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Abstract

Previous studies have prioritized trait-relevant cell types by looking for an enrichment
of GWAS signal within functional regions. However, these studies are limited in
cell resolution by the lack of functional annotations from difficult-to-characterize
or rare cell populations. Measurement of single-cell gene expression has become a
popular method for characterizing novel cell types, and yet, hardly any work exists
linking single-cell RNA-seq to phenotypes of interest. To address this deficiency, we
present RolyPoly, a regression-based polygenic model that can prioritize trait-relevant
cell types and genes from GWAS summary statistics and single-cell RNA-seq. We
demonstrate RolyPoly’s accuracy through simulation and validate previously known
tissue-trait associations. We discover a significant association between microglia
and late-onset Alzheimer’s disease, and an association between oligodendrocytes and
replicating fetal cortical cells with schizophrenia. Additionally, RolyPoly computes a
trait-relevance score for each gene which reflects the importance of expression specific
to a cell type. We found that differentially expressed genes in the prefrontal cortex of
Alzheimer’s patients were significantly enriched for highly ranked genes by RolyPoly
gene scores. Overall, our method represents a powerful framework for understanding
the effect of common variants on cell types contributing to complex traits.
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Introduction

Identifying the primary subset of cell types or states and genes involved in com-
plex traits is critical to the process of developing mechanistic insights. For example,
knowledge that the FTO locus acts on IRX3 and IRX5 primarily in human adipocyte
progenitor cells enabled researchers to rigorously define a novel thermogenesis path-
way central for lipid storage and obesity [6]. And, focusing on distinct human C4
isotypes, Sekar et. al., highlighted the role of the classical complement cascade (of
which C4 is a critical component) and synapse elimination during development in
the brains of individuals with schizophrenia [57].

In addition to estimating disease risk for individual variants, GWAS have proven
useful for identifying trait-relevant cell types or tissues. Assuming variants affect
phenotypes through gene regulation, one can prioritize cell types for further anal-
ysis with an enrichment of GWAS signal in cell type-specific functional regions of
the genome that affect gene regulation. A series of studies identified enrichment of
GWAS signal in sorted cell type [51] or tissue-specific eQTLs [45]. Other approaches
have revealed enrichment of GWAS signal in cell type-specific functional annotations
(e.g., ATAC-seq, ChIP-seq, RNA-seq) [25, 66, 47, 15, 61, 14, 12]. However, these
analyses are limited in cell type resolution because they either require samples with
population variation (infeasible to collect for many cell types) or rely on functional
assays that require on the order of thousands of cells, which are challenging to collect
for rare or uncharacterized cell types. Thus, it remains difficult to evaluate whether
disease phenotypes are driven by tissues, broad cell populations, or very specific cell
types. Furthermore, an inability to analyze difficult-to-characterize cell types is a
concern when scanning for links between traits and cell types in complex tissues
composed of many heterogenous cell types. For example, describing the brain as
the primary pathogenic tissue responsible for schizophrenia or Alzheimer’s disease
is unsatisfying, but it remains difficult to comprehensively collect functional infor-
mation from the plethora of brain cell types necessary to perform standard GWAS
enrichment analyses.

Meanwhile, single-cell gene expression technology has offered insights into complex
cell types [46, 27, 71, 65, 33, 16, 20, 28, 4]. Additionally, there are concerted efforts un-
derway to develop comprehensive single-cell atlases of complex human tissues known
to be associated with phenotypes of interest, such as immune cell types for autoim-
mune disease and brain cell types for neuropsychiatric disorders [52]. However, to
our knowledge, there are no existing methods designed to link novel single-cell based
cell types and phenotypes of interest.
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Thus, we developed RolyPoly, a model for prioritizing trait-relevant cell types ob-
served from single-cell gene expression assays. Importantly, RolyPoly takes advan-
tage of polygenic signal by utilizing genome-wide GWAS summary statistics for all
SNPs near protein coding genes, appropriately accounts for linkage disequilibrium
(LD), and jointly analyzes gene expression from many tissues or cell types simultane-
ously. Additionally, our model can utilize signatures of cell-specific gene expression
to prioritize trait-relevant genes. Finally, we provide a fast and publicly available
implementation of the RolyPoly model.

Material and Methods

Overview of the methods

The primary goals of RolyPoly are to identify and prioritize trait-relevant cell types (or
tissues) and genes (Figure 1). At a high-level, RolyPoly starts by learning about the
relationship between gene expression and estimated GWAS effect sizes from a trait
of interest (captured with our γ model parameters, described below). For example,
we might expect to observe larger GWAS effect sizes for cholesterol regulation at
SNPs that affect liver-specific gene expression because the liver is known to regulate
cholesterol levels. Thus, based on such an enrichment, RolyPoly would learn that
the liver is a trait-relevant tissue. Next, we can use this knowledge to prioritize
trait-relevant genes by calculating a score (represented by hgenej , defined below) that
identifies genes upregulated in RolyPoly-inferred relevant tissues. Continuing with
our example, once we know that liver-specific gene expression is associated with
larger GWAS effect sizes, RolyPoly would prioritize studying liver-specific genes in
the context of understanding cholesterol regulation (resulting in larger hgenej values).
Below we describe the details of how RolyPoly carries out each of these steps.

GWAS summary statistics

Consider a fully polygenic GWAS model ys = xTs β + εs, where ys is the phenotypic
measurement from individual s, xs is a vector of genotypes at p SNPs for individual
s, β is a vector of p SNP effects, and we represent the stochastic environmental error
with εs ∼ N(0, σ2

e). Importantly, we assume that the matrix of genotypes has been
scaled and standardized such that the mean is 0 and variance 1 for each SNP vector
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Figure 1: RolyPoly detects trait-associated annotations using GWAS summary statistics and gene
expression profiles. A) We model the variance of GWAS effect sizes of SNPs associated with a gene
as a function of gene annotations, in particular gene expression, while accounting for LD using
population matched genotype correlation information. (Manhattan plot is based on data from [19].)
B) From a database of functional information (such as tissue or cell type RNA-seq) we learn a
regression coefficient for each annotation, γ̂k, that captures its influence on the variance of GWAS
effect sizes. A deviation from the mean gene expression value of ajk results in an increase of ajkγ̂k
to the expected variance of gene-associated GWAS effect sizes. The value γ̂0 represents a regression
intercept that estimates the population mean variance. To check learned model parameters, we expect
to see an enrichment of LD-informed GWAS gene scores for genes that are specifically expressed
in a tissue inferred to be trait relevant. Finally, from a model fit we can prioritize trait-relevant
tissues and genes.

