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Abstract 

Most expression studies measure transcription rates across multiple conditions followed 

by clustering and functional enrichment. This enables discovery of shared function for 

differentially expressed genes, but is not useful for determining whether pre-defined 

groups of genes share or diverge in their expression patterns. Here we present a simple 

data transformation method that allows Gaussian parametric statistical analysis of 

expression for groups of genes, thus enabling a biologically relevant hypothesis-driven 

approach to gene expression analysis.  

 

 

Determining gene function remains a fundamental problem in biology. Measuring 

gene expression levels via RNA-seq analyses across various treatments and developmental 

stages from many tissues greatly facilitates gene, pathway, and genomic functional 

annotation and interpretation. Many sophisticated statistical models and implementations 

have been developed to reduce measurement bias introduced during sampling and 

technical procedures1,2,3,4,5. Following normalization, downstream analyses commonly aim 

to discover the function of genes that share differential expression (DE) patterns based on, 

shared biochemical pathways, biological processes, etc. Other, less commonly used 

approaches assess DE within pre-defined gene sets6,7. Such existing approaches are either 

‘competitive’ or ‘self-contained,’ terms coined by Geoman and Buhlmann8. The competitive 

approach identifies gene sets enriched with more or less DE as compared to the 

background gene set. The self-contained approach focuses only on the information from 

gene sets of interest. Each approach has important caveats. Competitive group analysis 

depends on the background distribution and assumes independent sampling8,9,10. Self-

contained analyses are highly affected by extreme values of expression for single genes; 

thus one highly expressed gene could result in failure to detect otherwise significant 

patterns. Here we present a different method: expression data transformation followed by 

Gaussian statistical assessment that enables comparative assessment of expression 

patterns among pre-defined groups, both within and across treatments.  

After read count normalization and transcription rate normalization (based on, e.g., 

housekeeping gene mean values), transcription rates can be compared among individual 

genes or groups of genes. The distribution of expression values across all genes generally 

follows an exponential curve, with the majority of genes expressed at relatively low levels 

(see Figure 1a).  Through log transformation, these distributions become approximately 

normal (Figure 1b), thus enabling downstream analysis of differences among specific 

groups of genes including parametric approaches (e.g., Student’s t-test) to determine the 

significance of differences among groups based on expression pattern differences. To 

demonstrate this approach, we use a well-known phenomenon: the response of genes to 
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heat stress. Heat shock proteins (HSP) are regulated by heat shock factors (which are a 

specific group of transcription factors; abbreviated here HSF TFs)11,12. HSF TFs are 

negatively regulated by heat shock factor binding proteins (HSBPs)13,14. By dividing maize 

genes into subgroups, i.e., HSPs (reported in Pegoraro et al.15), HSBPs (from Gramene13,14), 

HSFs and other TFs (from GRASSIUS16,17), and housekeeping genes (see “Supplementary 

Material 2” from Lin et al.11), we compare each group’s response to heat stress using RNA-

seq datasets reported by Makarevitch et al.18.   

As expected, the expression pattern of shoot tissues of maize seedlings is extremely 

positively skewed (Figure 1a; non-stressed condition). Log transformation results in a 

distribution much closer to normal (Figure 1b). Log-transformed data collected from the 

shoot tissues of maize seedlings under non-stress (Figure 1c) and heat stress conditions 

(Figure 1d) generally follow the normal distribution (i.e., 93.1%-97.4% of all log 

transformed data were located within a 95% confidence interval), indicating that this 

transformation approach is reasonable. Because this method relies upon transformation to 

approximate a normal distribution, it is important to check the results of log 

transformation not only for all sampled genes and for all conditions, but also for each 

individual gene group and treatment combination. In this example, the housekeeping 

genes, HSFs, other TFs, and HSBPs all appear to roughly approximate the normal 

distribution (as assessed via QQ-plot; Figs. S1-8). However, the transformed expression 

pattern for HSPs do not follow the normal distribution (see Figs. S9 and S10) and are 

therefore not appropriate for analyses using parametric tests of significance among groups. 

This result exemplifies the need to inspect transformed distributions as a step in applying 

this method.  

As one might expect given the well-understood biology of response to heat stress, 

transcription of HSF TFs increases in response to heat stress and shows a very different 

distribution than other TFs (Figure 1, panels e and f). Relative to the non-stress condition, 

HSF TFs have right-shifted RNA expression distributions relative to housekeeping genes 

and other TFs under heat stress.  Beyond inspecting the distributions, this data 

transformation approach allows application of parametric statistical approaches, e.g., the t-

test, to compare mean values between distributions within a given sample. As shown in 

Table 1, under non-stress conditions, the t-test fails to reject the null hypothesis (i.e., HSF 

TF and other TF have no differences in mean values).  However, as shown in Table 2, under 

heat stress t-test results reject the null hypothesis, indicating that the higher expression of 

HSF TFs is significantly different than that of other TFs. As shown in Table 3, the expression 

distribution shifts between Figure 1 panels e and f are significant only for HSF TFs, but not 

for other TFs nor for the HSBP group.   
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Figure 1. Log transformation enables Gaussian modeling of expression patterns among groups of 

genes.  (a) The percentage of maize genes with a given RNA expression level (transcripts per million) plotted 

for the non-stress condition. (b) Log transformation of the same RNA expression values results in a roughly 

normal distribution. (Note y axis is not the same between panels a and b.) (c and d) QQ-plots (normal 

distribution quantiles plotted against sample quantiles) for the log-transformed data collected for non-stress 

