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Abstract

Integrating rare variation from family and case/control studies has suc-
cessfully implicated specific genes contributing to risk of autism spectrum
disorder (ASD). In schizophrenia (SCZ), however, while sets of genes have
been implicated through study of rare variation, very few individual risk
genes have been identified. Here, we apply hierarchical Bayesian modeling
of rare variation in schizophrenia and describe the proportion of risk genes
and distribution of risk variant effect sizes across multiple variant anno-
tation categories. Briefly, we developed a pipeline based on the previous
work used in ASD studies to jointly estimate genetic parameters for one
or multiple combined populations of any disease. We applied this method
to the largest available collection for rare variants in schizophrenia (1,077
families, 6,699 cases and 13,028 controls). We defined five variant an-
notation categories: disruptive (nonsense, frameshift, essential splice site
mutations), damaging (predicting damaging by seven algorithms), silent-
FCPk (silent mutations within frontal cortex-derived DHS peaks) de novo
mutations, and disruptive and damaging missense case/control singletons.
We estimated that 8.01% of genes are risk genes (95% credible interval, CI,
4.59-12.9%), with mean effect sizes (95% CIs) of 12.25 (4.8- 22.22) for dis-
ruptive de novos, 1.44 (1-3.16) for missense damaging de novos, and 1.22
(1-2.16) for silentFCPk de novos. The mean effect sizes of damaging and
disruptive singleton variants for three case-control populations were 2.09
(1.04-3.54), 2.44 (1.04, 5.73) and 1.04 (1-1.19) respectively. Our analysis
identified only two known SCZ risk genes with FDR<0.05: SETD1A and
TAF13; and two other genes with FDR < 0.1: RB1CC1 and PRRC2A.
We further used FDRs to directly analyze candidate gene sets for the
enrichment of Bayesian support. Significant enrichments were observed
for essential genes, which were found enriched among autism genes in a
recent study, and central nervous system (CNS) related genes, in addition
to gene sets previously found to be enriched (including in these data).
We conduct power analyses under our inferred model for SCZ, estimating
the number of risk gene discoveries as more data become available, and
quantifying the greater value of case/control over trio samples for novel
rare variant risk gene discovery. We also applied the method to four other
neurodevelopmental disorders: autism spectrum disorder (ASD), intellec-
tual disorder (ID), developmental disorder (DD) and epilepsy (EPI), in
total 10,792 families, and 4,058 cases and controls. The predicted propor-
tions of risk genes in these diseases were smaller than that in SCZ, 4.6%
in ASD, and < 3% for the other disorders. We report 164 and 58 genes
with FDR < 0.05 for DD and ID, respectively, 101 and 15 of which are
novel. Overall, replication of previous results confirms the robustness of
our approach, and our method is able to identify novel risk genes for SCZ
as well as for other diseases.

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/135293doi: bioRxiv preprint 

https://doi.org/10.1101/135293
http://creativecommons.org/licenses/by-nc-nd/4.0/


Contents

1 Introduction 5

2 Results 6
2.1 The extTADA pipeline . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Evaluating extTADA on simulated data . . . . . . . . . . . . . . . 8
2.3 extTADA Analyses of Schizophrenia . . . . . . . . . . . . . . . . . 9

2.3.1 SCZ data . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Rare variant genetic architecture of SCZ . . . . . . . . . . 10
2.3.3 Enrichment of gene sets in extTADA SCZ risk genes can-

didates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Power analysis for SCZ exome sequencing studies across

sample sizes . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 extTADA Analyses of Other Neurodevelopmental Disorders . . . . 18

2.4.1 Rare variant genetic architectures of ASD, ID, DD, EPI . 18
2.4.2 Novel risk genes in ID and DD . . . . . . . . . . . . . . . 20
2.4.3 Multiple gene sets are enriched in top significant genes

across neurodevelopmental diseases . . . . . . . . . . . . . 21

3 Discussion 21

4 Data and methods 24
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Variant data of SCZ, ID, DD, EPI and ASD . . . . . . . 24
4.1.2 Gene sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 extTADA pipeline: extended transmission (case-control)

and de novo analysis . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Testing the model on simulated data . . . . . . . . . . . . 28
4.2.3 Calculate mutation rates . . . . . . . . . . . . . . . . . . . 29
4.2.4 Analyze SCZ data . . . . . . . . . . . . . . . . . . . . . . 30
4.2.5 Use extTADA to predict genetic parameters of other neu-

rodevelopmental diseases . . . . . . . . . . . . . . . . . . 32
4.2.6 Infer parameters using MCMC results . . . . . . . . . . . 32

5 Acknowledgements 33

6 Supplementary information 34
6.1 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Sup Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Sup Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.1 Sup Results . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.2 Sup methods . . . . . . . . . . . . . . . . . . . . . . . . . 57

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/135293doi: bioRxiv preprint 

https://doi.org/10.1101/135293
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

Schizophrenia (SCZ) is a complex psychiatric disorder characterized by psy-
chosis, and by positive, negative and cognitive symptoms, with severe medical
and social-functioning comorbidities and high public health costs. Despite high
reduction of reproductive fecundity, a lifetime risk of 0.7% and very high heri-
tability of 60-80% are observed for the disease (Lichtenstein et al., 2009; Sullivan
et al., 2003). The genetic architecture of SCZ is highly polygenic with contribu-
tions of common, rare and de novo genetic variants (Purcell et al., 2014; Fromer
et al., 2014; Singh et al., 2016; Stefansson et al., 2009; Purcell et al., 2009). With
the production of high-quality next-generation sequencing data, the genetics of
schizophrenia and other diseases can be increasingly better characterized, espe-
cially for rarer variants.