(and similarly for the trait ys). The main summary statistics released by GWAS are
per-variant effect estimates, which we refer to as β̂. Researchers typically calculate
and report univariate effect-size estimates. These estimates represent the marginal
standardized regression coefficient and are calculated as β̂i = n−1XT

i y, where Xi

(note the change in case) represents standardized genotypes for SNP i across the n
individuals (see Appendix for derivation). Substituting the polygenic model for y
into the estimation equation (see Appendix for derivation), the sampling distribution
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of the estimated SNP effect sizes corresponds to

β̂ = Rβ + n−1XTε (1)

where R is the sample LD matrix (i.e. rii′ is the Pearson correlation values between
genotype i and i′). Using this definition of estimated GWAS effect sizes, we develop
a highly polygenic approach that models the variance of these SNP effect sizes as a
function of annotation specificity of proximal gene expression.

Polygenic model

For notational convenience, let g(i) represent the gene associated with SNP i and
Sj = {i : g(i) = j} be the set of SNPs associated with gene j. We use the notation
βS to denote the coordinates of β whose indices lie in set S. We assume a priori
that the true GWAS effect sizes of SNPs in gene j follow a normal distribution
βSj
∼ MVN(0, τjI), where I is the |Sj| × |Sj| identity matrix, and τj is the prior

effect size variance for all SNPs associated with gene j and is modeled as a linear
function. More specifically, τj is a linear function of N annotations ajk (in this case
cell-type specific gene expression), with annotation coefficients γk and an intercept
term γ0:

τj = γ0 +
N∑
k=1

γkajk . (2)

RolyPoly estimates the parameter vector γ, which captures the influence of cell-
type specific gene expression on the variance of GWAS effect sizes (see Figure 1B).
Intuitively, if we estimate a large coefficient for annotation k, then we expect larger
GWAS effect sizes around genes that are specifically expressed in annotation k.
On the other hand, it is possible to estimate negative values for some annotation
coefficients γ. SNPs proximal to genes that are specifically expressed in an annotation
with a negative γ estimate are expected to have reduced effect size variance compared
with the population mean.

Based on this polygenic model, the expected value of the vector of GWAS effect
sizes around gene j is E[β̂Sj

] = 0, and the covariance matrix is given by V[β̂Sj
] =

τjRSj
RSj

+ σ2
en
−1RSj

, where RSj
denotes the principal submatrix of R indexed by

the SNPs in Sj (see Appendix for derivation). This model assumes that the effect size
of each SNP around a gene j is drawn from a distribution with a mean of zero and
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the same per-SNP variance of τj. However, there are other SNP annotations that we
expect to affect the variance of a GWAS effect size, such as the minor allele frequency
(MAF) of the SNP. Therefore, we include P SNP-level features as covariates while
estimating the variance contribution of gene expression. Specifically, we modify our
model to use a per-SNP variance νi for SNP i, given by

νi = τg(i) +
P∑
l=1

φlbil, (3)

where τg(i) is the previously described (equation 2) contribution of gene-level anno-
tations to the variance of SNP i, bil is the i-th value of SNP-level annotation l for
SNP i, and φl is the annotation coefficient for annotation l. The distribution for the
vector of SNP effects associated with a gene becomes

β̂Sj
∼ MVN(0,RSj

DSj
RSj

+ σ2
en
−1RSj

), (4)

where D = diag(ν) is a diagonal matrix of SNP effect size variances. With this
modification, we can estimate gene annotation regression coefficients while control-
ling for the contribution of SNP annotations to the variance of a SNP effect size. We
present inferred parameter estimates including accounting for MAF as a SNP-level
covariate. MAF values were downloaded from matched population samples from the
Phase 3 VCFs of 1000 Genomes Project [1].

For results presented here, we used a window size of 10kb centered on the transcrip-
tion start site of a gene to associate a SNP to a gene. We chose this window-size
because previous work has found that, across a diverse set of cell types and tissues,
most eQTLs consistently lie in this region [9, 17, 62, 41]. However, the model de-
scription as presented generalizes to larger window sizes or alternative approaches
of SNP-gene association. One could rely on enhancer or chromatin maps from EN-
CODE to incorporate potentially functional variants that are farther away from the
TSS. However, doing so would bias our analysis towards well-characterized cell types;
thus, we did not include distal elements. With this definition of SNP-gene associa-
tion there are a few SNPs with multiple associated genes. We duplicate these SNPs
and treat them as independent SNP-gene pairs. Since RolyPoly infers parameters
from hundreds of thousands of SNPs, we do not expect this contribute significantly
to inferred parameters.
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Parameter inference

In order to perform maximum likelihood inference under our model, we would have to
compute the determinant and inverse of the potentially high dimensional covariance
matrices involved in (4), which would be computationally challenging. Instead, we
adopt a method of moments approach, where we fit the gene-level annotation coeffi-
cients γk and, if included, the SNP-level annotation coefficients φl. If only gene-level
annotations are used, we fit the observed and expected sum of squared SNP effect
sizes associated with each gene, where the expected value is given by

E
[∑
i∈Sj

β̂2
i

]
= τjTr(R2

Sj
) + |Sj|σ2

en
−1, (5)

where Tr above represents the trace of a matrix (derivation in Appendix). This
expectation was derived recognizing that the expected value of the squared `2 norm
of a mean zero multivariate normal distribution is the trace of the covariance matrix.
When we include SNP annotation coefficients such that each SNP effect size has a
variance term νi, we perform inference by fitting the observed and expected squared
effect size of each SNP, where the expected value is given by

E[β̂2
i ] = (RSj

DSj
RSj

)ii + σ2
en
−1, where j = g(i), (6)

and (RSj
DSj

RSj
)ii is the diagonal element of the matrix corresponding to SNP i.

