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Abstract 

There is substantial interest in the evolutionary forces that shaped the regulatory framework that 

is established in early human development. Progress in this area has been slow because it is difficult to 

obtain relevant biological samples. Inducible pluripotent stem cells (iPSCs) provide the ability to establish 

in vitro models of early human and non-human primate developmental stages. Using matched iPSC panels 

from humans and chimpanzees, we comparatively characterized gene regulatory changes through a four-

day timecourse differentiation of iPSCs (day 0) into primary streak (day 1), endoderm progenitors (day 2), 

and definitive endoderm (day 3). As might be expected, we found that differentiation stage is the major 

driver of variation in gene expression levels, followed by species. We identified thousands of differentially 

expressed genes between humans and chimpanzees in each differentiation stage. Yet, when we considered 

gene-specific dynamic regulatory trajectories throughout the timecourse, we found that 75% of genes, 

including nearly all known endoderm developmental markers, have similar trajectories in the two species. 

Interestingly, we observed a marked reduction of both intra- and inter-species variation in gene expression 

levels in primitive streak samples compared to the iPSCs, with a recovery of regulatory variation in 

endoderm progenitors. The reduction of variation in gene expression levels at a specific developmental stage, 

paired with overall high degree of conservation of temporal gene regulation, is consistent with the dynamics 

of developmental canalization. Overall, we conclude that endoderm development in iPSC-based models are 

highly conserved and canalized between humans and our closest evolutionary relative.  

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/135442doi: bioRxiv preprint 

https://doi.org/10.1101/135442
http://creativecommons.org/licenses/by/4.0/


	 3 

Introduction 

Differences in gene regulation between humans and other primates likely underlie the 

molecular basis for many human-specific traits (1). For example, it has been hypothesized that 

human-specific gene expression patterns in the brain might underlie functional, developmental, 

and perhaps cognitive differences between humans and other apes (2, 3). A recent comparative 

study that explored the temporal dynamics of gene regulation found potential differences in the 

timing of gene expression in the developing brain across primates (4). The authors argued that 

such differences might be related to inter-species differences in the timing of developmental 

processes. More generally, comparative studies in primates, while challenging, have already 

resulted in a few important insights into the evolution of gene expression levels and the traits 

they are associated with (5). Yet, we are also finding that gene expression patterns alone (without 

additional context or perturbation) provide little insight into adaptive phenotypes, molecular 

mechanisms, or even the specific biological processes involved in the observed changes in gene 

expression levels.  

The challenge is that comparative studies in humans and non-human apes are extremely 

restricted because we only have access to a few types of cell lines and to a limited collection of 

frozen tissues (5). A few studies have chosen to sidestep this limitation by using model organisms 

in an attempt to recapitulate inter-primate differences in gene regulation. In this approach, the 

phenotypic impact of differences in gene regulation between humans and non-human primates 

are studied with high spatial and temporal resolution in a model species, such as the mouse (6-

9). These studies are useful and often informative, but when model organisms are used to 

recapitulate gene regulatory differences between primates, the inference about function requires 

one to make a critically important assumption, which is typically not tested. Namely, one must 

assume that the effects of gene regulatory changes on complex phenotypes are identical in model 

organisms and in humans. This is a common assumption, not exclusively made in the context of 
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comparative studies. Indeed, every study of human disease that makes use of model organisms 

relies on this assumption to a certain extent. The difference is that model system studies of human 

disease ultimately have to seek evidence that inference based on model systems is relevant to 

humans. In contrast, studies of human evolution using model systems rarely, if at all, are required 

to meet this standard. Indeed, oftentimes it is unclear how to design an experiment in model 

organisms that can directly address a phenotype difference between humans and non-human 

primates, for instance, when the phenotypes under consideration are related to cognitive abilities. 

In such cases, the assumption that the effects of gene regulatory changes on complex phenotypes 

are identical in model organisms and in humans is strained (8). 

The caveats associated with using a model organism to study the phenotypic effects of 

regulatory differences between primates notwithstanding, until recently, it is not clear that there 

was an alternative approach. Indeed, while current comparative studies using primate material 

(tissue samples or cell lines) have provided valuable insight into the genetic architecture of gene 

regulation, we did not have a flexible and faithful framework with which to to dynamically study 

inter-species variation in gene regulation (5). In particular, frozen post-mortem tissues are not 

optimal templates for many functional genomic assays; as a result, we lack datasets that survey 

multiple dimensions of gene regulatory mechanisms and phenotypes from the same individuals 

(5, 10). Moreover, because it is rare to collect a large number of tissue samples from the same 

donor (particularly in non-human primates), we have never had the opportunity to study cross-

species, population-level patterns of gene regulation in multiple tissues or cell types derived from 

the same genotype (same donor). We also have not been able to comparatively study population-

level dynamics of gene regulation in primates, for example, during perturbation. In order to gain 

true insight into regulatory processes that underlie variation in complex phenotypes, we must 

have access to faithful model systems for a wide range of tissues and cell types. In other words, 
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to utilize comparative functional approaches to comparatively study the genetic architecture of 

complex phenotypes in humans and other apes, a new approach is needed. 

Recent technological developments in the generation and differentiation of induced 

pluripotent stem cells (iPSCs) now provide a renewable, staged and experimentally pliable source 

of terminally differentiated cells. Utilizing timecourse differentiation protocols, we can examine 

the context dependent nature of gene regulation, as well as the temporal roles of gene expression 

as different cell types and developmental states are established (11). This approach seems 

promising, and indeed, a handful of recent studies have been successful in utilizing iPSCs from 

humans and chimpanzees to characterize the uniquely human aspects of craniofacial 

development (12) and cortex development (13, 14).  

Primate iPSC panels are a particularly attractive system for comparative studies of early 

development. With recent advances in iPSC technology and sequencing, we can now begin to 

examine whether specific phases of development undergo similar levels of constraint in primates. 

To this end, we chose to differentiate iPSCs from human and chimpanzee into the endoderm 

germ layer; from which essential structures in the respiratory and digestive tracts are ultimately 

derived, including the liver, the pancreas, and the gall bladder, the lung, the thyroid, the bladder, 

the prostate, most of the pharynx and the lining of the auditory canals and the larynx (15). Using 

this system, we found evidence to support developmental canalization of gene regulation in both 

species, 24 hours after differentiation from an iPSC state.  
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Results 

Study design and data collection in the iPSC-based system 

To perform a comparative study of differentiated cells, we used a panel of 6 human and 

4 chimpanzee iPSC lines previously derived and characterized by our lab (16, 17). We 

differentiated the iPSCs into definitive endoderm, a process that was completed over 3 days (11), 

and included replicates of cell lines that were independently differentiated (see Methods and 

Figure 1a).  We assessed the purity of the differentiated cells on each day using flow cytometry 

with a panel of six canonical markers, corresponding to the cell types we expected in the different 

stages of differentiation (Figure S1; Supplementary Data S1).  

