieve Stein-O’Brien: gsteinobrien@jhmi.edu 
Luciane T Kagohara: ltsukam1@jhmi.edu 
Sijia Li: sli61@jhu.edu 
Manjusha Thakar: mthakar3@jhmi.edu 
Ruchira Ranaweera: Ruchira.Ranaweera@moffitt.org 
Hiroyuki Ozawa: ozakky@cb.mbn.or.jp 
Haixia Cheng: haixia.cheng@hci.utah.edu 
Michael Considine: mconsid3@jhmi.edu 
Alexander Favorov: favorov@sensi.org 
Ludmila Danilova: ldanilo1@jhmi.edu 
Joseph A Califano: jcalifano@ucsd.edu 
Evgeny Izumchenko: izumchen@jhmi.edu 
Daria A Gaykalova: dgaykal1@jhmi.edu 
Christine H Chung: Christine.Chung@moffitt.org 
Elana J Fertig: ejfertig@jhmi.edu 
 

Key words: Acquired resistance, data integration, time-course analysis, genomics, epigenetics  

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2017. ; https://doi.org/10.1101/136564doi: bioRxiv preprint 

https://doi.org/10.1101/136564
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

Most cancers acquire resistance to targeted therapeutics. Knowing the timing of molecular changes 

responsible for the development of acquired resistance can enable optimization of alterations to patients’ 

treatments. Clinically, acquired therapeutic resistance can only be studied at a single time point in resistant 

tumors. To determine the dynamics of these molecular changes, we obtained high throughput omics data 

weekly during the development of cetuximab resistance in a head and neck cancer model. An unsupervised 

algorithm, CoGAPS, quantified the evolving transcriptional and epigenetic changes. Further applying a 

PatternMarker statistic to the results from CoGAPS enabled novel heatmap-based visualization of the 

dynamics in these time-course omics data. We demonstrate that transcriptional changes resulted from 

immediate therapeutic response and resistance whereas epigenetic alterations only occurred with resistance. 

Integrated analysis demonstrated delayed onset of changes in DNA methylation relative to transcription, 

suggesting that resistance was stabilized epigenetically. Genes with epigenetic alterations associated with 

resistance that had concordant expression changes were hypothesized to stabilize resistance. These genes 

include FGFR1, which was associated with EGFR inhibitor resistance previously. Thus, integrated omics 

analysis distinguishes the timing of molecular drivers of resistance. 
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INTRODUCTION 

Cancer targeting therapeutic agents inhibit specific key role players in the regulation of molecular pathways 

essential for tumor development and maintance1. These therapies prolong survival but are not curative. Most 

patients will develop acquired resistance within the first few years of treatment2. Although a wide variety of 

molecular alterations that confer resistance to treatment have been described, the mechanisms and timing of 

their evolution are still poorly characterized3,4. Serial biopsies during the prolonged treatment period are 

invasive, expensive, and impractical for patients. Thus, known molecular alterations are restricted in their 

characterization to when resistance has already developed and unable to resolve the current two hypotheses 

for the development of therapy resistance: the presence of small populations of resistant cells that will survive 

the treatment and repopulate the tumor; or the development of de novo resistance3,5. Characterization of the 

dynamics of genomic alterations induced during acquired cetuximab resistance can identify targetable 

oncogenic drivers and determine the best time point to introduce alternative therapeutic strategies to avoid 

resistance establishment6. 

Inhibitors against Epidermal Growth Factor Receptor (EGFR) represent a common class of targeted 

therapeutics. Cetuximab, a monoclonal antibody against EGFR, is FDA approved for the treatment of 

metastatic colorectal cancer and head and neck squamous cell carcinoma (HNSCC)7. As with other targeted 

therapies, stable response is not observed for a long period and virtually all patients invariably develop 

acquired resistance8. Recent advances in in vitro models of acquired cetuximab resistance9 provide a unique 

opportunity to study the time-course of genetic events resulting in acquired resistance. Cell lines chronically 

exposed to the targeted agent develop resistance and can be sequentially collected during the course of 

treatment to evaluate the progressive molecular changes. Previous studies to assess the mechanisms of 

acquired cetuximab resistance have been limited to comparing the genomic profile of the parental sensitive cell 

line to stable clones with acquired resistance9–11. Therefore, these studies fail to capture the dynamics of 

acquired molecular alterations during the evolution of therapeutic resistance. Approaches using combined 

experimental and bioinformatics tools that would adjust to different tumor models and therapeutic agents are 

fundamental tools to overcome issues related to sample availability and serial time point data analysis. 

Even with advances in experimental sampling approaches, time-course high-throughput data alone is 

insufficient to determine molecular drivers of therapeutic resistance. A novel serial, multi-platform genomics 

analysis is essential to untangle specific and targetable signaling changes that drive cetuximab resistance in 

HNSCC. Current supervised bioinformatics algorithms that find time-course patterns in genomic data adjust 

linear models to correlate molecular profiles with known temporal patterns12–15. However, these algorithms 

cannot quantify the rate of genomics alterations relative to that of the input phenotype. Other algorithms16–21 

enhance such inference by using prior knowledge of gene relationships to find coherent, dynamic regulatory 

relationships that are linked to pathways. Many of these algorithms trace individual phenotypes or individual 

genomics platforms. Their ability to determine drivers of gene expression associated with acquired resistance 

from time-course data in multiple experimental conditions and multiple genomics data modalities is emerging22. 
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On the other hand, unsupervised analysis algorithms can simultaneously quantify the dynamics and infer the 

gene regulatory networks directly from the input time course data23. Nonetheless, visualization tools for 

inference of dynamics from unsupervised algorithm are limited. 

In this study, we used an in vitro HNSCC cell line model to induce resistance and measure the molecular 

changes using multiple high throughput assays while the resistant phenotype developed. We selected DNA 

methylation based upon previous association of DNA methylation with acquired cetuximab resistance in vitro 

and in vivo24. We also measured gene expression to determine the functional impact of the inferred epigenetic 

alterations. The Bayesian non-negative matrix factorization algorithm CoGAPS25 inferred specific patterns of 

gene expression and DNA methylation that develop according to the gradual establishment of the acquired 

cetuximab resistance. Gene expression also had a pattern associated with immediate therapeutic response. 