Interestingly, by using an indicator function rather than quantitative features, we
noticed that this model relates to previous work [5] (described in the Appendix).
We perform block bootstrap [10] to estimate standard errors, σ̂γk , which are used
to compute a t-statistic, γ̂k/σ̂γk , and corresponding p-values. We use a t-statistic
because we use our bootstrap estimate of the standard error rather than a known
value. The purpose of the block bootstrap is to maintain correlations present in the
data when sampling from the empirical distribution, thus, we partitioned the genome
into 100 non-overlapping blocks and sample from these blocks with replacement [35].
Additionally, from the bootstrap parameter estimates, we calculate empirical 95%
confidence intervals for each γ̂k. Unless otherwise specified, for our analyses we
performed 103 block bootstrap iterations. After including an intercept term, γ̂0, we
rank tissues by strength of association with the t-statistic or corresponding p-value.
As in standard regression, the intercept term estimates the population mean of the
response term, which in this case is the per-SNP variance of a GWAS effect size.
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Computing trait-relevance gene importance scores and pro-
portion of variance explained by individual annotations

Using a set of inferred gene annotation coefficients, γ̂, we calculate several quantities
that summarize the contributions of gene annotations to the phenotypic variance.
First, we compute hgenej =

∑N
k=1 γ̂kajk, which can be used to rank trait-relevant genes.

Essentially, hgenej is a gene expression-based prediction of the variance parameter for
gene j of a normal distribution from which cis-GWAS effect sizes are drawn (Fig-
ure 1B). Thus, if hgenej is large we would expect larger cis-GWAS effect sizes. Note
that this value does not directly rely on GWAS effect size estimates. Instead, hgenej

relies on GWAS indirectly through the RolyPoly-inferred parameters. Additionally,
we calculate the contribution of an annotation k to a trait as hannotk = |γ̂k|

∑M
j=1 ajk,

where M is the number of genes. Through simulation we show that the true value
of hannotk affects our power to detect trait-annotation associations. The total con-
tribution explained by all annotations, htotal, comes from summing the individual
annotation values, htotal =

∑N
k=1 h

annot
k . Finally, the proportion of an annotation’s

unique contribution to the variance of SNP effects, pannotk , can be calculated as
hannotk /htotal.

To validate our gene importance values, hgenej , we compare them to gene importance
estimates based on cis-GWAS summary statistics and LD information. This gene
score is an estimate of the variance of GWAS effect sizes accounting for inflation due
to local LD, thus we refer to it as the LD-informed gene score. For this calculation
we use the methodology described in [38, 37]. However, we use the same window size
around a gene as was used for RolyPoly. In addition to validating hgenej , we use the
LD-informed gene score to verify GWAS enrichment in specifically expressed genes of
model-identified trait-relevant tissues (i.e., Q-Q plots in the Results section).

If the main objective is to compute gene values, hgenej , and unbiased parameter esti-
mates are not required, then we include a penalty on the `1 norm of the annotation
coefficients. The penalty strength is modulated with a λ tuning factor which is chosen
based on cross validation. Regularization has the beneficial effect of shrinking pa-
rameter estimates of irrelevant tissues and can result in higher gene score prediction
accuracy.
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Simulation setup

For clarity we denote generated parameters and data with an asterisk (∗). In sim-
ulation results reported we used 2× 104 genes, five simulated gene annotations and
one simulated SNP annotation. We generated gene expression, a∗, from a stan-
dard χ2-distribution, and allele frequency as an example SNP annotation, b∗, from
a standard uniform distribution. Recall that our model annotation coefficients de-
termine the influence these annotations will have on SNP effect sizes. For each
simulated data set we fixed annotation effects by sampling from a uniform distribu-
tion, φ∗ ∼ Uniform(0, 10−5) for SNP annotation effects and γ∗k ∼ Uniform(0, 10−5)
for gene annotation effects. We combined the simulated functional information and
annotation coefficients to calculate a per-SNP variance term. Thus, for each SNP
effect we computed ν∗i = τ ∗g(i) +

∑P
l=1 φ

∗
l b
∗
il, where τ ∗g(i) =

∑N
k=1 γ

∗
ka
∗
jk. We combined

this per-SNP variance term with a per-SNP environmental error contribution set
to σ2

en
−1 = 10−4 to arrive at the distribution from which we generated simulated

effects,

β̂∗
Sj
∼ MVN(0,RSj

D∗Sj
RSj

+ 10−4RSj
) (7)

where D∗ is a diagonal matrix with simulated per-SNP variance values. From this
distribution, for each simulated gene we sampled 20 SNP effects. As input our
inference model takes SNP effects, environmental errors (here set to 10−4) and an-
notations, and attempts to identify the true annotation effects. From this setup we
determined whether our method implementation could accurately infer generated
SNP annotation effects, φ∗l , and gene annotation effects γ∗k.

Although our method assumes each SNP effect size is drawn from the model dis-
tribution, it is likely that some GWAS effect sizes come from a null distribution.
To test robustness to this potential model misspecification, we first sampled per-
gene Bernoulli random variables πj ∼ Bernoulli(c), where c represents the fraction
of causal genes (causal here simply implies sampling from the non-null model). We
sampled SNP effects for each gene as

β̂∗Sj
∼

{
MVN(0,RSj

D∗Sj
RSj

+ 10−4RSj
), if πj = 1

MVN(0, 10−4RSj
), if πj = 0

(8)

Varying the fraction of causal genes, parameter c, across simulated data sets, we
studied its effect on model inference.
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Obtaining gene expression databases and GWAS summary
statistics

We estimated annotation parameters for three gene expression databases. 1) The
Genotype-Tissue Expression (GTEx) cohort includes RNA-seq from different indi-
viduals at many tissue sites [39]. 2) We downloaded single-cell RNA sequencing data
from Ziesel et al., containing data for 3005 single cells from the hippocampus and
cerebral cortex of mice [71]. 3) We obtained human single-cell RNA sequencing data
of cortex samples from Darmanis et al., [7]. Within each gene expression database
we standardized the distribution of gene expression across samples with quantile
normalization. Expression samples from the same tissue or purified cell population
were averaged. In the case of single-cell expression data we took the average of
single-cell expression vectors for common previously defined cell type classes. To
compare across genes, we scale, center, and then square expression values across an-
notations. When using an expression database from mice, we only used orthologous
protein coding genes with a one-to-one functional mapping (based on the definition
in Ensembl’s BioMart [31]).