We also harvested RNA from iPSCs (day 0) prior to differentiation and subsequently 

every 24 hours to capture intermediate cell populations corresponding to primitive streak (day 

1), endoderm progenitors (day 2), and definitive endoderm (day 3). Overall, we collected a total 

of 32 human samples and 32 chimpanzee samples (Figure 1a). We confirmed that RNA from all 

samples was of high quality (Figure S2; Supplementary Data S2) and subjected the RNA to 

sequencing to estimate gene expression levels. Detailed descriptions of all individual donors, 

iPSC lines, sample processing and quality, and sequencing yield, can be found in the Methods 

section and Supplementary Data S3.  

To estimate gene expression levels, we mapped reads to the corresponding genome (hg19 

for humans and panTro3 for chimpanzees) and discarded reads that did not map uniquely (18). 

We then mapped the reads to a list of previously described metaexons across 30,030 Ensembl 

genes with one-to-one orthology between human and chimpanzee (10, 19). We eliminated genes 

that were lowly expressed in either species and normalized the read counts using the weighted 

trimmed mean of M-values (TMM) algorithm and a cyclic loess normalization by species and day, 

within individuals (Figure S3) (20, 21). We removed data from one clear outlier sample (H1B at 

Day 0; Figure S3) and repeated this process with the data from remaining samples to obtain TMM-  
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Figure 1. a. Study design. Four chimpanzees and six humans were studied at four time-points 
during endoderm development. (Two technical replicates from each of the chimpanzees and two 
technical replicates for two of the six humans for a total of 16 samples per time point.) iPSC: 
induced pluripotent stem cell, PS: primitive streak, EP: endoderm progenitor, DE: definitive 
endoderm. b. Heat map of normalized log2(CPM) as a measure of expression levels of 
transcription factors that are known to be highly expressed in one or more stages in the 
differentiation to endoderm (11). Generally, samples from the same day, regardless of species, 
cluster together. 
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and cyclic loess-normalized log2 counts per million (CPM) values for 10,304 orthologous genes 

(Figure 2a; Figure S4a; Supplementary Data S4). These normalized gene expression values were 

used in all downstream analyses. To mitigate the potential effect of gene length differences 

between the species on expression estimates using RNA sequencing, we also calculated reads per 

kilobase of orthologous exonic sequence per million mapped reads (RPKM) from the normalized 

read counts (Figure S4b).   

 

iPSCs-based system effectively models primate endoderm differentiation 

 A global survey of the gene expression data (using principal component analysis) 

indicated that the primary sources of gene expression variation are differentiation day (Figure 2a; 

Supplementary Data S5; regression of PC1 of normalized gene expression levels by differentiation 

day, P < 10-15), followed by species (regression of PC2 of normalized gene expression levels by 

species, P < 10-15). This observation was also supported by clustering analysis based on the 

correlation matrix of pairwise comparisons of the gene expression levels (Figure S5). 

Given the potential impact of study design properties on gene expression data and 

subsequent conclusions (22), we confirmed that none of our recorded variables related to sample 

processing were confounded with our main variables of interest, namely day and species 

(Supplementary Data S3, S5). We note that when all sequencing pools (mastermixes) were 

considered together, there was a relationship between adaptor sequence and day (χ2 test, 

Benjamini-Hochberg adjusted P = 0.01); however, this relationship is substantially weaker when 

‘adaptor sequence’ and ‘day’ were tested in each of the 4 sequencing pools separately (B.H. adj. 

P > 0.9 in each test).  Our most highly dependent variables with day or species were related to 

properties inherent to the iPSC model, including harvest density and day (B.H. adj. P = 0.01), 

harvest density and species (B.H. adj. P = 0.03), and harvest time and day (B.H. adj. P = 0.01) 

(Figure S6; Supplementary Data S3, S5). Overall, we were confident that our study design was 
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Figure 2. a. Normalized log2(CPM) expression measurements for all genes projected onto the axes 
of the first two principal components. Color indicates day. Shape represents species. PC1 is highly 
correlated with differentiation day (r = 0.92). PC2 is highly correlated with species (r = 0.93). b. 
Three box plots of normalized expression values for genes with known roles in endoderm 
development.  

 

appropriate given the properties of the in vitro system we used, and provided an effective data 

set for addressing address our biological questions of interest.  

After characterizing global gene expression patterns, we focused on the expression of 

specific transcription factors with known roles in developmental pathways (Figure 1b) and other 

previously known lineage specific markers (11, 23, 24). Consistent with the results of our FACS 

analysis (Figure S1), we observed that the temporal trajectory of expression levels of known 

lineage specific markers and transcription factors further supported the assumed differentiation 

stages in each day (e.g. primitive steak-specific markers had increased expression on day 1, Figure 

2b). The lineage specific markers and transcription factors were expressed at comparable levels 

in humans and chimpanzees at the relevant time points, consistent with previous literature (11, 

23), and further supporting the validity of our in vitro system (Figures 2b, S9b). 
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Comparative assessment of gene expression changes during differentiation 

To identify gene expression differences between humans and chimpanzees throughout 

the timecourse, we used the framework of linear models (see Methods). We first assessed how 

many genes were differentially expression (DE) across species at each time point independently. 

Using this approach, we observed that the number of DE genes between humans and chimpanzee 

was similar across all time points (at FDR of 5% we classified 4475 – 5077 genes as DE at the 

different times points; Figure 3a; Supplementary Data S6). Nearly half of the genes that were 

Figure 3. Number of differentially expressed (DE) genes in pairwise analyses. a. Venn 
diagram of all DE genes at each day (5% FDR). b. Venn diagram of all DE genes between 
consecutive time points in humans (5% FDR). c. Venn diagram of all DE genes between 
consecutive time points in humans (5% FDR). d. Venn diagram of genes with a significant 
species-time point interaction effect at each day (5% FDR). 
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classified as DE between the species in any single time point were found to be DE in all time 

points (2269 genes, 22%). Nearly a third of genes whose expression was measured in our 

experiment were not classified as DE between the species at any time point (2862 genes, 28%). 

Taken together, these observations suggested a strong relationship (violating the assumption of 

independent sampling) between gene regulatory patterns across samples from the different 

differentiation days, as expected. 

We proceeded to consider temporal expression patterns within species. We considered 

expression changes across consecutive time points and found that we have more power to detect 

temporal gene expression differences in chimpanzee compared to humans (Figures 3b, 3c, 4; 

Supplementary Data S7), especially with respect to the transition between endoderm progenitors 

(day 2), and definitive endoderm (day 3). Despite this potential technical difference between the 

species (see Discussion), we found substantial evidence for conservation of temporal regulatory  

 

Figure 4. A circos diagram with the number of shared, human-specific, and chimpanzee-specific 
DE genes across time points. There is a high degree of sharing of DE genes (yellow ribbon), 
particularly from day 0 to 1 and day 1 to 2. 
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patterns in early differentiation states, with a possible increased divergence in definitive 

endoderm. Indeed, when we accounted for incomplete power (see Methods), we estimated that 

77% of DE genes between iPSCs and primitive streak in humans are also DE between these states 

in chimpanzees; that 77% of DE genes between primitive streak and endoderm progenitors in 

humans are also DE between these states in chimpanzees; and that 80% of DE genes between 

endoderm progenitors and definitive endoderm in humans are also DE between these states in 

chimpanzees (Supplementary Data S8). As might be expected from these observations, we found 

that the relationship between day and gene expression was largely independent of species (Figure 

3d; Supplementary Data S9).  