We select genes uniquely associated with these changes using a PatternMarker statistic25. Plotting expression 

or methylation of genes with the PatternMarker statistic enabled novel visualization of the dynamics of these 

alterations from high-throughput data. Analysis of the CoGAPS patterns demonstrated that onset of 

methylation changes associated with resistance were temporally delayed relative to expression changes and 

involved different genes. This observation lead to the hypothesis that epigenetic alterations stabilize the 

resistant phenotype. Specifically, the DNA methylation PatternMarker genes were selected as putative 

epigenetic drivers. Therefore, we next performed correlation analysis of PatternMarkers of the DNA 

methylation patterns with gene expression to identify the subset of genes with tight temporal concordance 

implying direct epigenetic regulation. These genes included FGFR1, which also had the strongest correlation 

between gene expression and DNA methylation in fast growing cetuximab resistant clone generated from the 

same parental cell line. Previous studies associate FGFR1 gene expression with acquired cetuximab 

resistance in HNSCC patients26–28. In this study, we also demonstrated that epigenetic changes of FGFR1 are 

observed in HNSCC tumors in TCGA. This work represents the first integrated time-course analyses to 

determine the drivers of acquired resistance, suggesting a direct link between epigenetic regulation of FGFR1 

gene expression and the development of acquired resistance. Both the experimental and bioinformatics 

methods developed here are applicable to other molecular platforms, therapeutics, and cancer types. 

 

MATERIAL AND METHODS 

Cell lines and materials 

SCC25 cells were purchased from American Type Culture Collection (ATCC). Cells were cultured in 

Dulbecco’s Modified Eagle’s medium and Ham’s F12 medium supplemented with 400ng/mL hydrocortisone 

and 10% fetal bovine serum and incubated at 37oC and 5% carbon dioxide. SCC25 was authenticated using 

short tandem repeat (STR) analysis kit PowerPlex16HS (Promega, Madison, WI) through the Johns Hopkins 
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University Genetic Resources Core Facility. Cetuximab (Lilly, Indianapolis, IN) was purchased from the Johns 

Hopkins Pharmacy. 

Experimental protocol to establish time-course during acquisition of cetuximab resistance in SCC25  

The HNSCC cell line SCC25 (intrinsically sensitive to cetuximab) was treated with 100nM cetuximab every 

three days for 11 weeks (generations G1 to G11). On the eighth day, cells were harvested. Sixty thousand 

cells were replated for another week of treatment with cetuximab and the remaining cells were separately 

collected for: (1) RNA isolation (gene expression analysis); (2) DNA isolation (DNA methylation analysis); (3) 

proliferation assay and (4) storage for future use. All steps were repeated for a total of 11 weeks. In parallel 

with the cetuximab treated cells, we generated controls that received the same correspondent volume of PBS 

(phosphate buffered saline). Cells were plated in several replicates each time at the same initial density. The 

replicates were then harvested and pooled to provide enough cells for genetic, epigenetic and proliferation 

assays. To achieve adequate final cell confluence and number of cells for the experimental analysis of each 

generation, cetuximab and PBS treated cells were plated in different flask sizes. Cells treated with cetuximab 

were plated in multiple T75 (75cm2) flasks (60,000 cells/flask) that were combined on the eighth day. PBS 

treated cells were plated in a single T175 (175cm2) flask (60,000 cells). This design was selected considering 

the growth inhibition of the earliest cetuximab generations and to control confluence of the PBS controls at the 

collection time (Supplemental Fig. 1). 

Cell proliferation and colony formation assays 

Cell proliferation events were measured using the Click-iT Plus EdU Flow Cytometry Assay Kit  Alexa Fluor 

488 Picolyl Azide (Life Technologies, Carlsbad, CA) according to manufacturer’s instructions. The cetuximab 

generations were considered resistant when the frequency of proliferating cells was higher than in the PBS 

control generations. 

Anchorage-independent growth assay was used to further confirm the development of resistance. The parental 

SCC25 and the late G10 resistant cells were treated with different concentrations of cetuximab 10nM, 100nM 

and 1000nM. Number of colonies was compared to the same cells treated with PBS. Colony formation assay in 

Matrigel (BD Biosciences, Franklin Lakes, NJ) was performed as described previously29. 

Stable SCC25 cetuximab resistant single clones (CTXR clones) 

Resistance to cetuximab was induced in an independent passage of SCC25 cells. After resistance was 

confirmed, single cells were isolated and grown separately to generate the isogenic resistant single cell clones 

(CTXR). In total, 11 CTXR clones were maintained in culture without addition of cetuximab. With the exception 

of one clone (CTXR6), all CTXR clones presented substantial survival advantage compared to the parental 

SCC25, as reported by Cheng et al.30. 
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Proliferation assay was performed to confirm cetuximab resistance in the CTXR clones compared to the 

parental SCC25. A total of 1000 cells were seeded in 96-well plates in quadruplicate for each condition. PBS or 

cetuximab (10nM, 100nM or 1000nM) was added after 24 and 72 hours and cells were maintained in culture 

for 7 days. AlamarBlue reagent (Invitrogen, Carlsbad, CA) at a 10% final concentration was incubated for 2 

hours and fluorescence was measured according to the manufacturer’s recommendations (545nm excitation, 

590nm emission). Resistance in the CTXR clones was confirmed when the proliferation rates were higher than 

in the PBS treated SCC25 cells. 

RNA-sequencing (RNA-seq) and data normalization 

RNA isolation and sequencing were performed for the parental SCC25 cells (G0) and each of the cetuximab 

and PBS generations (G1 to G11) and the CTXR clones at the Johns Hopkins Medical Institutions (JHMI) 

Deep Sequencing & Microarray Core Facility. RNA-seq was also performed for two additional technical 

replicates of parental SCC25 cell line to distinguish technical variability in the cell line from acquired resistance 

mechanisms. Total RNA was isolated from a total of 1x106 cells using the AllPrep DNA/RNA Mini Kit (Qiagen, 

Hilden, Germany) following manufacturer’s instructions. The RNA concentration was determined by the 

spectrophotometer Nanodrop (Thermo Fisher Scientific, Waltham, MA) and quality was assessed using the 

2100 Bioanalyzer (Agilent, Santa Clara, CA) system. An RNA Integrity Number (RIN) of 7.0 was considered as 

the minimum to be used in the subsequent steps for RNA-seq. Library preparation was performed using the 

TrueSeq Stranded Total RNAseq Poly A1 Gold Kit (Illumina, San Diego, CA), according to manufacturer’s 

recommendations, followed by mRNA enrichment using poly(A) enrichment for ribosomal RNA (rRNA) 

removal. Sequencing was performed using the HiSeq platform (Illumina) for 2X100bp sequencing. Reads were 

aligned to hg19 with MapSplice31 and gene expression counts were quantified with RSEM32. Gene counts were 

upper-quartile normalized and log transformed for analysis following the RSEM v2 pipeline used to normalize 

TCGA RNA-seq data33. All RNA-seq data from this study is available from GEO (GSE98812) as part of 

SuperSeries GSE98815. 