We downloaded publicly available GWAS summary statistics from 10 traits from their
respective publications: Schizophrenia [43], late-onset Alzheimer’s disease [36], four
metabolic traits from [19] (HDL cholesterol, LDL cholesterol, total cholesterol and
Tryglyceride levels), educational attainment [44], height [70], extreme body mass
index [3], and age-related cognitive decline [8]. We restricted or analysis to the
autosomes, removed the MHC region for immune traits (chromosome 6 between 25
and 34 Mb), and removed rarer variants (MAF < 0.1%). For late-onset Alzheimer’s
disease and age-related cognitive decline, in addition to using the entire set of GWAS
summary statistics, we ran RolyPoly after removing variants from a 1 Mb window
centered on the TSS of APOE (chromosome 19 between 44909011 and 45909011).
All referenced genome coordinates are from hg19.

Differential gene expression analysis

For the analysis of hgenej enrichment in differentially expressed genes of Alzheimer’s
patients, we downloaded microarray gene expression data from 230 samples of the
prefrontal cortex [72]. We used Limma to perform a differential gene expression
analysis between patient and control tissues [55]. Probes were mapped to genes using
a mapping downloaded from Ensembl’s BioMart [31]. If multiple probes mapped
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to a single gene we took the median expression value across all probes. Unless
otherwise specified, we performed Kolmogorov-Smirnov significance tests of gene
value enrichment within differentially expressed genes.

Calculating RolyPoly gene score enrichment accounting for cor-
relations among gene expression values

To assess the enrichment of RolyPoly gene scores among differentially expressed genes
we calculate the Spearman rank correlation coefficent, ρobs, between RolyPoly gene
scores and a differential expression t-statistics. A large value of ρobs indicates enrich-
ment of large RolyPoly gene scores among differentially expressed genes. Assessing the
significance of ρobs by considering each gene as independent will be anti-conservative
because of correlation between gene expression levels of co-regulated genes. To ac-
count for this, we generate an empirical sampling distribution for ρ under the null
of no association between RolyPoly scores and t which accounts for gene expression
correlation.

We estimate the variance-covariance matrix of gene expression in healthy individuals,
Σ. Because there are fewer samples than genes we use singular value decomposition
(SVD) to represent the low-rank Σ matrix. Under the null hypothesis, we generate a
gene expression matrix for both case and control samples using the same distribution,
Xi ∼ MVN(0,Σ). We have two sets of individuals, the set of healthy controls, H,
and the set of affected individuals, A (of equal size to the true data). For each gene
j we compute a t-statistic testing the difference between the means of the healthy
and affected simulated expression values,

tj =
x̄Aj − x̄Hj√
sAj
nA +

sHj
nH

(9)

where x̄j is the mean expression of gene j, sj is the sample variance, and n is the
sample size. We compute Spearman’s correlation coefficient ρsim between tj and hgenej .
We repeat the process of generating expression and calculating ρsim 103 times to
generate a null distribution which is then used evaluate the significance of ρobs.
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Calculating LD correlation values

We downloaded Phase 3 VCFs of European individuals from the 1000 Genomes
Project [1]. We used PLINK v1.90b1b to calculate Pearson’s r values of SNPs within
the default 1 Mb window [49].

RolyPoly implementation and usage

We implemented our method for use through the rolypoly R package, which is
made available free and open source via CRAN and at our git repository (see Web
Resources).

Results

Simulation

We used simulations (see Material and Methods) to verify our implementation of
RolyPoly and characterize properties of parameter estimation and hypothesis test-
ing.

Across 500 data simulations, we found that RolyPoly-inferred γ̂k parameters were un-
biased estimates of the true underlying effect γ∗k (see Figure 2A). This is an important
property if we aim to accurately quantify the total contribution of an annotation to
a trait, hannotk . hannotk summarizes the amount of signal present in the dataset to
detect an association between the trait and annotation k. In particular, our power
is strongly dependent on hannotk (see Figure 2B), where power refers to the probabil-
ity that we correctly reject the null hypothesis (i.e., γ̂ < 0). It is likely that some
fraction of GWAS effect sizes are drawn from a null distribution, which we do not
currently model in RolyPoly. Thus, we investigated the effect of varying the fraction
of GWAS effects drawn from the model distribution and our power to detect signifi-
cant annotations. As expected, when the fraction of genes simulated from the causal
distribution decreases we lose power (see Figure 2B). However, even with 25% of
genes (and downstream GWAS effect sizes) drawn from the causal distribution, we
achieve greater than 50% power for an annotation with hannotk ≈ 0.15. For context,
in real data, we consistently observed hannotk values greater than 0.1.
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Figure 2: Simulation results. A) Parameter inference is unbiased and accurate for a range of
simulated γ∗ effects. Red-dashed line represents the identity line. B) Power as a function of the
γ∗k and annotation values defined as hannotk in the Material and Methods section. Even when some
SNPs are drawn from the null distribution we maintain reasonable power to detect associations.

For data generated under the model, we demonstrated that our estimated parameters
are unbiased and have low levels of deviation around the true parameter values. Our
power to detect significant annotations is modulated by the annotation effect, the
annotation values, and the fraction of effects drawn from the model distribution. Fur-
thermore, in the setting where the effects are simulated from a mixture of the model
and null distribution we still have power to detect significant annotations.

Trait-relevant tissues identified from GTEx data

As a proof-of-principle, we ran our method on trait-association data from publicly
available GWAS traits and gene expression data from 27 tissues of 544 individuals
from the GTEx consortium (data download and processing described in Material
and Methods).