 

Joint Bayesian analysis reveals conservation of temporal gene expression profiles 

In an attempt to overcome issues of incomplete power affecting these original naïve 

pairwise DE comparisons, and to account for dependency in data from different time points, we 

utilized a Bayesian clustering approach implemented by Cormotif (25). This joint modeling 

technique leverages expression information shared across time points to identify the most 

common temporal expression patterns (referred to as “correlation motifs”).  

We identified diverse expression patterns that emerge as differentiation progresses in 

both species (Figure 5, motifs 2-8; Supplementary Data S10) as well as a set of 3789 genes whose 

expression is not significantly altered throughout the timecourse (8004 genes could be reliably 

classified into a motif, see Methods for inclusion criteria; Figure 5, motif 1; Supplementary Data 

S10). We found further evidence for conserved gene expression patterns early in the timecourse, 

as 75% of genes assigned to a motif were assigned to motifs with the same (Figure 5, motif 5) or 

similar temporal regulatory trajectories in both species (Figure 5, motifs 2, 3, 8). When we 

discounted the definitive endoderm samples, where we suspect that a technical confounder has 

increased variance between the species, we assigned 85% of genes to motifs with the same  
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Figure 5. Correlation motifs with the probability of differential expression across days for each 
species and the estimated number of genes belonging to each correlation motif. The shading 
of each box represents the posterior probability that a gene is DE between two time points in a 
given species. Each row (“correlation motif”) represents the most prevalent expression patterns 
along the trajectory. 8004 out of the 10,304 total genes were assigned to one correlation motif in 
this model.  
 

temporal trajectories across species (Figure 5, motifs 3, 5, 6-8; see Discussion). These observations 

are robust with respect to the number of correlation motifs (Figure S8b, Supplementary 

Information), the method used to combine data from technical replicates (Figure S8c), which days 

were included in the pairwise comparisons (Figure S8d), and the inclusion of all 10,304 genes in 

the analysis (Supplementary Information). Our Cormotif results are also consistent with the 

degree of conservation in gene expression trajectories that we obtained by using a correlation-

based method to analyze relative changes in gene expression through the timecourse 

(Supplementary Information, Figure S9). Finally, the result that regulatory divergence in 

definitive endoderm is highest in our study is also constent with the results of the linear model 

based framework.   
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We found two correlation motifs with a potential marked difference between the species 

at a given stage (Figure 5, motif 4 with 187 genes and motif 7 with 686 genes). In both of these 

motifs, data from the earliest time points were conserved but gene regulation in the final stage 

(day 2 to 3) differed between the species. The genes in these motifs were enriched for Gene 

Ontology (GO) annotations related to animal organ development (e.g. NRTN, PITX2, RDH10), 

anatomical structure morphogenesis (ARHGDIA, EHD2, SERPINE1), regulation of 

developmental process (FLRT3, LOXL2, SEMA7A), and regulation of cell differentiation 

(DIXDC1, ENC1, IRF1; Bonferroni corrected P < 0.029 for all of these GO annotations in the 

PANTHER Overrepresentation Test; complete results in Supplementary Data S11) (26-28). In 

contrast, these four GO annotations were not enriched in other similarly sized motifs (Figure 5, 

motif 2) or group of motifs (Figure 5, motifs 3, 5).  

 

Reduced variation in gene expression levels at primitive streak 

We next turned our attention to differences in the magnitude of variation in gene 

expression levels across time points. Previous studies reported that variation in gene expression 

levels between individuals was lower in iPSCs than in differentiated cells including 

lymphoblastoid cell lines (LCLs) and iPSC-derived cell types (29). We were thus interested in 

gene expression variation during iPSC differentiation.  

We first compared within-species expression variation for all 10,304 orthologous genes 

across time points. Considering the distribution of expression variation across all genes, we found 

a marked reduction in inter-individual variation of gene expression levels as the human samples 

differentiated from iPSCs to primitive streak (P < 10-15, Figure 6; see Methods). We also detected 

this pattern when we considered the chimpanzee samples (P < 10-15, Figure 6), but the effect size 

in chimpanzee is much smaller. The differences in effect sizes notwithstanding, we did not 

identify similar reduction in variation in gene expression levels in any other transition during the  
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Figure 6. Global reduction of variation in gene expression from the iPSCs to primitive streak 
state. Box plot of the log2 variances of gene expression levels for each gene. Variation in gene 
expression levels are significantly reduced from iPSCs to primitive streak (P < 10-15 in both species) 
but not in subsequent time points (P > 0.5 in both species).  

 

timecourse in either species (P > 0.5 for testing the null of no change gene expression variance 

from day 1 to 2 and from day 2 to 3 in each species).  

The overall human-chimpanzee divergence in gene expression levels was also slightly 

reduced as samples differentiated from iPSCs to primitive streak (Figure S10, Mann-Whitney U 

Test, P = 0.04), but not in any other transition during the timecourse. Furthermore, while we 

classified 504 genes as DE between humans and chimpanzees exclusively in iPSCs (of a total of 

4,475 DE genes in iPSCs; FDR = 5%, Figure 3a, Supplementary Data S12), we found only 279 genes 

that were DE exclusively in primitive streak samples (from a total of 4,408 DE genes for the 

primitive streak). The number of genes that are DE between the species exclusively in endoderm 

progenitors and definitive endoderm samples is higher (at FDR of 5%, 402 and 934, respectively, 

Supplementary Data S12). The difference in the number of DE genes between these differentiated 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/135442doi: bioRxiv preprint 

https://doi.org/10.1101/135442
http://creativecommons.org/licenses/by/4.0/


	 16 

states could potentially be explained by a number of non-biological factors. Nevertheless, this 

observation is intriguing given that within species variation in gene expression levels – especially 

in humans - is lowest in primitive streak samples (namely, given a reduced variance, one would 

intuitively expect to have more power to detect inter-species DE genes between primitive streak 

samples). 

The observation of a smaller number of genes that are DE exclusively in primitive streak 

samples compared with iPSCs is robust with respect to the FDR cutoff, differentiation batch, and 

purity of the samples (Figure S11; Supplementary Data S12). We also determined that the 

recorded technical factors are highly similar across biological conditions in days 0 and 1, and 

therefore are not likely to explain this observation (see Methods; Supplementary Data S5, S13). 

We thus proceeded to analyze the trajectory of variation in expression level on an individual gene 

basis. In this analysis, we were particularly interested whether the individual genes that undergo 

a change in variation of expression levels are shared to both species or not.  