DNA methylation hybridization array and normalization 

Genome-wide DNA methylation analysis was performed on the same samples as RNA-seq using the Infinium 

HumanMethylation450 BeadChip platform (Illumina) at the JHMI Sidney Kimmel Cancer Center Microarray 

Core Facility. Briefly, DNA quality was assessed using the PicoGreen DNA Kit (Life Technologies) and 400ng 

of genomic DNA was bisulfite converted using the EZ DNA Methylation Kit (Zymo Research, Irvine, CA) 

following manufacturer’s recommendations. A total volume of 4µL of bisulfite-converted DNA was denatured, 

neutralized, amplified and fragmented according to the manufacturer’s instructions. Finally, 12 µL of each 

sample were hybridized to the array chip followed by primer-extension and staining steps. Chips were image-

processed in the Illumina iScan system. Data from the resulting iDat files were normalized with funnorm 

implemented in the R/Bioconductor package minfi (version 1.16.1)34. Methylation status of each CpG site was 
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computed from the signal intensity in the methylated probe (M) and unmethylated probe (U) as a β value as 

follows: 

𝛽 = 𝑀
𝑀!𝑈

. 

Annotations of the 450K probes to the human genome (hg19) were obtained from the R/Bioconductor package 

FDb.InfiniumMethylation.hg19 (version 2.2.0). Probes on sex chromosomes or annotated to SNPs were filtered 

from analysis. The CpG island probe located closest to the transcription start site was selected for each gene. 

Genes with CpG island probes less than 200bp from the transcription start site were retained to limit analysis 

to CpG island promoter probes for each gene. Probes are said to be unmethylated for  𝛽 < 0.1 and methylated 

for 𝛽 > 0.3 based upon thresholds defined in TCGA analyses33. All DNA methylation data from this study is 

available from GEO (GSE98813) as part of SuperSeries GSE98815. 

Hierarchical clustering and CoGAPS analysis 

Unless otherwise specified, all genomics analyses were performed in R and code for these analyses is 

available from https://sourceforge.net/projects/scc25timecourse. 

The following filtering criterion for genes from the profiling of the time course data from generations of 

cetuximab treated cells was used. Genes from RNA-seq data were selected if they had log fold change greater 

than 1 between any two time points of the same condition and less than 2 between the replicate control 

samples at time zero (5,940 genes). CpG island promoter probes for each gene were retained if the gene 

switched from unmethylated (𝛽 < 0.1) to methylated (𝛽 > 0.3) in any two samples of the time course (1,087 

genes). We used the union of the sets of genes retained from these filtering criteria on either data platform for 

analysis, leaving a total of 6,445 genes in RNA-seq and 4,703 in DNA methylation. 

Hierarchical clustering analysis was performed with Pearson correlation dissimilarities between genes and 

samples on all retained genes. CoGAPS analysis was performed on both log transformed RNA-seq data and 

DNA methylation 𝛽 values, independently using the R/Bioconductor package CoGAPS35 (version 2.9.2). 

CoGAPS decomposed the data according to the model 

 , 

where  represents a univariate normal distribution, matrices  and  are learned from the data for a 

specified number of dimensions ,  is an estimate of the standard deviation of each row and column of 

the data matrix , and i represents each gene and j each sample. In this decomposition, each row of the 

pattern matrix  quantifies the relative association of each sample with a continuous vector of relative gene 

expression changes in the corresponding column of . These relative gene weights are called meta-

   
Di, j ~ N Ai,k

k=1

p

∑ Pk , j ,Σ i, j

⎛
⎝⎜

⎞
⎠⎟

 N  A  P

 p   
Σ i, j

 D

 P
 A
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pathways. The standard deviation of the expression data was 10% of the signal with a minimum of 0.5. The 

standard deviation of DNA methylation data under the assumption that β values follow a beta distribution is 

 

CoGAPS was run for a range of 2 to 10 dimensions  for expression and 2 to 5 for DNA methylation. 

Robustness analysis with ClutrFree36 determined that the optimal number of dimensions  for expression was 

5. DNA methylation was run in 4 parallel sets using GWCoGAPS25. In DNA methylation, the maximum number 

of patterns that modeled resistance mechanisms over and above technical variation in replicate samples of 

SCC25 was three. Gene sets representative of the meta-pathway were derived for each pattern using the 

PatternMarkers statistics25. Gene set activity was estimated with the gene set statistic implemented in 

calcCoGAPSStat of the CoGAPS R/Bioconductor package35. Comparisons between DNA methylation and 

gene expression values for PatternMarkerGenes or from CoGAPS patterns and amplitudes were computed 

with Pearson correlation. 

Cetuximab resistance signatures and EGFR network 

In a previous study, CoGAPS learned a meta-pathway from gene expression data corresponding to 

overexpression of the HRASVal12D in the HaCaT model of HPV- HNSCC premalignancy. That study associated 

the CoGAPS HaCaT-HRAS meta-pathway with gene expression changes in acquired cetuximab resistance in 

the HNSCC cell line UMSCC137. In the current study, we applied the PatternMarkers statistics25 to the 

previously published CoGAPS analysis of these data to derive a gene set from this meta-pathway called 

HACAT_HRAS_CETUXIMAB_RESISTANCE or HACAT_RESISTANCE. In addition, we searched MSigDB38 

(version 5.2) for all gene sets associated with resistance to EGFR inhibition. In this search, we found the gene 

sets COLDREN_GEFITINIB_RESISTANCE_DN and COLDREN_GEFITINIB_RESISTANCE_UP representing 

resistance to the EGFR inhibitor gefitinib in non-small-cell lung cancer cell lines39. Gene sets of transcription 

factor targets were obtained from experimentally validated targets annotated in the TRANSFAC40 professional 

database (version 2014.1). 

Sources and analysis of human tumor genomics data 

Genomics analyses of TCGA was performed on level 3 RNA-seq and DNA methylation data from the 243 

HPV-negative HNSCC samples from the freeze set for publication33. DNA methylation data was analyzed for 

the same CpG island promoter probes obtained in the cell line studies. Pearson correlation coefficients were 

computed in R to associate different molecular profiles. 

Analysis was also performed on gene expression data measured with Illumina HumanHT-12 WG-DASL V4.0 

R2 expression beadchip arrays on samples from patients treated with cetuximab from Bossi et al41, using 

  
Σ i, j

β =
βi, j 1− βi, j( )
Mi, j +Ui, j +1

.

 p

 p
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expression normalization and progression-free survival groups as described in the study. Data was obtained 

from the GEO GSE65021 series matrix file. We performed t-tests in R on the probe that had the highest 

standard deviation of expression values for each gene. 