In Table 1, we summarize the top two tissue-trait associations that pass a marginal
significance threshold (p < 0.05) for seven GWAS traits. With an extreme body mass
index GWAS (BMI) we found associations with kidney (p = 7 × 10−3) and thyroid
(p = 0.03) tissue gene expression. Obesity is known to negatively affect kidney
function; however, from existing literature it is ambiguous whether the tissue has a
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Trait Tissue p-value
Height Muscle 6×10−10

Height Pituitary 6×10−7

TC Liver 2×10−4

TC Small Intestine 1×10−2

LDL Liver 2×10−3

LDL Small Intestine 2×10−2

TG Adrenal Gland 7×10−7

TG Liver 2×10−2

BMI Kidney 7×10−3

BMI Thyroid 3×10−2

HDL Liver 7×10−3

EA Pituitary 3×10−2

EA Brain 4×10−2

Table 1: Top trait-relevant GTEx tissue for seven GWAS traits and uncorrected p-values.

causal role in determining body mass index [23]. There are studies that demonstrate
a correlation between thyroid function and weight [53, 32]. We observed a significant
enrichment of educational attainment (EA) signal for genes specifically expressed in
the pituitary gland (p = 0.03) and brain (p = 0.04), which corresponds with recent
analysis [54, 44]. For height, we detect an association with muscle (p = 6 × 10−10)
and pituitary (p = 6 × 10−7). Interestingly, tumors in the pituitary are known to
lead to gigantism characterized by excessive growth and height [11]. Finally, for
several metabolic traits (TC, LDL, TG, HDL), there were signals for the liver, small
intestine, and adrenal gland, all of which follow known biology.

Next, we examined the total cholesterol (TC) GWAS [19], as its association with
liver has been unambiguously reported in the literature. For inference, we used a
total of 121,312 SNPs that were within 5kb of a protein coding gene. With p-values
from our model we ranked tissues by the strength of association with total choles-
terol (see left panel of Figure 3). As expected, liver was the clear top-associated
annotation (p = 2 × 10−4), and we estimated an annotation coefficient of 4 × 10−6

(see right panel of Figure 3). Thus, we estimated that the variance of TSS-proximal
GWAS effect sizes increase by 4 × 10−6 as normalized gene expression in the liver
increases by one unit (see Material and Methods for a description of gene expression
normalization). The small intestine was marginally associated (p = 0.01), which
follows from the fact that this organ has a central role in nutrient absorption. Addi-
tionally, we observed some signal for spleen (p = 0.04) and adrenal gland (p = 0.05).
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Figure 3: Total cholesterol and GTEx tissue ranking. Left, tissues were ranked by p-value, which
represents the strength of association with total cholesterol. Right, corresponding parameter esti-
mates and 95% confidence intervals.

While the spleen is primarily thought of as an immune organ, studies show a clear
link between splenectomy and lipid metabolism [13]. While the p-value for adrenal
gland was identified with a q-value of 0.3, the 95% confidence interval show a wide
distribution of non-zero parameter estimates of large positive effect. Considering the
adrenal gland plays a central role in the production of hormones (many of which
are synthesized from cholesterol or even have an effect on cholesterol levels), this
association is biologically plausible [42].

We wanted to verify that GWAS effect sizes were enriched for association signal near
genes that were specifically expressed in tissues with RolyPoly annotation coefficients
significantly greater than zero. First, we calculated LD-informed gene scores, which
estimate the variance of GWAS effect sizes from a cis window around each gene while
accounting for LD (see Material and Methods). Next, we visualized the enrichment of
these scores in specifically expressed gene sets using Q-Q plots (Figure 4). To define
the set of tissue-specific genes, we sorted normalized expression values for the tissue of

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/136283doi: bioRxiv preprint 

https://doi.org/10.1101/136283
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Total cholesterol and GTEx Q-Q plot comparing enrichment of LD-informed gene
scores. Both plots show the p-value from RolyPoly for the association between the respective tissue
and total cholesterol. A) Q-Q plot comparing enrichment of LD-informed gene scores in genes
that are uniquely expressed in the liver. To select gene sets, we sorted genes by their normalized
expression in the liver and took the top 20% of genes (red) and the bottom 20% of genes (blue). B)
Similar plot, except stratifying gene values by Skin-specific gene expression, a tissue not predicted
to have a role in cholesterol regulation.

interest by decreasing abundance of normalized gene expression and identified the top
20% of genes as the tissue specific gene set. Correspondingly, we refer to the bottom
20% of genes sorted by expression as the control set. We observed clear enrichment of
total cholesterol cis-GWAS signal within the set of genes that were upregulated in the
liver (Figure 4A). As a negative control, we employed the same Q-Q plot approach
to determine whether there was GWAS signal around genes specifically expressed in
a tissue not found to contribute significantly to total cholesterol. Within specifically
expressed genes of the skin tissue (Figure 4B), we did not observe an enrichment of
GWAS signal.

Neuropsychiatric diseases and single-cell gene expression

We next analyzed cell types identified from publicly available single-cell expression
data from the human brain [7] and several neuropsychiatric traits: age-related cogni-
tive decline, late-onset Alzheimer’s disease, educational attainment, and schizophre-
nia. In total we used 477 human single cells from which gene expression data were
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collected. Using a PCA-based clustering approach, the original authors grouped the
single cells into 6 primary cell types and two clusters of fetal cortical cells represent-
ing quiescent and replicating cell states. For each gene we averaged gene expression
counts for all cells within a cell type cluster, thus reducing the noise across single-
cell measurements (see Material and Methods). Using our model, we tested the
association between each of the traits and 8 clustered cell types (Figure 5).