We used F tests to identify genes whose within-species variation in expression levels 

differs across time points (see Methods). Distributions of P values from all tests can be found in 

Figures 7a-b and Supplementary Data S14, which indicate that for a large number of genes, 

within-species variation in expression levels were reduced specifically and exclusively in 

primitive streak samples. Indeed, while we did not have much power to detect differences in 

variation in individual gene expression levels between states (due to such a small number of 

individuals in each species) we observed a clear excess of small P values from day 0 to 1, 

indicating a departure from the null expectation. Using Storey’s approach (30) to account for 

incomplete power, we estimated that within-species variation in expression levels was reduced 

as the samples differentiate from iPSCs to primitive streak in 83% and 27% of human and 

chimpanzee genes, respectively (Figure 7a-b, Day 0 to 1; see Methods). This result was robust 

with respect to the method used to calculate the proportion of true positives (31) (Figure S12).  
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Figure 7. Genes with reduced variation in gene expression values at the primitive streak  
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often demonstrate this property in both species. a. P value distributions from F tests of the null 
that variation in gene expression has not changed in chimpanzee samples. π0 is the proportion of 
null statistics in each distribution, so lower π0 values correspond to a larger estimate of true 
positives. b. P value distributions from F tests of the null that variation in gene expression has 
not changed in human samples. c. P value distribution from Figure 7a (orange) compared to the 
P value distribution calculated when one only considers genes for which reduced variation has 
already been observed (P < 0.05, white). d. Same as Figure 7c but the P value distribution was 
generated using human samples (blue) conditioned on significant genes in the chimpanzee 
samples (P < 0.05, white). e. P value distribution from an F test considering gene expression data 
from days 1 and 2 in the chimpanzee samples (orange) compared to the chimpanzee samples 
conditioned on the human samples (P < 0.05, white). f. P value distribution from an F test 
considering gene expression data from days 1 and 2 in the human samples (blue) and in the 
human samples conditioned on the chimpanzee samples (P < 0.05, white). 
 

The proportion of genes with reduced within-species variation in expression levels in 

primitive streak samples is quite different between humans and chimpanzees (Figure 7a-b, Day 

1 to 2). Yet, we had not observed this pattern in any other differentiation state in our data (Figure 

7a-b, Days 1 to 2, 2 to 3, and 1 to 2). We thus asked about the overlap of genes with reduced 

variation in primitive streak samples across the two species. Specifically, we asked whether 

human genes with lower within-species variation in expression levels in primitive streak are 

more likely to show the same pattern in chimpanzee genes. For this analysis, we again used the 

Storey approach (30) to estimate the proportion of true positive tests in one species, conditional 

on the observation of reduced variation in the other species (using a relaxed cutoff of unadjusted 

P value of 5%; see Methods). Using this approach, we found evidence that the pattern of reduced 

within-species variation in gene expression levels in primitive streak samples is generally 

conserved. We estimated that 47% of genes whose variation in expression level is reduced in 

human primitive streak samples showed a similar pattern in chimpanzees (under a permuted 

null we expect 27%, P < 10-4, see Methods; Figures 7c, S13a; Supplementary Data S15). When we 

condition on observing a reduction of variation in chimpanzees, the overlap with humans was 

84% (this high value was not unexpected because of the initial large proportion of human genes 
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with a clear signature of reduced variation in primitive streak; under a permuted null we expect 

83%, P = 0.38; Figures 7d, S13b; Supplementary Data S15). 

 Using a similar approach, we also found a marked overlap of genes whose expression 

underwent a significant increase in variation throughout the transition from primitive streak to 

endoderm progenitors (Figures 7e, 𝜋0 = 0.34 in chimpanzee genes conditioned on those with 

previously observed increased variation in the humans; Figure 7f, 𝜋0 = 0.09 in human genes 

conditioned on those with previously observed increased variation in the chimpanzees). All our 

observations were robust to a wide range of statistical cutoffs used to classify genes whose within-

species variation changes across the differentiation states (Figure S14).  
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Discussion 

In our opinion, the most significant finding of this study is the observation that regulatory 

variation is markedly reduced in both humans and chimpanzees, as the cell cultures differentiate 

from iPSCs to primitive streak. We believe that our finding that regulatory trajectories throughout 

endoderm differentiation are generally highly conserved in these two species was expected. Yet, 

our observation that a large number of genes are associated with reduced regulatory variation in 

a specific transition state, in both species, is a somewhat surprising property.  

Before we discuss the potential implications of our observation, we first highlight study 

design considerations for our iPSC-based differentiation models and a few caveats. Since we 

designed the study to facilitate cross-species comparisons, we used human and chimpanzee iPSC 

lines that were generated, and then differentiated, using the same protocols. We made 

considerable efforts to balance the majority of sample processing properties related to our study 

design with respect to species and time point. For example, the two differentiation batches we 

used included multiple human and chimpanzee lines (which we also balanced with respect to 

gender). We included a number of technical replicates across the batches, but we were able to 

include 4 replicates for chimpanzees and only 2 for humans. The greater number of chimpanzee 

technical replicates may have contributed to increased precision and thus to power to detect 

regulatory differences during the timecourse in chimpanzees.  

In vitro differentiation protocols are not identical to natural developmental signaling. 

Natural cell-driven developmental processes may be overridden by our administered media 

conditions. Indeed, even the most effective in vitro differentiation protocols are less effective than 

natural in vivo developmental signaling pathways. Thus, we used flow cytometry analysis with 

specific markers to estimate the purity of cell cultures at all times points in the second 

differentiation batch (Figure S1). Although we used an identical differentiation protocol across 

the entire experiment, we observed a wide distribution of cell purity across samples. In most time 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/135442doi: bioRxiv preprint 

https://doi.org/10.1101/135442
http://creativecommons.org/licenses/by/4.0/


	 21 

points the distribution of cell purity was not associated with species (this was reassuring), but in 

the last day, as samples differentiated to definitive endoderm, we observed a clear difference in 

cell purity between species (Figure S1d; Supplementary Data S1). As far as we can determine, the 

potentially technical inter-species difference in definitive endoderm purity should have no 

impact on our conclusions with respect to regulatory patterns in earlier differentiation time 

points. 

More generally, we cannot exclude the possibility that small differences in cellular 

heterogeneity can explain our observations, at least in part. Cellular heterogeneity has been 

explored in developmental studies as a potential factor that drives cell fate determination. For 

example, a study of single-cell gene expression during the first four days of mouse development 

revealed a progressive increase in variability in expression level of lineage specifying 

transcription factors (TFs) from blastomeres in the 8 cell stage to cells in the inner cell mass. The 

higher variability in the timing of TF expression changes in the inner cell mass is thought to 

underlie fate decisions between primitive endoderm and epiblast commitment (32). Similarly, a 

single cell gene expression study in human pre-implantation embryos has proposed that 

heterogeneity in the downregulation of genes in human blastomeres contributes to lineage 

predispositions (33). A recent study of single cell gene expression during differentiation of 

embryonic stem cells down each of the three lineages primary germ layers (endoderm, 

mesoderm, and ectoderm), revealed that cells differentiating down the endoderm lineage exhibit 

the most asynchrony, indicating that there is likely substantial heterogeneity of degree of 

differentiation at any given time point (34).  