 

RESULTS 

Prolonged exposure to cetuximab induces resistance 

SCC25 is among the most sensitive HNSCC cell lines to cetuximab but can acquire resistance during a long-

term exposure to cetuximab30. In this study, cetuximab resistance was induced by exposing the SCC25 cells to 

the targeted therapeutic agent for a period of eleven weeks (CTX-G1 to –G11) (Supplemental Fig. 1). The 

SCC25 cells treated with PBS were used as time-matched controls (PBS-G1 to –G11). Response to cetuximab 

was determined by comparing the proliferation rates between CTX and PBS generations. Proliferation of the 

PBS generations was stable throughout the eleven weeks (G1 to G11). Conversely, proliferation of the CTX 

generations progressively increased over each week (Fig. 1). Relative to the untreated controls, the growth of 

the treated cells was initially (CTX-G1) inhibited until CTX-G3. Starting at CTX-G4, the cells became resistant 

to the anti-proliferative effects of cetuximab and gained stable growth advantages compared to the untreated 

controls.  

Comparison of proliferation rates between generations of CTX treated cells relative to generations of cells 

treated PBS enabled us to conclude that cell growth advantages arise from chronic cetuximab treatment and 

were associated with resistance rather than prolonged cell culturing. We mirrored the changes in proliferation 

rates with clinical responses seen in HNSCC tumors treated with cetuximab (Fig. 1, top panel). Specifically, we 

inferred that the decreased growth rates in CTX-G1 to –G3 represented initial stages of treatment with a 

decrease in tumor size. Then, the switch from decreased to increased growth rates during CTX-G3 to -G4 

represented stable disease without tumor outgrowth. Finally, the higher proliferation in cetuximab-treated cells 

starting at CTX-G4 represented rapid outgrowth after acquired resistance.  

Because higher proliferation in treated than untreated cells started at CTX-G4, this was the timepoint at which 

acquired cetuximab resistance began and all subsequent timepoints continue to acquire stable cetuximab 

resistance. The resistant CTX generation 10 (CTX-G10) also presented enhanced anchorage-independent 

growth when compared to the parental SCC25 (G0) at different concentrations of cetuximab (two-way anova 

with multiple comparisons p-value < 0.01 for each concentration, Supplemental Fig. 2), representing the 

stabilization of cetuximab resistance in later generations. 

Treatment vs. control gene expression changes dominated clustering and immediate therapeutic 

response was confounded with changes from acquired resistance 
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To characterize the gene expression changes occurring as cells acquire cetuximab resistance, we collected 

RNA-seq data for the parental SCC25 cell line (G0) and from each generation of CTX- and PBS-treated cells. 

The RNA-seq data hierarchical unsupervised clustering separated genes with expression changes in treated 

and untreated generations (Fig. 2A). Clustering analysis of samples (Supplemental Fig. 3) further 

distinguished clusters with gene expression changes in stages with cetuximab sensitivity (CTX-G1 to CTX-G3), 

early stages of resistance (CTX-G4 to CTX-G8), and late stages of resistance (CTX G9-G11). Expression 

changes at these distinct stages were shared between numerous genes. Confounding by changes resulting 

from immediate therapeutic response made identification of resistance-specific gene expression changes 

impossible with clustering.  

Similar separation of stages of cetuximab response were observed in clustering analysis of gene signatures 

previously described in HNSCC and non-small cell lung cancer cell line models resistant to cetuximab or 

gefitinib (anti-EGFR small molecule), respectively37,39 (Supplemental Fig. 4). For these genes, changes during 

early stages of resistance clustered for CTX-G4 to CTX-G6 as distinct from later stages for CTX G7-11. 

Nevertheless, these gene signatures also clustered samples with gene expression changes at early stages 

(CTX-G1 to G3) as distinct from samples from PBS treated generations. However, these analyses were 

insufficient to quantify the relative dynamics of genes associated with immediate response to therapy or 

subsequent acquired resistance. 

CoGAPS analysis of gene expression distinguished patterns of acquired resistance from immediate 

therapeutic response  

To define gene expression signatures for treatment effect and cetuximab resistance, we applied CoGAPS25 

Bayesian matrix factorization algorithm to the time-course gene expression data. Bayesian non-negative matrix 

factorization with algorithms such as CoGAPS have already proven highly effective in relating gene expression 

changes to patterns related to EGFR inhibition44, perturbation of nodes in the EGFR network45, and time 

course dynamics of targeted therapeutics. CoGAPS is an unsupervised algorithm that simultaneously infers 

the relative magnitude of genes in concordantly transcribed gene sets in each sample. These relative 

magnitudes across samples are called patterns and quantify the separation of distinct experimental conditions. 

The gene sets are inferred simultaneously, and are continuous to quantify the relative magnitude of gene 

weights in each set. A single gene may have non-zero magnitude in several distinct gene sets, representing 

the fact that a single gene can have distinct roles in different biological processes (such as immediate 

therapeutic response and acquired resistance). A recently developed PatternMarker statistic25 selects the 

genes that are unique to each of the inferred patterns, and therefore represent biomarkers unique to the 

corresponding biological process. 

We identified five CoGAPS patterns in the time course gene expression dataset: three patterns that 

distinguished the experimental conditions (cetuximab vs. PBS) (Fig. 2B and Fig. 2C and Supplemental Fig. 

5); one pattern that represented changes in gene expression from the parental cell lines and subsequent 
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generations; and one pattern that was constant and corresponded to signature of highly expressed genes 

(Supplemental Fig. 2). We applied the PatternMarker statistic to define genes that were uniquely associated 

with each of these patterns. We excluded the technical, flat pattern to focus with genes with expression 

changes. By design, genes selected with the PatternMarker statistic are selected to not be multiply regulated 

regulated. Therefore, limiting the heatmap to these genes enabled visualization of the dynamics of gene 

expression changes in our time-course dataset (Fig. 2B). The relative magnitude of CoGAPS pattern weights 

for each sample quantified the dynamics of gene expression changes (Fig. 2C).  