Age-related cognitive decline (ACD) is a trait characterized by a decline in cognitive
capability and decreases in brain volume, both thought to be a normal function of
aging. However, evidence suggests that the rate at which cognitive decline occurs is
a precursor to late-onset Alzheimer’s disease (AD), hinting at a shared genetic archi-
tecture [8]. Thus, we were interested in whether significant overlap of trait-associated
cell types existed between the two traits. For ACD, we observed a significant asso-
ciation with fetal quiescent cells (p = 0.03), which primarily consists of neurons.
Quiescent fetal cells differ from replicating fetal cells in that they have begun to
downregulate neuronal growth factors such as EGR1 [7]. On the other hand, we
found an association with AD to microglia (p = 0.03) and astrocyte (p = 0.03)
cell types, but no enrichment for fetal neurons (p = 0.8). To rule out an association
driven by the APOE locus we reran RolyPoly while removing a 1 Mb window centered
on the APOE gene TSS. The significant microglia association persisted (p = 0.03)
whereas the astrocyte association did not (p = 0.1). While the connection between
astrocytes and AD is well studied [68], from our analysis this connection appears to
be driven by few loci of large effect. Furthermore, there is mounting evidence for a
more central role of microglia in AD [18, 56]. However, to our knowledge this is the
first human genetics-based enrichment analysis providing evidence for such a con-
nection. Additionally, our results suggest a role for microglia in AD but not ACD.
This finding is consistent with recent work demonstrating that while lipid regulation
pathways are enriched in GWAS signal for both traits, immune pathways tend to
show AD-specific signal [50]. Thus, one could hypothesize microglial involvement
during the transition between ACD and AD.

For schizophrenia we found a significant relationship to the oligodendrocyte (p =
0.02) and fetal replicating (p = 0.01) cell type clusters. The genetic basis of schizophre-
nia is even less well understood than AD, however there is a significant body of lit-
erature studying oligodendrocyte dysfunction and schizophrenia [64, 67]. Moreover,
recent genetic association studies have shown an enrichment of schizophrenia GWAS
signal within pathways of development [29, 22, 26].

To validate these associations between traits and single-cell cell type clusters, we
processed a single-cell data set (see Material and Methods) from mouse brains [71],
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Figure 5: Neuropsychiatric trait associations with single-cell based cell types. Parameter estimates
for age-related cognitive decline (ACD), Alzheimer’s disease (AD), Educational attainment (EA)
and Schizophrenia (SCZ), and single-cell based cell type clusters from the human brain data set [7].
Range specifies the empirical 95% confidence interval bound. Estimates highlighted in red represent
significant associations (p < 0.05).

which included seven major brain cell types that were previously identified. By only
utilizing one-to-one human and mouse orthologs, we consider this data set to be an
independent pseudo-human brain single-cell data set. Thus, we used this data set to
validate our previous findings. We limited our analysis to cell types overlapping in the
human and the mouse data set, which included microglia and oligodendrocytes. For
AD we replicated the significant association with microglia (p = 0.01). Of note, there
was a cluster that included astrocytes and ependymal cells, however there was no
significant association with this cluster. With schizophrenia there was a suggestive
association with the mouse-derived oligodendrocyte cell type cluster (p = 0.09).
Thus, from our analysis of mouse single-cell data we replicated two of our initial
trait and cell type associations. Furthermore, we demonstrate that if human data is
not available one could swap in similar mouse data to guide initial analyses.
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RolyPoly gene scores correlate with differentially expressed genes in pa-
tients with Alzheimer’s

We were interested in studying whether RolyPoly-inferred model parameters could
predict trait-relevant genes from an independent data set. Thus, we downloaded and
processed gene expression data from human brain samples of 101 control and 129
Alzheimer’s disease patients from the prefrontal cortex (see Material and Methods
and [72]). A total of 9,228 genes were differentially expressed (DE) with a q-value <
0.1% (6,324 genes did not meet this threshold). Such a differential expression study
represents a data-driven approach to identifying AD-associated genes (independent
from GWAS results). Additionally, we used summary statistics from this experiment
to test the ability of our model parameters to identify trait-relevant genes.

To establish a baseline, we tested the enrichment of LD-informed gene score estimates
within DE genes. These values were computed by taking the variance of GWAS effect
sizes within 5kb of a gene and incorporating information about LD (see Material
and Methods). We detected only weakly suggestive (p = 0.09) enrichment of these
values within the set of DE genes compared to genes not found to be significantly
expressed.

As a first step to incorporating information from RolyPoly-inferred model parameters,
we tested whether genes that were specifically expressed in a RolyPoly-inferred trait-
relevant cell type were enriched for larger differential expression test statistics. We
identified the top 10% of genes specifically expressed in the microglia cell type (which
our model identified as significantly associated with Alzheimer’s disease). Within this
set of genes we found a significant enrichment (p = 1×10−8) of positive values of the
differential expression test statistic when compared to a control set of genes (right,
Figure 6A). We performed a similar analysis with a cell type for which RolyPoly
did not find evidence for AD-association. There was no enrichment of DE summary
statistic values within the set of genes specifically expressed in fetal quiescent cells
(left, Figure 6A).

From these observations we reasoned we could rank the trait-relevance of genes based
on RolyPoly-inferred parameter estimates, γ̂, and gene expression. As an example
for Alzheimer’s disease, a gene that is specifically expressed in microglia and astro-
cyte cells would be higher ranked than a housekeeping gene. Thus, we defined the
RolyPoly trait-relevance gene score hgenej as a linear combination of γ̂ and normalized
gene expression values (see Material and Methods). Using the model from the AD-
specific panel of Figure 5 and human brain single-cell gene expression we computed
estimates of hgenej . Furthermore, we hypothesized hgenej values could predict differ-

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/136283doi: bioRxiv preprint 

https://doi.org/10.1101/136283
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: RolyPoly-inferred model parameters predict differentially expressed genes in the prefrontal
cortex (PFC) of Alzheimer’s disease patients. A) Differential expression test statistics (a larger
value represents genes that are upregulated in the brains of case patients) were significantly larger
in the set of genes specifically expressed in the microglia cell type compared with a control gene set
(right). We define the set of cell type-specific genes as the top 10% specifically expressed genes. We
compared them to the control gene set, which include genes that deviate the least from average gene
expression. The differential expression test statistic was not enriched in genes specifically expressed
in the fetal quiescent cell type (left). B) Controlling for the effect of correlation between gene
expression values of co-regulated genes, we observed an enrichment of hgenej values in differentially
expressed genes. The significance of the observed Spearman’s rank correlation coefficient between
hgenej and the differential expression test statistic was evaluated with a null distribution generated
from simulations, which account for the gene expression covariance structure (full details of this
test can be found in the Material and Methods).

entially expressed genes. We found hgenej scores were significantly enriched within
the differentially expressed genes (p = 7 × 10−18, Figure S1). However, it is possi-
ble that correlations among co-regulated genes could result in uncalibrated p-values.
Therefore, we designed a test that accounts for the covariance structure between
genes (see Material and Methods). Using this test we still identified a significant
association (p = 4 × 10−3) between differentially expressed genes and hgenej values
(see Figure 6B).