Differences in cellular heterogeneity across time points may have driven the observation 

of reduced regulatory variation in primitive streak samples. In our opinion this is unlikely, 

because we expect the iPSC cultures to be the most homogenous in our experiment; nevertheless, 

we cannot provide data to exclude this explanation. In other words, without corresponding single 
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cell gene expression data, it is difficult for us to distinguish between canalization of regulatory 

trajectories and reduced cellular heterogeneity as potential explanations for our observations. 

Single cell RNA sequencing data will also be able to shed light on our observation that gene 

regulation in definitive endoderm (day 3), unlike earlier days, does not indicate strong 

conservation between the species. At definitive endoderm samples, we observed the largest 

number of DE genes across species (Figure 3a; Supplementary Data 6), the smallest number of 

DE genes between two consecutive time points in humans (Figure 3b; Supplementary Data 7), 

and the lowest overlap in DE genes between time points (Figure 4). Unlike in the human samples, 

the chimpanzees had a relatively consistent number of DE genes between any two consecutive 

time points (Figure 3c; Supplementary Data 8). Some of these observations might be explained 

by the cell purity difference between species.  

There is clearly a need for greater resolution, both temporal and spatial, in future studies 

of endoderm differentiation. Nevertheless, we argue that our observations indicate a strongly 

conserved temporal expression profile across species during early differentiation. Two lines of 

evidence support this conclusion. First, we observed a large number of genes with similar 

expression profiles across species. Indeed, we found that DE genes between differentiation states 

are shared between the two species far beyond what expected by chance alone (Supplementary 

Data S8). Our observations likely underestimated the proportion of shared regulatory patterns 

due to incomplete power, and consequently, our inability to reject the null should not be 

interpreted as strong support for the null. Moreover, when we jointly analyzed data from the 

entire timecourse, nearly all the gene expression trajectory motifs we identified, including 75% of 

all genes assigned to a motif (Figure 5), are shared across the two species. (The proportion of 

genes in the same gene expression trajectory motifs across species rises to 85% if we exclude data 

from definitive endoderm). Second, the observation of reduced variation of gene expression 
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within and across species at the primitive streak stage supports a highly regulated and conserved 

process. 

The observation of reduced regulatory variation is rather unusual in general, partly due 

to the unusual design of our study. Indeed, only few comparative studies have been designed to 

allow one to measure changes in variation over time. One such example, from a different context, 

can be found in a previous study in which monocytes from humans, chimpanzees, and rhesus 

macaques, which were stimulated with lipopolysaccharide (LPS) to mimic infection (35). When 

comparing gene expression in LPS-stimulated monocytes to that of non-stimulated cells, the 

authors found a reduction of inter-species variation in gene expression levels in a number of key 

transcription factors involved in the regulation of TLR4-dependent pathways. (It should be noted 

that this study did not focus on within-species variation changes.) In our current study, we found 

a more general change in regulatory variation across differentiation states, within and across 

species, without partitioning the genes into particular pathways or networks. Perhaps the 

number of regulatory pathways involved in an early developmental lineage commitment is be 

higher than those involved in a cellular response to stimulus by lineage committed cells, or 

perhaps – as has been suggested previously (36)- developmental pathways need to be more 

tightly regulated in general. 

 Indeed, reduced regulatory variation early in the endoderm differentiation process may 

be driven by the property of canalization during development. The theory of canalization posits 

that developmental processes end in a finite number of states despite minor environmental 

perturbations (36-38). Canalization is fundamentally linked to evolutionary states (37), and thus 

phenotypic robustness; therefore, even when reduced variation in gene expression levels is 

observed in cell culture, the explanation of canalization is intuitively appealing considering the 

discrete nature of cell types in an adult animal. Our results suggest that stages subsequent to 

primitive streak may follow a more relaxed transcriptional regulation with higher influence of 
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individual genotypes. Our observations, therefore, may be consistent with activation of deeply 

conserved regulatory programs at the initial stages of gastrulation followed by processes less 

affected by evolutionary constraint and therefore potentially more amenable to adaptation. In 

other words, our results supports the expectation that gastrulation is a highly canalized and 

conserved process in humans and chimpanzees.  

More generally, we believe that despite limitations to studying comparative development 

using iPSC models, which we have discussed, this model provides the opportunity to study 

previously unappreciated aspects of primate biology.  
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Methods 

Human and chimpanzee iPSC panels 

In this study, we include four chimpanzee iPSC lines (2 males, 2 females) from a 

previously described panel (16) and six human lines (3 males, 3 females) (17) matched for cell 

type of origin, reprogramming method, culture conditions and closely matched to passage 

number (median passage was within 1 passage across species and differentiation batches). We 

evaluated iPSC lines for pluripotency measures, differentiation potential, lack of integrations and 

normal karyotypes as described previously (16, 17) (Figure S15-17). We identified one human 

individual (H5) that tested positive for episomal vector sequence (Figure S17a). This individual 

was not an obvious outlier in any of our data (Figure 1b, 2), thus we choose to include it in our 

study. Original chimpanzee fibroblast samples for generation of iPSC lines were obtained from 

the Yerkes Primate Center under protocol 006–12.	Human fibroblasts samples for generation of 

iPSC lines were collected under University of Chicago IRB protocol 11–0524. Feeder free iPSC 

cultures were initially maintained on Growth Factor Reduced Matrigel using Essential 8 Medium 

(E8) as previously described. After 10 passages in E8, all cell lines were transitioned to iDEAL 

feeder free medium that was prepared in house as specified previously (39). Cell culture was 

conducted at 37°C, 5% CO2, and atmospheric O2. 

 
Endoderm Differentiation 

To produce definitive endoderm and intermediate cell types, we followed a recently 

published three-day protocol that systematically identified and targeted pathways involved in 

cell fate decisions, at critical junctures in endoderm development (11) with minimal modification. 

At 12 hours prior to initiating differentiation, iPSC lines at 70-90% confluence were seeded at a 

density of 50,000 cells/cm2. Basal medial for differentiations consisted of 50/50 IMDM/F12 basal 

media supplemented with 0.5 mg/mL human albumin, 0.7 µg/mL Insulin, 15 µg/mL holo-
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Transferrin and 1% v/v chemically defined lipid concentrate. For differentiation, basal media was 

supplemented with the following: day 0 to day 1 (Primitive streak induction) media included 100 

ng/mL Activin A, 50 nM PI-103 (PI3K inhibitor), 2 nM CHIR99021 (Wnt agonist), days 1->2 (total 

of 2 media changes) media included 100 ng/mL Activin A and 250 nM LDN-193189 (BMP 

inhibitor). Two independent differentiation batches were performed, resulting in replicates for a 

subset of individuals. Each chimpanzee was replicated, while only two humans individuals were 

replicated across the two batches. Replicates were sex-balanced both within and across species. 

Cell culture was conducted at 37°C, 5% CO2, and atmospheric O2. 