Similar to the separation seen with clustering (Supplemental Fig. 5), the first CoGAPS expression pattern 

distinguished cetuximab from PBS at every generation (expression pattern 1, Fig. 2B and Fig. 2C, top). These 

genes had an immediate transcriptional induction in response to cetuximab treatment. Gene set analysis to 

determine the function of CoGAPS patterns was performed with an enrichment analysis on all gene weights 

obtained from the CoGAPS analysis. By performing the analysis on gene weights and not only the 

PatternMarker genes in Fig. 2B, we accounted for multiple regulation of genes in pathways. Gene set 

enrichment analysis on confirmed that published resistance signatures37,39 were significantly enriched in this 

pattern (Supplemental Fig. 6; one-sided p-values of 0.002 and 0.003 for resistance gene sets 

COLDREN_GEFITINIB_RESISTANCE_DN and HACAT_HRAS_CETUXIMAB_RESISTANCE, respectively). 

However, the transcriptional changes in this pattern were not associated with acquired resistance to 

cetuximab, and even decreased modestly as resistance developed. Further, enrichment by transcription factor 

AP-2alpha targets (TFAP2A; one-sided p-value of 0.05) confirmed previous work indicating that transcription 

by AP-2alpha is induced as an early feedback response to EGFR inhibition46. Based upon these findings, we 

concluded that pattern 1 was associated with immediate response to cetuximab although it includes genes that 

were also associated with cetuximab resistance in previous studies. 

The second CoGAPS expression pattern quantified divergence of the cetuximab treated cells from controls at 

generation CTX-G4 (expression pattern 2, Fig. 2B and Fig. 2C, middle) which was the time point that 

cetuximab treated cells presented significant and stable growth advantage over PBS controls (Fig. 1). 

Therefore, expression pattern 2 obtained gene expression signatures associated consistently with the 

development of cetuximab resistance. Gene set statistics of transcription factor targets of EGFR on CoGAPS 

gene weights were significantly down-regulated in this acquired resistance pattern (Supplemental Fig. 6). One 

striking exception was c-Myc, which trended with acquired resistance (p-value of 0.06), consistent with the role 

of this transcription factor in cellular growth. Resistance signature COLDREN_GEFITINIB_RESISTANCE_DN 

gene signature was significantly down-regulated in expression pattern 2 (p-value of 0.04).  

CoGAPS expression pattern 3 represented a gradual repression of gene expression with cetuximab treatment 

(Fig. 2B and Fig. 2C, bottom). This expression pattern trended to significant enrichment in the 

COLDREN_GEFITINIB_RESISTANCE_DN resistance signature (Supplemental Fig. 6, one-sided p-value 

0.12) and down-regulated in the HACAT_HRAS_CETUXIMAB_RESISTANCE resistance signature 
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(Supplemental Fig. 6, one-sided p-value 0.09). This confirmed that expression pattern 3 was associated with 

repression of gene expression during acquired cetuximab resistance.  

Significant enrichment of the acquired resistance signature in CoGAPS expression patterns 1-3 

(Supplemental Fig. 6) suggested that genes defined from case-control experimental designs of acquired 

resistance provide a mixture of genes associated with early response to cetuximab and genes associated with 

acquired resistance. In addition, the published resistance signatures37,39 included genes that the CoGAPS and 

PatternMarker analysis associated with immediate response to treatment (Supplemental Fig 4).  Inclusion of 

immediate response genes from expression pattern 1 in the published resistance signatures arose from the 

design of the experiments in the original publications37,39. Specifically, the resistance signatures derived from 

data that was collected at a single time point when the cell models have already developed resistance. At the 

same time point in our time-course data, gene expression changes included both immediate response genes 

and longer-term expression changes due to acquired resistance. Therefore, both sets of genes have significant 

expression changes in resistant cells when compared only to their parental cell line. These immediate 

response genes cannot be eliminated without including any additional samples at intermediate time points. 

This observation is consistent with recent studies demonstrating that time-course proliferation data increases 

the accuracy in drug-response metrics by removing the confounding effects of variability in cell growth/division 

rates and treatment effects42,43. Thus, the gene expression signature in CoGAPS patterns from the time course 

were able to parse apart transcriptional changes specific to immediate therapeutic response from those 

specific to acquired resistance.  

Changes in DNA methylation inferred with CoGAPS were associated with resistance to cetuximab, but 

not the immediate response to treatment observed in gene expression 

To determine the timing of the methylation changes associated with acquired resistance, we also measured 

DNA methylation in each cetuximab generation of SCC25 cells and PBS controls (Fig. 3A). Application of the 

CoGAPS matrix factorization algorithm to the methylation data revealed a total of 3 patterns (Fig. 3B and Fig. 

3C): gradual increase of DNA methylation in controls (DNA methylation pattern 1, middle); rapid demethylation 

in CTX generations starting at CTX-G4 (DNA methylation pattern 2, bottom); and rapid increase in DNA 

methylation in CTX generations starting at CTX-G4 (DNA methylation pattern 3, top). In contrast to the gene 

expression data, there was no immediate shift in DNA methylation resulting from cetuximab treatment.  

Comparing the CoGAPS patterns from gene expression and DNA methylation revealed strong anti-correlation 

between gene expression and DNA methylation in resistant patterns (Supplemental Fig. 7A). We observed 

that the gene expression changes associated with acquired resistance occurred gradually and were evident in 

early generations (Fig. 4, top). The DNA methylation was consistent in cetuximab treatment and control PBS in 

DNA methylation patterns 2 and 3 during early generations. Then, rapid accumulation in DNA methylation 

changes started after generations CTX-G4 and CTX-G5 in both patterns 2 and 3 (Fig. 4, bottom), concurrent 

with the onset of the observed growth advantage over the PBS control (Fig. 1).  Changes in DNA methylation 
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were delayed relative to those of gene expression in acquired cetuximab resistance (Fig. 4, dashed vertical 

lines). These dynamics suggests that DNA methylation stabilized the gene expression signatures crucial to the 

maintenance of acquired cetuximab resistance. 

Epigenetic regulation of FGFR1 expression was associated with acquired cetuximab resistance in the 

time course and in stable cetuximab resistant clones 

The gene signatures from the CoGAPS resistance patterns for expression and methylation had low correlation 

(Supplemental Fig. 7B) and there was little overlap between their respective PatternMarker genes. The low 

overlap between genes and their timing differences indicated that alterations to transcription were independent 

of DNA methylation. However, we hypothesized that the DNA methylation changes stabilized the resistant 

phenotype. Therefore, the CoGAPS gene signatures from each data modality were insufficient to define the 

functional DNA methylation regulation of acquired resistance. Nonetheless, we hypothesized that epigenetic 

regulation contributed to stabilizing the resistant phenotype. Characterizing the role of such epigenetic 

regulations is critical to understand the stable resistant phenotype. Moreover, identifying these epigenetic 

drivers can provide targets to overcome such stable resistance.  