For validation, we were interested in replicating our enrichment of hgenej in differen-
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tially expressed genes in an independent data set. Sekar et al., performed laser cap-
ture microdissection to isolate astrocytes from 10 healthy controls and Alzheimer’s
patients, and then identified 227 differentially expressed genes [58]. Of those genes,
we predicted RolyPoly gene scores for 150 (the others were excluded because they
were not measured in the single-cell expression database). We replicated our previ-
ous result and identified a significant (p = 1× 10−3) enrichment within differentially
expressed genes (Figure S2). We were unable to perform our enrichment test that
accounts for gene correlations, because gene expression data was not available for
this data set.

Thus, we conclude that from GWAS and gene expression data of healthy individuals
our model parameters capture information about the relevance of a gene to a trait
based on which cell types express the gene. Still, we cannot discount the possibility
that observed enrichments of differential expression test statistics are a result of
changes in cell type proportions. However, in such a scenario we would have identified
trait-relevant cell types that are increasing or decreasing in proportion and thus would
be consistent with our conclusion about RolyPoly parameters.

Discussion

We described a polygenic model for analyzing single-cell gene expression and GWAS
summary statistics. Our results demonstrate that we can identify trait-relevant cell
types from complex tissues and prioritize genes for further analysis.

We discuss the following assumptions underlying RolyPoly: i) we focused on cis-
GWAS effects (as opposed to trans), because cis-SNPs tend to more consistently
have effects, and larger effects, on the regulation of gene expression genome-wide
[69, 63, 21, 41, 48]. ii) Our model treats neighboring genes independently even though
some may have shared cis-SNPs, which could result in correlation among nearby SNP
effect sizes. However, we corrected for this effect by performing block bootstrap
when computing standard errors and empirical confidence intervals. iii) As this is a
joint analysis (we estimate all annotation parameters at the same time), inclusion or
exclusion of gene expression data that are causal or correlated with causal cell types
can have an effect on inference (i.e., result in different model parameter estimates).
However, joint analysis is necessary because analyzing each cell type separately would
not control for potential overlap of specifically expressed genes. To mitigate these
effects we suggest several approaches. First, we re-analyze a trait GWAS as more
data become available. Secondly, we recommend a cautious interpretation of model
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parameters, which should be guided by domain knowledge. Finally, with highly-
correlated annotations, one could carry out an initial round of feature selection before
performing standard inference or include regularization (described in Material and
Methods). Even with these model assumptions, our results are well supported by
known biology, as shown in the analysis of tissues and brain cell types.

To the best of our knowledge, this is the first attempt to connect single-cell gene
expression and genome-wide summary statistics from GWAS to identify relevant cell
types and genes. While there is evidence linking the immune system and microglia
to Alzheimer’s disease [18], we identified for the first time an enrichment of genetic
trait-association signal near genes specifically expressed in human microglia. More
generally, single-cell technologies represent an opportunity to discover and charac-
terize novel cell types and cell states [52]. Thus, there is a need for methods such as
RolyPoly that can prioritize novel cell types for further study that are relevant to hu-
man phenotypes. Here, we focused on single-cells clustered into cell types, however
there are numerous alternative groupings to examine. For example, during cell stim-
ulation there exists significant cell heterogeneity even within classical marker-defined
immune cell type populations [59, 2]. Using RolyPoly one could link these novel sub-
populations to autoimmune disease phenotypes. These analyses should only increase
as single-cell data become more commonly available.

It is challenging to pinpoint causal genes from GWAS, because correlations among
SNP effects due to LD confound the identification of causal variants. Moreover, it
is difficult to identify the target gene modulated by a regulatory variant. Statisti-
cal methods that integrate GWAS and eQTLs, while accounting for the effects of
LD [34, 24], have proven useful. However, the eQTL data may not be specific to the
disease-relevant tissue or cell type. To supplement these approaches we suggest using
the signature of gene expression and parameters from our model to prioritize genes
proximal to significant GWAS variants for further analysis. Consider a region with
complex LD structure and significant trait-association signal, ideally one would rely
on overlapping eQTL information to identify the causal SNP and gene. But, without
knowledge of the causal tissue, GWAS-eQTL overlap with a non-causal tissue could
be misleading and complicate the task of collecting relevant eQTL information. In-
stead, one could use annotation parameter estimates from RolyPoly with tissue or cell
type-specific gene expression to calculate hgenej trait-importance values and prioritize
genes within the local GWAS region. Additionally, as we have shown, our method
can identify significantly associated tissues which one could prioritize for collection
of population samples for eQTL analysis.
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Appendix

Derivation of univariate effect estimates

We follow much of the notation and derivation from [60]. Starting with the defi-
nition of the annotation coefficients (recalling that the genotype matrix has been
scaled),

β̂i =
1

n
XT

i y

we substitute the GWAS model,

β̂i =
1

n
XT

i (Xβ + ε)

=
1

n
XT

i X1β1 + ...+
1

n
XT

i Xpβp +
1

n
XT

i ε

and use the definition of Pearson’s correlation coefficient once again relying on the
fact that the genotype matrix have been scaled and centered,

β̂i =

p∑
i′=1

rii′βi′ +
1

n
XT

i ε.

In the Material and Methods section we write the above expression with matrix
notation. Others have described a similar relationship between estimated effects,
LD, and the true effect sizes [30].

Derivation of distribution parameters of effect estimates

Here we describe the mean and variance of the estimated SNP effects using our
polygenic model. The expected value is computed as follows,

E[β̂] = E[Rβ + (1/n)XTε]

= RE[β] + (1/n)XTE[ε]

and because we model the genetic and environmental effects with 0 mean normal
distributions we conclude that E[β̂] = 0. Next,

V[β̂] = V(Rβ + (1/n)XTε)

= RV(β)R+ (1/n2)XV(ε)XT

= RDR+ (σ2
e/n)R,
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where D refers to the diagonal matrix of SNP effect size variances and in the second
equality we use the fact that R = RT . We use these values of the expectation
and variance to parameterize the multivariate normal distribution that describes the
estimated GWAS effect sizes.