 
Purity assessment using flow cytometry 

Cells were dissociated using an EDTA based cell release solution, centrifuged at 200 x g 

for 5 minutes at 4°C and washed with PBS. Subsequently, 0.5-1 million cells were fixed and 

permeabilized using the Foxp3 / Transcription Factor Staining Buffer Set from eBioscience. Cells 

were fixed at 4°C for 30 minutes before washing once using FACS buffer (autoMACS® Running 

Buffer, Miltenyi Biotech). 150,000 cells were transferred to BRAND lipoGrade 96 well 

immunostaining plates and centrifuged at 200 x g for 5 minutes at 4°C. Cells were rinsed in FACS 

buffer then resuspended in the staining solution. A single master mix containing 1X 

Permeabilization buffer (eBioscience), BD Horizon Brilliant Stain Buffer and antibodies was 

prepared and 30 µL of this mix was added to each well containing cells. In order to estimate 

purity for each day of the timecourse, we utilized a mixture of six different directly labeled 

antibodies: Oct3/4 (BV421 labeled clone 3A2A20, Biolegend), SOX2 (PerCP-Cy5.5 labeled clone 

O30-678, BDbio), SOX17 (Alexa 488 labeled clone P7-969, BDbio), EOMES (PE-Cy7 labeled clone 

WD1928, eBioscience),CKIT (APC labeled clone 104D2, Biolegend), CXCR4 (BV605 labeled clone 

12G5, Biolegend). All antibodies were used at the manufacturer recommended dilution except 

CKIT and CXCR4, which was used at 1/10 of the manufacturer specified concentration (15 ng of 

each antibody in final volume of 30 µL per staining). We found that the manufacturer 
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recommended dilution produced acceptable results for live cells, however, upon fixing, we 

observed nonspecific binding by all populations. Thus we determined the optimal antibody titer 

to maximize the separation between iPSCs (biological negative) and Day 3 definitive endoderm. 

We found this optimal concentration to be in concordance with that quantity specified by a 

previous publication using the same antibody clone from a different manufacturer (39). Cells 

were stained for 1 hour at 4°C and subsequently washed 3x using a solution of BD Horizon 

Brilliant Stain Buffer containing 1X Permeabilization buffer, on the final wash cells were 

resuspended in 100 µL FACS buffer for acquisition on a BD LSR II flow cytometer. After data 

acquisition compensation, we used the program FlowJo (http://docs.flowjo.com/d2/credits-2/ ) to 

determine scaling. To do so, we used data from single stained compensation beads (Life 

Technologies) that were stained and collected in parallel. Live, intact, single cells were gated 

based on FSC and SSC channels as previously described (11). Day 0 iPSC purity was estimated 

by dual positive OCT3/4 and SOX2 (40) as well as negative staining for EOMES. Day 1 primitive 

streak purity was estimated primarily based on EOMES Positive staining (23, 41) but also 

negative staining for SOX17. Day 2 endoderm progenitor purity was quantified by positive 

staining for SOX17 expression (42) (CKIT could also be used, as its level peaks at day 2) and 

negative staining for CXCR4. Finally, day 3 definitive endoderm purity was estimated by double 

staining for CKIT and CXCR4 (43). For all time points, cells were stained with the full complement 

of markers; initial gates were defined using fluorescence intensity levels of an iPSC line as a 

biological negative control for days 1, 2, and 3. For day 0 (iPSCs), a definitive endoderm time 

point was used to quantify the biological negative for OCT3/4 and SOX2 fluorescence intensity. 

All iPSC lines regardless of species were at comparable fluorescence intensity levels, so we choose 

a representative chimp and human line to use as our standard for defining and refining all gates. 

Fully resolving all time points simultaneously required us to define high and low staining gates, 

which were determined using the time points for that marker’s maximum and minimum 
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fluorescence intensities. All gates were refined using the same two representative chimpanzee 

and human lines as used for determining biological negatives, resulting in one universal gating 

scheme that was applied to both species and all time points. A complete gating scheme is outlined 

in Figure S1a-b, with the final purity results for the second batch of differentiation in 

Supplementary Data S1. The samples in the first differentiation batch demonstrated hallmarks of 

improper fixing (highly nonspecific staining of antibodies, most notably for surface markers 

CXCR4 and CKIT), thus we were unable to determine reliable purity estimates for the first 

differentiation batch. 

 
RNA extraction, library preparation, and sequencing  

We collected RNA from iPSCs (day 0) prior to adding day 1 media, and then every 24 

hours during the differentiation timecourse for a total of 4 time points representing intermediate 

cell populations from iPSCs to definitive endoderm (Figure S6b). We extracted the RNA using 

the ZR-Duet DNA/RNA MiniPrep kit (Zymo) with the addition of an on column DNAse I 

treatment step prior to RNA elution. To estimate the RNA concentration and quality, we used the 

Agilent 2100 Bioanalyzer (Figure S2). We added barcoded adaptors (Illumina TruSeq RNA 

Sample Preparation Kit v2) and sequenced the 50 base pair single-end RNA-seq libraries on the 

Illumina HiSeq 4000 at the Functional Genomics Core at University of Chicago on two flowcells 

(Supplementary Data S3). To minimize the introduction of biases due to batch processing, we 

chose the RNA extraction batches, library preparation batches, sequencing pools, adaptor names, 

and flowcells in a manner that maximally partitioned the biological variables of interest (day, 

species, cell line; Supplementary Data S3, S5).  

We generated a minimum of 14,424,520 raw reads per sample. We used FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to confirm that the reads were 

high quality.  
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Quantifying the number of RNA-seq reads from orthologous genes 

We mapped human reads to the hg19 genome and chimpanzee reads to panTro3 using 

TopHat2 (version 2.0.11) (18), allowing for up to two mismatches in each read. We kept on only 

reads that mapped uniquely. To prevent biases in expression level estimates due to differences in 

mRNA transcript size and the relatively poor annotation of the chimpanzee genome, we only 

kept reads that mapped to a list of orthologous metaexons across 30,030 Ensembl genes as 

described previously (10).  Gene expression levels were quantified using the feature counts 

function in SubRead 1.4.4 (44). For one sample (C2B at Day 0), the number of raw reads was 

approximately double the second highest number of raw reads. Therefore, we subsampled the 

raw reads to approximately the same number of raw reads as the second highest sample.  

We performed all downstream processing and analysis steps in R (version 3.2.2) unless 

otherwise stated.  

 
Transformation and normalization of RNA-sequencing reads 

After receiving the raw gene counts, we calculated the log2-transformed counts per 

million (CPM) for each sample using edgeR (21). To filter for the lowly expressed genes, we kept 

only genes with an expression level of log2(CPM) > 1.5 in at least 16 samples per species (45). For 

the remaining genes, we normalized the original read counts using the weighted trimmed mean 

of M-values algorithm (TMM) (45) to account for differences in the read counts at the extremes of 

the distribution and calculated the TMM-normalized log2-transformed CPM.  

When we performed principal components analysis (PCA) using the TMM-normalized 

log2-transformed log2(CPM) values, we found one outlier (H1B at Day 0, Figures S3a). We 

removed this sample from the list of original gene counts.  We filtered for the lowly expressed 

genes by retaining genes with an expression level of log2(CPM) > 1.5 in at least 15 human samples 

and at least 16 chimpanzee samples. 10,304 genes remained. We performed TMM-normalization 

and then performed a cyclic loess normalization with the function normalizeCyclicLoess from the 
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R/Bioconductor package limma (20, 46). We found that the TMM-normalized log2(CPM) values 

were highly correlated with the TMM- and cyclic loess-normalized log2(CPM) values (r > 0.99 in 

the 63 samples). We used the  TMM- and cyclic loess-normalized log2(CPM) expression values in 

all downstream analysis unless otherwise stated.  