To ascertain potential drivers of the stable cetuximab resistant phenotype induced by DNA methylation, we 

defined genes that are PatternMarkers25 of the DNA methylation patterns associated with stable acquired 

cetuximab resistance (methylation patterns 2 and 3). We then applied correlation analysis to determine genes 

that were epigenetically silenced. Specifically, we performed correlation analysis between DNA methylation 

and gene expression for each of the DNA methylation PatternMarker genes (Fig. 5). FGFR1 was among these 

genes. This finding was consistent with previous studies that associate differential expression of FGFR1 with 

resistance to EGFR inhibitors, including cetuximab, in different tumor types in vitro and in vivo26–28. Given the 

tight temporal regulation of these genes and the previous work on FGFR1, we hypothesized that this set of 

genes represented epigenetic drivers of acquired resistance.  

To delineate whether our presumptive drivers resulted from clonal expansion of resistant cells or from the 

development of new epigenetic alterations to drive resistance, we measured DNA methylation and gene 

expression on a panel of eleven isogenic stable cetuximab resistant clones derived from SCC25 cells 

previously30. Briefly, SCC25 was continuously treated with cetuximab until resistance developed, and then 

single cell clones were isolated and profiled in the absence of cetuximab treatment. Despite being derived from 

parental SCC25 cells, the single cell clones and time course generations displayed widespread differences.  

Significantly greater heterogeneity was observed among the cetuximab resistant single-cell clones in both 

expression and methylation profiles (Supplemental Fig. 8 and 9, respectively) and cellular morphology 

(Supplemental Fig. 10). Fig. 5A and 5B demonstrate that higher heterogeneity among single cell clones was 

also observed in the epigenetically regulated PatternMarker genes from the CoGAPS analysis that are shown 

in Figure 4D. These results suggest that different mechanisms of resistance may arise in the same HNSCC 

cell line.  
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We hypothesized that epigenetically regulated genes shared along the time course patterns and resistant 

single-cell clones may implicate common mechanisms acquired during evolution of the stable resistance 

phenotype. To test this hypothesis, we also performed correlation analysis for each of the epigenetically 

regulated genes in our resistant set (Fig. 5) in the resistant clones and parental cell lines. Nine of the 

epigenetically regulated PatternMarker genes also had significantly anti-correlated gene expression and DNA 

methylation in the stable cetuximab resistant clones (Supplemental Fig. 11). Of these, only FGFR1 was 

demethylated and reexpressed in a cetuximab resistant clone relative to the parental SCC25 cell line (Fig. 6). 

In this analysis, epigenetic regulation of gene expression for FGFR1 occurred in only one of the resistant 

clones (CTXR10). This clone was among the fastest growing under cetuximab treatment (Supplemental Fig. 

12). This observation suggested that the pooled data from the time course captured clonal outgrowth of a 

cetuximab resistant clone with similar molecular features (FGFR1 demethylation) to CTXR10, and that 

therefore clonal outgrowth was the dominant mechanism of resistance in our resistance model. 

FGFR1 observed dynamics in vitro recapitulates relationships from in vivo tumor genomics and 

acquired cetuximab resistance 

In order to validate our in vitro findings, we further investigated the pattern of expression and methylation of 

FGFR1 and EGFR in other publicly available datasets. Using gene expression and DNA methylation data from 

The Cancer Genome Atlas (TCGA) for 243 HPV-negative HNSCC pretreatment samples33, we verified that the 

up-regulation of EGFR and FGFR1 is not concomitant (Pearson correlation coefficient = -0.06, p value = 0.33, 

Fig. 7A). We found that FGFR1 gene expression and DNA methylation status were significantly negatively 

correlated (Pearson correlation r of -0.32, p value < 0.0001, Fig. 7B), in TCGA samples, suggesting that 

FGFR1 transcription was epigenetically regulated in a significant proportion of HPV-negative HNSCC tumors. 

Bossi et al.41 collected gene expression data from cetuximab-treated HNSCC patients with recurrent 

metastasis with either short- (SPFS, median 3 months surival) or long-progression-free survival (LPFS, median 

19 months survival). Using this dataset, we verified that EGFR expression in SPFS is significantly lower than 

the LPSF group (Fig. 7C) (log fold change -1.0, t-test p-value 0.0003). The opposite was observed for FGFR1, 

with overexpression in SPFS vs. LPSF (Fig. 7D, log fold change 0.9, t-test p-value 0.003). However, Bossi et 

al.41 lacked DNA methylation data to assess whether FGFR1 was epigenetically regulated in these samples. 

Nonetheless, this finding in combination with the data from TCGA, supports our findings that the non-

responder phenotype was accompanied by loss of EGFR expression and gain in FGFR1 expression as a 

result of FGFR1 promoter demethylation acquired during the development of cetuximab resistance. 

 

DISCUSSION 

Numerous short time course genomics studies of therapeutic response have been performed42,47,48, but this is 

the first time that genetic and epigenetic changes were measured for a prolonged exposure (11 weeks) to a 
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targeted therapeutic agent. Using our novel robust time course experimental approach, we characterized the 

molecular alterations during the development of acquired cetuximab resistance in HNSCC in vitro. By 

collecting cells over experimentally equivalent cultures (cetuximab and PBS control generations), we could 

measure changes in proliferation and multiple genomics data platforms as resistance developed. We applied 

this approach to the intrinsic cetuximab sensitive cell line SCC25 to track the molecular progression in acquired 

cetuximab resistance. Thus, this was the first study to our knowledge to enable characterization of the 

dynamics at the early stages of therapeutic resistance, which cannot be measured in patients due to the 

complexity of early detection of resistance and obtaining repeat biopsy samples.  

Determining the dynamics of the molecular alterations responsible for resistance requires integrated, time-

course bioinformatics analysis to quantify the dynamics of these alterations. Based upon previous performance 

of Bayesian, non-negative matrix factorization algorithms in inferring dynamic regulatory networks for targeted 

therapeutics48,49, we selected CoGAPS35 for analysis of gene expression data from our time course 

experiment. In this dataset, CoGAPS analysis of gene expression data from cetuximab resistant clones 

distinguished the patterns for immediate gene expression changes and patterns for long-term changes 

associated with acquired resistance. Gene expression signatures for resistance to EGFR inhibitors from 

previous studies were significantly enriched in both types of CoGAPS patterns. These previous resistance 

signatures were learned from case-control studies that compared gene expression for sensitive cells to that of 

resistant cells, without multiple time point measurements. Therefore, we concluded that time course data was 

instrumental in parsing signatures of immediate therapeutic response from signatures of acquired resistance. 