(c) and heat stress (d) shown as black circles. Solid red diagonal indicates perfect concordance.  Red dashed 

lines indicate the 95% confidence interval (CI). Purple brackets indicate the percentage of data falling outside 

the 95% CI. (e and f) RNA expression levels normalized by housekeeping genes are plotted by percentage for 

non-stress (e) and heat stress (f) conditions. Housekeeping genes shown in green, HSPB in red, HSF TFs in 

turquoise, and other TF family genes in purple.   
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Table 1. t-test p-values between gene sets under non-stress conditions. 

  Sample size HSF TF  HSPB Other TF  

HSF TF  19 - <0.0004* 0.272 

HSPB 37 - - 0.0001* 

Other TF  1,299 - - - 

* p-values smaller than 0.05 after Bonferroni multiple test correction. 

Table 2. t-test p-values among the same groups of genes under stress 

conditions. 

  Sample size HSF TF  HSPB Other TF  

HSF TF  23 - 0.5003 0.0060* 

HSPB 37 - - <0.0001* 

Other TF  1,234 - - - 

* p-values smaller than 0.05 after Bonferroni multiple test correction. 

Table 3. t-test p-values among the same groups of genes 

under two conditions. 

  HSF TF  HSPB Other TF  

Heat vs 

normal 
0.0039* 0.1659 0.2457 

* p-values smaller than 0.05 after Bonferroni multiple test 

correction. 

 

 

One could easily use this approach to study other phenomena and to test various 

biological hypotheses. For example, recent studies report that motifs around regulatory 

regions of genes (such as transposable elements18, high GC content motifs19, and G-

quadruplexes20) may influence gene expression levels under stress conditions.  One could 

also apply this approach to evaluate the influence of gene sequence composition bias on 

expression (e.g., GC content effects) as well as expression differences that may be 

attributable to a gene’s local context (e.g., location on the chromosome or adjacency to 

other genes). Lastly, this method could be used to reassess the reasonableness of pre-

defined gene sets based on sequence similarity, phylogeny, or other sequence features. 

Novel approaches to enable hypothesis testing for shared regulation of gene sets are 

needed.  The approach we developed and report here is anticipated to be among the first of 

many such grouping-oriented analytics approaches under development. 
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Supplementary Material 

 

 
Figure S1. QQ-plot of housekeeping gene transcription levels under 

normal conditions. Normal distribution quantiles plotted against sample 

quantiles for the log-transformed data collected from non-stress shown as 

black circles. Black diagonal indicates perfect concordance.   
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Figure S2. QQ-plot of HSF TF transcription levels under normal 

conditions. Normal distribution quantiles plotted against sample quantiles 

for the log-transformed data collected from non-stress shown as black 

circles. Black diagonal indicates perfect concordance.   
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Figure S3. QQ-plot of HSP binding gene transcription levels under 

normal conditions. Normal distribution quantiles plotted against sample 

quantiles for the log-transformed data collected from non-stress shown as 

black circles. Black diagonal indicates perfect concordance.   

 

 

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2017. ; https://doi.org/10.1101/136143doi: bioRxiv preprint 

https://doi.org/10.1101/136143
http://creativecommons.org/licenses/by/4.0/


 

 
Figure S4. QQ-plot of other TF gene transcription levels under normal 

conditions. Normal distribution quantiles plotted against sample quantiles 

for the log-transformed data collected from non-stress shown as black 

circles. Black diagonal indicates perfect concordance.   
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Figure S5. QQ-plot of housekeeping transcription levels under heat 

stress conditions. Normal distribution quantiles plotted against sample 

quantiles for the log-transformed data collected from heat stress shown as 

black circles. Black diagonal indicates perfect concordance.   
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Figure S6. QQ-plot of HSF TF transcription levels under heat stress 

conditions. Normal distribution quantiles plotted against sample quantiles 

for the log-transformed data collected from heat stress shown as black 

circles. Black diagonal indicates perfect concordance.   
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Figure S7. QQ-plot of HSP binding gene transcription levels under heat 

stress conditions. Normal distribution quantiles plotted against sample 

quantiles for the log-transformed data collected from heat stress shown as 

black circles. Black diagonal indicates perfect concordance.   
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Figure S8. QQ-plot of other TF transcription levels under heat stress 

conditions. Normal distribution quantiles plotted against sample quantiles 

for the log-transformed data collected from heat stress shown as black 

circles. Black diagonal indicates perfect concordance.   
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Figure S9. QQ-plot of HSP gene expression levels under normal 

conditions. Normal distribution quantiles plotted against sample quantiles 

for the log-transformed data collected from heat stress shown as black 

circles. Black diagonal indicates perfect concordance.   
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Figure S10. QQ-plot of HSP gene expression levels under heat stress 

conditions. Normal distribution quantiles plotted against sample quantiles 

for the log-transformed data collected from heat stress shown as black 

circles. Black diagonal indicates perfect concordance.  
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