We calculated normalized log2-transformed RPKM values by using the function rpkm 

with normalized library sizes from the package edgeR (21) (Figure S4b). We measured the “gene 

lengths” as the sum of the lengths of the orthologous exons and were also used in (16). Our RPKM 

calculation is robust to the calculation method. This method of calculating RPKM was highly 

correlated with a method in which we subtracted log2(gene length in kbp) from the TMM- and 

cyclic loess-normalized log2(CPM) values (r > 0.97).  

 
Data quality and analysis of technical factors 

To assess the data quality, we performed Principal Components Analysis (PCA) on the 

normalized log2(CPM) values from above (Figure 2a). Principal component (PC) 1 was highly 

associated with day and PC2 was highly associated with species (r > 0.92 for each, Figure 2a; 

Supplementary Data S5). We sought to determine if the study’s biological variables of interest 

were confounded with any of the study’s recorded technical aspects (Supplementary Data S1-3).  

First, we calculated which of our 35 recorded technical factors were statistically significant 

predictors of PCs 1-5 with individual linear models for each technical factor. The 19 statistically 

significant predictors (FDR cutoff of 10% assessed on the 5x35 matrix) were carried to the second 

stage. In this stage, we determined which technical factors were associated specifically with either 

day or species, with individual linear models for each technical factor. We quantified these 

associations using the P values from analysis of variance (ANOVA) for the numerical technical 

factors and from Chi-squared test (using Monte Carlo simulated P values) for the categorical 

technical factors. Statistical significance was determined by Benjamini-Hochberg adjusted P value 

< 10% (assessed on the 2x19 matrix). Variables for cell line and sex-by-species include a species 
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but not a day component and were tested in this pipeline. They were found to each be confounded 

with species (B.H. adj. P value = 0.0095 each) but not day, thereby increasing the confidence in 

our pipeline.    

During this analysis, we observed that the purity estimates were relatively similar across 

days and between species until the final day (Figure S1d; Supplementary Data S1). Therefore, it 

was important to explore how the variance for a given technical factor was partitioned across the 

biological variables of interest (e.g. across the days, species, and day-by-species interactions). For 

each recorded technical variable, we created a reduced model and a full model. The reduced 

model contained only species and day as fixed effects and the technical factor as the response 

variable. The full model had the same response variable but contained species, day, and a species-

by-day interaction as fixed effects. We then compared the two models and reported the 

significance (Supplementary Data S13).  

The exact tools used to compare the two models were data-dependent (Supplementary 

Data S3 and columns 1-2 in Supplementary Data S13). For numerical data (24 technical factors), 

we constructed the full and reduced normal general linear models for each technical factor. We 

compared the models using ANOVA, and extracted the P value directly from ANOVA. For 

categorical data with 2 levels (3 technical factors), we constructed the two general linear models 

from the binomial family. We used ANOVA to compare the models and extracted the deviance 

along with its degrees of freedom. Based on the deviance, we calculated the Chi-Squared statistic 

and associated P value. 8 technical factors (such as RNA extraction data) contained categorical 

data with more than two levels. We modeled this data type with multinomial logistic regression 

with the R/Bioconductor package nnet (47) and used ANOVA to obtain the likelihood ratio 

statistic and associated P value.  We performed this process for each technical factor using data 

from days 0 and 1 as well as from days 0 to 3 (Supplementary Data S13). 
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A linear model based framework to perform pairwise differential expression analysis  

Differential expression was estimated using a linear model based empirical Bayes method 

implemented in the R package limma (48, 49). In order to use a linear modeling approach with 

RNA-seq read counts, we calculated weights that account for the mean-variance relationship of 

the count data using the function voom from the limma package (50). This limma+voom pipeline 

has previously been shown to perform well with n > 3 biological replicates/condition (51, 52).  

For all pairwise differential expression comparisons, the species, day, and a species-by-

day interaction were modeled as fixed effects, and individual as a random effect. Individual (cell 

line) rather than differentiation batch was modeled as a random effect because when using a 

linear model, individual was most highly correlated with PCs 2 and 3, whereas batch was most 

highly correlated with PC 10. Since our recorded technical factors were not confounded with our 

biological variables of interest and did not contribute significantly to the first five principle 

components of variation (Supplementary Data S5), we did not include any other covariates. (See 

Discussion regarding variables inherent to iPSCs and iPSC-differentiated cells.)  

We used contrast tests in limma to find genes that were differentially expressed (DE) by 

species at each day (Supplementary Data S6), DE between days for each species (Supplementary 

Data S7), and significant day-by-species interactions for days 1-3 (Supplementary Data S9). For 

each pairwise DE test, we corrected for multiple testing with the Benjamini & Hochberg false 

discovery rate (53) and genes with an FDR-adjusted P values <0.05 were considered DE unless 

otherwise stated in the text.  

To find the number of shared DE genes in consecutive time points in each species (Figure 

4), we used a two P value cutoff system. To be “shared” across species for a given pair of time 

points (e.g. day 0 to 1), a gene must have an FDR-adjusted P value <0.01 in one species and an 

FDR-adjusted P-value <0.05 in the other species (53). To estimate the percentage of DE genes in 

chimpanzees given the observation in humans, we divided the number of genes with an FDR-
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adjusted P value <0.01 in chimpanzees over the number of genes with an FDR-adjusted P value 

<0.05 in humans.  

 
Combining technical replicates 

Some analyses did not allow us to model technical replicates explicitly (and treating them 

as biological replicates would introduce bias in the data). Therefore, we combined technical 

replicates for the same individual, when available. We calculated the average of the normalized 

log2(CPM) values for each cell line at each time point. For day 0, 1 human cell line had a pair of 

technical replicates that were averaged together. For days 1-3, 2 human cell lines had technical 

replicates that were averaged. We were able to average technical replicates for each of the four 

chimpanzee cell lines at each time point. After this process, 6 human data points and 4 

chimpanzee data points per day remained, for a total of 40 data points.  

When we performed principal components analysis (PCA) using these 40 data points, the 

results were similar to the PCA plot including all the technical replicates (Figure S7a)-- PC1 was 

still correlated with day and PC2 was correlated with species (Supplementary Data S5). We 

visually inspected the PCA plot for the distinct clustering of data points with averaged technical 

replicates and single replicates in the humans, and this potential pattern was not present, 

increasing our confidence that this process did not introduce bias into the data.  