Pooling cells to obtain paired measure of methylation and gene expression enabled us to evaluate whether 

changes in DNA methylation impact gene expression. CoGAPS analysis of DNA methylation data observed 

only changes associated with acquired resistance, in contrast to the immediate expression changes observed 

with cetuximab treatment. Thus, while therapeutic response can drive massive changes in gene expression, 

only the subset of expression changes associated with the development of resistance have corresponding 

epigenetic signatures suggesting that epigenetic landscape was important for the creation of acquired 

resistance. The CoGAPS patterns in gene expression that were associated with acquired cetuximab resistance 

gradually changed over the time course. On the other hand, the CoGAPS patterns for DNA methylation 

changes had a sharp transition at the generation at which resistance was acquired (CTX-G4). These patterns 

reflect a delayed, but more rapid change in DNA methylation. Our data is consistent with previous observations 

that gene expression changes precede DNA methylation alterations in genes critical for cancer progression. 

P16INK4A and GSTP1 are tumor suppressor genes for which transcription silencing was found to occur prior to 

DNA hypermethylation and chromatin changes. The temporal delay observed between expression and 

methylation patterns in our time course provides transcriptome wide evidence of this phenomena. Specifically, 

that epigenetic changes are necessary to stabilize gene expression aberrant profile and will be followed by 

modification into a silenced methylation state that will result in tumor progression50,51. Our integrated RNA-seq 

and DNA methylation analysis corroborated the fact that gene expression changes occur earlier to epigenetic 

alterations and suggest that in acquired cetuximab resistance to cetuximab DNA methylation is essential to 
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maintain the changes in gene expression. Future investigation into the chromatin remodeling mechanisms will 

test whether chromatin alterations follow the changes in expression and occur in combination with altered 

methylation patterns to drive epigenetic regulation of resistance. 

In a recent study, gene expression changes are associated with a transient resistant phenotype present in 

melanoma cell lines prior to vemurafenib administration52. Once the melanoma cells are exposed to the drug, 

additional changes in gene expression are detected and are later accompanied by changes in chromatin 

structure52. These findings, together with our time course observations, suggest that in the heterogeneous 

tumor environment the existence of some cells expressing specific marker genes can trigger cellular 

reprogramming as soon as the targeted therapy is initiated. Upon drug administration, the number of genes 

with aberrant expression increases, and is followed by other epigenetic and genetic changes that will shift the 

transient resistant state into a stable phenotype. This finding on acquired resistance development could 

dramatically change the course of treatment with targeted therapeutic agents. The precise characterization of 

resistant gene signatures and their timing could be used to determine the correct point during the patients’ 

clinical evolution to introduce alternative therapeutic strategies. This way, secondary interventions would start 

before the stable resistant phenotype is spread among the tumor cells resulting in prolonged disease control 

and substantial increased in overall survival. 

The timing delays between alterations in DNA methylation and gene expression pose a further computational 

challenge for integrated, time course genomics analyses. The vast majority of integrated analysis algorithms 

assume one-to-one mapping of genes in different data platforms or seek common patterns or latent variables 

across them53. Such approaches would fail to capture the early changes from cetuximab treatment that impact 

only gene expression, time delays between DNA methylation and gene expression patterns, and different gene 

usage in each pattern. It is essential to develop new integrated algorithms to simultaneously distinguish both 

patterns that are shared across data types and that are unique to each platform. For time course data, these 

algorithms must also model regulatory relationships that may give rise to timing delays, such as epigenetic 

silencing of gene expression. However, as we observed with the unanticipated changes in DNA methylation 

following and not preceding gene expression, they must also consider delays resulting from larger phenotypic 

changes such as the stability of the therapeutic resistant phenotype.  

In spite of the complexities of the data integration, the weight of each sample in patterns inferred by CoGAPS 

reflected the dynamics of the process in each data modality. These patterns were learned completely 

unsupervised from the data, and did not require any gene selection or comparison between time points relative 

to any reference control. The genes associated with CoGAPS patterns had weights that were non-zero in 

multiple patterns. The PatternMarker25 statistic enabled further selection of the genes that were uniquely 

associated with each pattern. Creating a heatmap of the genomics profiles for these genes enabled novel, 

heatmap-based visualization of the temporal dynamics in the omics data. In the case of DNA methylation, 

these pattern marker genes also included genes representing driver alterations in resistance. However, 

transcriptional regulation by epigenetic alterations or in pathways involves simultaneous co-regulation of 
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multiple genes. This co-regulation was reflected in the reuse of genes in CoGAPS gene weights associated in 

each pattern. Therefore, estimates of pathway dynamics from transcriptional data required accounting for all 

genes with gene set enrichment statistics instead of the PatternMarker statistic. Thus, we hypothesize that the 

PatternMarker statistic is robust for visualization, biomarker identification, and functional alterations in DNA 

over time, whereas it is robust only for visualization of and biomarker selection from time-course transcriptional 

data.  

Among the genes we observed with the canonical relationship between expression and methylation, FGFR1 

presented with loss of CpG methylation accompanied by increased gene expression. FGFR1 is a receptor 

tyrosine kinase that regulates downstream pathways, such as PI3K/AKT, and RAS/MAPK, that are also 

regulated by EGFR54. Its overexpression has been previously associated with EGFR inhibitors resistance26–28. 

To our knowledge this is the first study showing epigenetic regulation of FGFR1 in HNSCC and the association 

of that epigenetic regulation with acquired cetuximab resistance. In this case, FGFR1 induction through 

promoter demethylation in concordance with down regulation of EGFR appears to be the dominant 

mechanism. The novel cell culture protocol and time course analysis we developed here is what enabled us to 

see the clonal outgrowth of this particular mechanism. These results are also relevant for further translational 

studies into the role of FGFR1 as a potential biomarker of acquired cetuximab resistance and potential target 

to overcome that resistance. FGFR1 is a potential target for combined targeted therapy with EGFR, and 

inhibitors against this target are already the focus of clinical trials54. 

We recognize that a limitation of the current study was the use of only one cell line model to induce resistance 

and collect the time course data for gene expression and epigenetics analysis. However, we had to take into 

consideration the potential batch and technical effects of broad cross-platform profiling since multiple data 

points in the analysis had to be accounted for when determining the number of cell models to be included. 

Nevertheless, the analysis of HNSCC patient samples from TCGA33 and another study41 validated our finding 

that FGFR1 is up-regulated and demethylated in HNSCC and associated with resistance to cetuximab. 