Derivation of expected SNP variance

Note that the distribution of the squared `2 norm of a random vector drawn from a
mean 0 multivariate normal distribution is the trace of the covariance matrix [37, 40].
Thus, the expected value of the sum of squared SNP effect sizes near gene j is given
by,

E
[∑
i∈Sj

β̂2
i

]
= Tr(τjRSj

RSj
+ σ2

en
−1RSj

)

= τjTr(R2
Sj

) + |Sj|σ2
en
−1.

This was derived using the linearity of the trace and recalling that R is a correlation
matrix and hence the diagonal elements are 1. When SNP annotations are included,
we model the expected value of the squared marginal SNP effect size. The marginal
distribution of the squared SNP effect size around gene j is β̂i ∼ N(0, σ2

en
−1 +

(RSj
DSj

RSj
)ii). Finally,

E[β̂2
i ] = Tr(σ2

en
−1 + (RSj

DSj
RSj

)ii), where i ∈ Sj
= σ2

en
−1 + (RSj

DSj
RSj

)ii

Relationship to previous work

Rewriting (RDR)ii as
∑

i′ νi′r
2
ii′ , and substituting quantitative feature values with

an indicator function that signifies if a SNP is within a discrete annotation class, we
arrive at an equation similar to the basic LD Score regression model,

E[β2
i ] = (σ2

e/n) +
∑
i′

νi′r
2
ii′

= (σ2
e/n) +

P∑
l=1

φl
∑
i′

1l(bi′)r
2
ii′ +

N∑
k=1

γk
∑
i′

1k(ag(i′))r
2
ii′ .
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Note that we went from the first to the second line by substituting ν from equation 3.
Although the models share some similarities, our model was derived independently
to utilize the full quantitative data from single-cell gene expression assays.

Supplemental Data

Supplemental Information includes two figures.
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Feitosa, M. F., Justice, A. E., Monda, K. L., Croteau-Chonka,

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/136283doi: bioRxiv preprint 

https://github.com/dcalderon/rolypoly
https://cran.r-project.org/package=rolypoly
https://doi.org/10.1101/136283
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. C., Day, F. R., et al. Genome-wide meta-analysis identifies 11 new
loci for anthropometric traits and provides insights into genetic architecture.
Nature Genetics 45, 5 (2013), 501–512.

[4] Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scial-
done, A., Theis, F. J., Teichmann, S. A., Marioni, J. C., and Ste-
gle, O. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-
sequencing data reveals hidden subpopulations of cells. Nature Biotechnology
33, 2 (2015), 155–160.

[5] Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang,
J., Patterson, N., Daly, M. J., Price, A. L., Neale, B. M., of the
Psychiatric Genomics Consortium, S. W. G., et al. LD Score regression
distinguishes confounding from polygenicity in genome-wide association studies.
Nature Genetics 47, 3 (2015), 291–295.

[6] Claussnitzer, M., Dankel, S. N., Kim, K.-H., Quon, G., Meuleman,
W., Haugen, C., Glunk, V., Sousa, I. S., Beaudry, J. L., Puviindran,
V., et al. FTO obesity variant circuitry and adipocyte browning in humans.
New England Journal of Medicine 373, 10 (2015), 895–907.

[7] Darmanis, S., Sloan, S. A., Zhang, Y., Enge, M., Caneda, C., Shuer,
L. M., Gephart, M. G. H., Barres, B. A., and Quake, S. R. A survey
of human brain transcriptome diversity at the single cell level. Proceedings of
the National Academy of Sciences 112, 23 (2015), 7285–7290.

[8] De Jager, P. L., Shulman, J. M., Chibnik, L. B., Keenan, B. T.,
Raj, T., Wilson, R. S., Yu, L., Leurgans, S. E., Tran, D., Aubin,
C., et al. A genome-wide scan for common variants affecting the rate of
age-related cognitive decline. Neurobiology of Aging 33, 5 (2012), 1017–e1.

[9] Degner, J. F., Pai, A. A., Pique-Regi, R., Veyrieras, J.-B., Gaffney,
D. J., Pickrell, J. K., De Leon, S., Michelini, K., Lewellen, N.,
Crawford, G. E., et al. DNase I sensitivity QTLs are a major determinant
of human expression variation. Nature 482, 7385 (2012), 390–394.

[10] Efron, B., and Tibshirani, R. Bootstrap methods for standard errors, con-
fidence intervals, and other measures of statistical accuracy. Statistical Science
(1986), 54–75.

[11] Eugster, E. A., and Pescovitz, O. H. Gigantism. The Journal of Clinical
Endocrinology & Metabolism 84, 12 (1999), 4379–4384.

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/136283doi: bioRxiv preprint 

https://doi.org/10.1101/136283
http://creativecommons.org/licenses/by-nc-nd/4.0/


[12] Farh, K. K.-H., Marson, A., Zhu, J., Kleinewietfeld, M., Housley,
W. J., Beik, S., Shoresh, N., Whitton, H., Ryan, R. J., Shishkin,
A. A., et al. Genetic and epigenetic fine mapping of causal autoimmune
disease variants. Nature 518, 7539 (2015), 337–343.

[13] Fatouros, M., Bourantas, K., Bairaktari, E., Elisaf, M., Tsolas,
O., and Cassioumis, D. Role of the spleen in lipid metabolism. British
Journal of Surgery 82, 12 (1995), 1675–1677.

[14] Finucane, H., Reshef, Y., Anttila, V., Slowikowski, K., Gusev,
A., Byrnes, A., Gazal, S., Loh, P.-R., Genovese, G., Saunders, A.,
et al. Heritability enrichment of specifically expressed genes identifies disease-
relevant tissues and cell types. bioRxiv (2017), 103069.

[15] Finucane, H. K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef,
Y., Loh, P.-R., Anttila, V., Xu, H., Zang, C., Farh, K., et al. Par-
titioning heritability by functional annotation using genome-wide association
summary statistics. Nature Genetics 47, 11 (2015), 1228–1235.
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