We found that the expression values for the 40 samples were robust with respect to the 

method used to combine the technical replicates. The post-normalization method described 

above was strongly correlated with a pre-normalization method to combine technical replicates 

(r > 0.99 for the 10,304 genes included in the main analysis; Figure S7b). In our pre-normalization 

method of combining the technical replicates, we summed the raw counts of technical replicates 

at each time point (for a total 40 data points) and performed the normalization steps described in 

the “Counting and Normalization” section.  
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Joint Bayesian analysis with Cormotif 

To cluster genes by their temporal gene expression patterns, we used the R/Bioconductor 

package Cormotif (version 1.18.0), a method that jointly models multiple pairwise differential 

expression tests (25). Unlike other available methods in this class, the Cormotif framework allows 

for data-set specific differential expression patterns. To identify patterns in expression over time 

(called “correlation motifs”), expression levels from days 1-3 were compared to those to the 

previous day for each gene in each species. Since the program does not allow for the explicit 

modeling of technical replicates (unlike the voom+limma method above), we first ran the 

program with the expression values averaged across technical replicates. For more information 

on this process, see the Methods section on “Combining technical replicates”. 

To use Cormotif, we were required to specify the number of correlation motifs to model. 

We determined a reasonable range by investigating both the Bayesian information criterion (BIC) 

and Akaike information criterion (AIC). We observed that the BIC and AIC were minimized 

across many seeds when 7 or 8 correlation motifs were modeled, respectively (Figure S8a). Thus 

we further explored models with 7 and 8 correlation motifs. Because Cormotif is not 

deterministic, we ran Cormotif 100 times and recorded the seed that produced the model with 

the largest log likelihood (Supplementary Data S16). The best model (the seed with the greatest 

log likelihood) with 7 correlation motifs is displayed in Figure S8b, and the best model with 8 

correlation motifs is featured in Figure 5. We selected the model with 8 correlation motifs to be 

the primary figure because it had a large log likelihood and all motifs contained more than 100 

genes. It should be noted, however, that the two models had very similar correlation motifs 

(expression patterns; Supplementary Information).  

We were initially conservative when assigning a gene to a specific correlation motif. 

Following the advice of the Cormotif authors (25), a gene must have a posterior likelihood 

estimate of ≥ 0.5 to be called DE between time points and < 0.5 to be considered not DE. We also 
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used this assignment criteria when using Cormotif to compare expression levels using different 

combination methods (Figures S8c) and to compare all time points to day 0 (Figure S8d). For a 

trajectory to be defined as DE, the trajectory in humans and chimpanzees needed similar posterior 

probabilities of differential expression (≤ 0.20) at each comparison along the trajectory.  We 

performed GO enrichment analysis (27, 28) on various combinations of correlation motifs 

(Supplementary Data S10, 11) using the PANTHER Overrepresentation Test tool (release 

20160715) from the Panther Database (26, 54) (http://pantherdb.org/tools/compareToRefList.jsp).   

 

Global analysis of variation in gene expression levels  

 We calculated the variance in gene expression level for each gene in each species. Since 

the largest theoretical range of a variance is from 0 to infinity, we performed a log2 transformation 

to each variance value. We then performed a one-sided t-test between the distribution of 

log2(variances in gene expression) from day 0 and day 1 in each species, with the alternative 

hypothesis that the variation was greater in day 0 than day 1. We compared the effect sizes of 

interspecies DE genes with a one-sided Mann–Whitney U test on magnitudes of effect sizes 

(Figure S10). We tested the null that there was no change in log2 fold change in gene expression 

across the species from day 0 to day 1, with the alternative hypothesis that the average magnitude 

of effect of DE genes (FDR = 5%) was greater in day 0 than day 1.  

 

Gene-by-gene analysis of variation in gene expression levels and calculating the proportion of 

true positives 

To determine if there was an enrichment of genes undergoing changes in variation one 

species, we used an F test to compare two variances in R (var.test command) for each gene using 

the averaged log2(CPM) expression values of technical replicates. In these tests, the null 

hypothesis was no change of variance in the gene expression levels between days and the 
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alternative hypothesis was a reduction in variation of gene expression levels between two time 

points (a one-sided test).  

We calculated the P values for the F statistics from each test and plotted the densities using 

ggplot2 (55). If a P value distribution appeared to be even slightly skewed towards small P values, 

we used the R package qvalue (https://github.com/StoreyLab/qvalue) to determine 𝜋o, the true 

proportion of null statistics from a given P value distribution (30). Its complement, 𝜋1, is 

considered the proportion of significant tests from a P value distribution. We used this process to 

analyze the reduction in variation in each species from days 0 to 1, 1 to 2, 2 to 3, and 0 to 2 (Figure 

7a-b).   

Afterwards, we used the same procedure (F tests) to test the alternative hypothesis that 

the variation of gene expression increased between two time points. We determined 𝜋o and 𝜋1 in 

the same manner as above to analyze the increase in variation in each species from days 0 to 1, 1 

to 2, 2 to 3, and 0 to 2 (Figure 7a-b).   

 
Estimating the proportion of genes that undergo a change in variation in both species 

We then estimated the true proportion of significant genes shared across species for a 

given set of time points. Rather than take the intersection of the significant genes (for which we 

would be underpowered), we adopted a method from Storey and Tibshirani 2003 (Storey’s 𝜋o) 

(30).  This method was recently implemented by Banovich 2016 to determine the sharing of 

quantitative trait loci (QTLs) from different cell types (29, 30). Using the P value distributions 

generated in the previous section, we subset the genes in species 2 conditioned on its F statistic 

significance in species 1 (unadjusted P value < 0.05). To test for an enrichment of small P values, 

we used the P values from species 2 to determine 𝜋o using the same process as the previous section 

(Figure 7c-f, S13). We then repeated this process for other P value cutoffs, including 0.01 and 0.10 

(Figure S14e-l). To determine robustness with respect to the number of genes considered 
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significant in species 1, we calculated 𝜋o  for species 2 conditioned on 100 genes with the lowest P 

values in species 1. This process was repeated for the top 101 to all 10,304 genes (Figure S14a-d).  

 
Estimating the null hypothesis for the proportion of genes that undergo a change in variation in 

both species 

To determine the null hypothesis for the 𝜋1 based on conditioning, we performed 

permutation tests. First, we combined the unadjusted P values from the F test for a reduction in 

variation from days 0 to 1 in chimpanzees (species 1) and humans (species 2). We used the 

randomizeMatrix function in the R package picante (56) to permute the P values of species 1 and 

then merged this P value distribution with the P value distribution from species 2. We then 

determined 𝜋o in species 1 conditioned on its P value significance in species 2 (unadjusted P value 

< 0.05). We repeated this process a total of 100,000 times and found the complement of the 100,000 

values (Supplementary Data S15). We defined the permuted null hypothesis as the mean 𝜋1 value. 

We then repeated this process, with humans as species 1 and chimpanzees as species 2. 

 
Data Access 

The data have been deposited in NCBI's Gene Expression Omnibus (57) and are accessible 

through GEO Series accession number GSE98411. The website for this dataset is  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98411. Our custom pre-processing 

script is available upon request to the authors.  

All data and scripts used post-processing are available at https://github.com/Lauren-

Blake/Endoderm_TC/tree/gh-pages. All of our analyses using R and the subsequent results can 

be viewed at https://lauren-blake.github.io/Endoderm_TC/analysis/. 
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