The in vitro protocol for time course sampling developed in this study has the additional advantage of 

aggregating potentially heterogeneous mechanisms of resistance increasing the signal of changes in any 

cetuximab resistant subclone. For example, we observed epigenetic regulation of FGFR1 in the pooled cells, 

but only a single stable clone generated from the same SCC25 cell line in a previous study (CTXR10) had 

upregulation of FGFR130. This finding suggests that tumor heterogeneity also plays a role in acquired 

resistance to target therapies and enables different pathways to be used to bypass the silenced target within 

the same tumor. The heterogeneity in methylation profiles reflected the complexity of the resistance 

mechanisms that can arise from combination therapies in heterogeneous tumors. Future work extending these 

protocols to in vivo models is essential to determine the role of the microenvironment in inducing therapeutic 

resistance. Developing in vivo models with acquired therapeutic resistance presents numerous technical 

challenges that must first be addressed before such time course sampling is possible9. Pinpointing precise 

molecular predictors of therapeutic resistance will facilitate the identification of unprecedented biomarkers and 
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reveal the mechanisms by which to overcome acquired therapeutic resistance to most therapies used to treat 

cancer.  
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Figures: Integrated time-course omics analysis distinguishes immediate 

therapeutic response from acquired resistance 

Figure 1 – In vitro time course reflects in vivo clinical evolution of cetuximab response and 

evolution of acquired resistance. Intrinsic cetuximab sensitive HNSCC cell line SCC25 was treated 

with cetuximab (red) or PBS (black) for 11 generations to develop acquired resistance. Proliferation 

assay (flow) of cetuximab treatment (red line) and PBS treated cells (black line) measured cetuximab 

response for all SCC25 generations (bottom). Treatment response was divided into three stages 

based upon the measured proliferation rates and clinical stages (top). While proliferation of the PBS 

generations was stable throughout the eleven weeks, proliferation of the CTX generations 

progressively increased over each week.  Relative to the untreated controls, the growth of the treated 

cells was initially (CTX-G1) inhibited until CTX-G3. Starting at CTX-G4, the cells became resistant to 

the anti-proliferative effects of cetuximab and gained stable growth advantages compared to the 

untreated controls.  

Figure 2 – Gene expression of resistance signatures to EGFR inhibitors separate resistant and 

control generations, and CoGAPS analysis reflects the dynamics of acquired cetuximab 

resistance. A. Heatmap of gene expression values in 11 generations of SCC25 cells treated with 

100nM of cetuximab (red columns) to acquire resistance and with PBS as control (black columns). B. 

Heatmap of gene expression values for PatternMarker genes identified with CoGAPS analysis of 

gene expression data from 11 generations of SCC25 cells treated with PBS as control (black 

columns) and with 100nM of cetuximab (red columns) to acquire resistance. Rows are colored 

according to which CoGAPS pattern the PatternMarker statistic assigned each gene, and sorted by 

the PatternMarker statistic. C. CoGAPS patterns inferred from gene expression data over generations 

of PBS control (black lines) or treatment with 100nM of cetuximab (red lines). 

Figure 3 – Dynamics of DNA methylation alterations and association with gene expression 

CoGAPS patterns in acquired cetuximab resistance. A. Heatmap of DNA methylation values in 11 

generations of SCC25 cells treated with PBS as control (black columns) and with 100nM of 

cetuximab (red columns) to acquire resistance. B. Heatmap of DNA methylation values for genes 

selected by CoGAPS DNA methylation patterns analysis in the same SCC25 cetuximab and PBS 

generations. C. CoGAPS patterns inferred from DNA methylation data over generations of PBS 

control (black lines) or treatment with 100nM of cetuximab (red lines). 

Figure 4 – DNA methylation and gene expression patterns identified by CoGAPS demonstrate 

delayed onset of epigenetic modification relative to gene expression changes in acquired 
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resistance. CoGAPS patterns for gene expression (top) and DNA methylation (bottom) of patterns 

associated with acquired cetuximab resistance in SCC25 cetuximab generations (red) relative to PBS 

generations (black). Vertical dashed line represents time at which patterns for SCC25 generation 

separated from pattern for PBS generations. The timing of methylation changes distinguishing 

cetuximab resistant generations was delayed in DNA methylation relative to that of gene expression.  

Figure 5 – Clonal heterogeneity contrasts tight temporal concordance of epigenetically 

regulated genes that stabilize the resistant phenotype in the pooled cells in time-course. A. 

Heatmap of gene expression values for DNA methylation PatternMarker genes for acquired 

resistance that were anti-correlated between expression and DNA methylation (Fig. 4D). Data 

includes 11 generations of SCC25 cells treated with PBS as control (black columns labeled PBS) and 

with 100nM of cetuximab (red columns labeled cetuximab) to acquire resistance and gene expression 

data from independent, stable cetuximab resistant clones in absence of cetuximab treatment (CTX 

resistant clones). Gene expression heatmap on a red-yellow scale indicated in the color key. B. 

Heatmap of DNA methylation data in conditions described in (a), on a blue-yellow scale indicated in 

the color key.  

Figure 6 – Independent, stable SCC25 cetuximab resistant clones validated CoGAPS 

methylation patterns association of epigenetic regulation of FGFR1 with acquired resistance 

to cetuximab in vitro. (A) Expression of FGFR1 gene expression relative to DNA methylation in 

stable cetuximab resistant clones. (b) QRT-PCR of FGFR1 gene expression in CTXR10 relative to the 

parental cell line (greater than 30 fold change). (c). Western blot comparing FGFR1, phosphor-

FGFR1, EGFR, and phospho-EGFR in CTXR10 relative to the parental SCC25 cell line. In the 

resistant cell clone, increased levels of FGFR1 were associated with increased levels of phospho-

FGFR1 and decrease in EGFR and phospho-EGFR. 

Figure 7 - Independent datasets from tumor samples confirmed FGFR1 gene and protein 

overexpression in vitro, epigenetic regulation of FGFR1 in vivo, and inverse relationship 
between EGFR and FGFR1 expression in in vivo cetuximab resistance. (a) Scatter plot of gene 

expression for EGFR and FGFR1 in HPV-negative HNSCC samples from TCGA demonstrated that 

only a few HNSCC cases present increased levels of both genes and that there is no significant 

correlation between the expression of both genes concomitantly. (b) DNA methylation of FGFR1 was 

anti-correlated with FGFR1 expression in HPV-negative HNSCC TCGA samples, suggesting that up-

regulation of FGFR1 might be a result of promoter hypomethylation in primary tumors. (c) EGFR 

expression was significantly overexpressed in a group of HNSCC patients with long progression free 
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survival relative to patients with short progression free survival in gene expression data from Bossi et 

al. (d) FGFR1 was significantly overexpressed in patients with short progression free survival relative 

to patients with long progression free survival in this same dataset. 
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