Rare variants in case/control samples and de novo mutations have been suc-
cessfully leveraged to implicate biologically relevant gene sets for this disease
(Purcell et al., 2014; Fromer et al., 2014; Genovese et al., 2016), and to identify
a handful specific SCZ risk genes (Singh et al., 2016; Takata et al., 2016). How-
ever, the genetic architecture of SCZ for rare variants and de novo mutations
remains unknown. Rare variant genetic architecture analyses could help gain
further insights into this disease, for example by using the estimated number
of risk genes to calibrate gene discovery false discovery rates, or by using the
distribution of effect sizes to estimate power for rare variant association studies.
A better understanding of our certainty in sets of risk genes for SCZ will provide
a better picture of biological pathways specific for the disease.

Here, we aim to develop a pipeline for integrative analysis of case-control
rare variants and de novo mutations in order to infer rare-variant genetic archi-
tecture and identify risk genes for SCZ as well as other diseases. To do this,
we extend a hierarchical model Bayesian analysis framework (TADA, Trans-
mission And De novo Association) which was developed for autism spectrum
disorder (ASD) (He et al., 2013). The new framework (extTADA, extended
Transmission And De novo Association) can be used to analyze only de novo
data, only case-control data or the combination of both. extTADA uses all vari-
ant classes to jointly estimate genetic parameters (therefore it assumes that
all classes play important roles in the genetic architecture of the tested dis-
ease). In extTADA, a conditional model for case-control sample frequency allows
rapid analysis without population frequency parameters (which are very poorly
estimated for rare variants), facilitating estimation of parameters via Markov
Chain Monte Carlo (MCMC). In addition, we designed extTADA for the analysis
of data from multiple population samples. The pipeline is publicly available at
https://github.com/hoangtn/extTADA.

In this study, we used extTADA to analyze the largest available exome-
sequence data, including 19,727 (6,699+13,028) case+control samples and 1,077
trio/quad families for SCZ. We estimated mean relative risks (RRs) of different
variant annotation categories as well as the proportion of risk genes for disease.
Based on this analysis, SCZ risk gene sets determined with different false dis-
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covery rate (FDR) thresholds were tested for enrichment in known and novel
gene sets. Analysis of separate classes of variants/mutations in terms of anno-
tation and rarity helps provide a detailed picture of the disease’s rare variant
genetic architecture, allowing for example power analyses for risk gene discovery
as more data become available. Finally, we used available data for four other
neurodevelopmental diseases: intellectual disability (ID), autism spectrum dis-
order (ASD), epilepsy (EPI) and developmental disorder (DD), totaling 10,792
trios and 4058 cases/control samples. We are able to identify additional new
significant genes for ID and DD based on extTADA results.

2 Results

The extTADA pipeline and its comparison with TADA is described in Figure
S1. Figure S2 summarises the workflow of analyses of the current study. As
presented in Figure S2, variants/mutations in this study were divided into
categories: synonymous, missense, loss-of-function (LoF), missense damaging
(MiD), silent mutations within frontal cortex-derived DHS (silentFCPk), and
then three main categories were used in the analysis: MiD, loF and silentFCPk.

2.1 The extTADA pipeline

We used a Bayesian approach to integrate de novo (DN) and case control (CC)
rare variant data, to infer genetic architecture parameters and to identify risk
genes under a model with additive to dominant deleterious risk alleles. The
framework is extended from the Transmission and Disequilibrium Association
(TADA) model proposed by He et al. (2013); De Rubeis et al. (2014), as shown
in Figure S1. Primary extensions to the TADA model facilitate joint Bayesian
inference of rare variant genetic architecture model parameters (including the
risk gene mixture proportion π, which is fixed in TADA), and include a likelihood
formulation in which all variant categories contribute to the inference, which also
allows inference based on multiple samples. extTADA also uses an approximate
expression for case-control data probability that eliminates population allele
frequency parameters, and controls the proportion of protective variants by
constraining effect size distribution scale parameters. We used the same symbols
for parameters as those used in He et al. (2013); De Rubeis et al. (2014) in
the following sections. For comparison, we also described in detail methods
originally presented in the TADA papers (He et al., 2013; De Rubeis et al.,
2014).

In summary, for a given gene, all variants of a given annotation category (e.g.
loss-of-function) were collapsed and considered as a single count. Let q, γ and
µ be the population frequency of rare heterozygous genotypes for case/control
(equivalently, transmitted/nontransmitted) data, the mean relative risk (RR)
of the variants, and sum of mutation rates of de novo variants, respectively.
At each gene, two hypotheses H0 : γ = 1 and H1 : γ 6= 1 were compared. A
fraction of the genes π, assumed to be risk genes, were represented by the H1
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model. Under this model, mean relative risks (γ) were assumed to follow a
probability distribution across genes. The model H0 described non-risk genes,
for which relative risks (γ) equal 1. As in He et al. (2013), we modeled de novo
(xd) and case (xca) control (xcn) data as Poisson distributions and their hyper
parameters as following Gamma distributions priors. In addition, in extTADA,
we used a Beta distribution prior for π and constrain π to be less than 0.5, and
a nonlinear function for the variance parameter of γ to constrain mean RRs
above 1 (i.e. so that variants are not implied by the model to be protective).
Model parameters for TADA are shown in in Table 1.

Data model Parameter prior Hyper prior

xdn ∼ P (2Ndnµγdn) γdn ∼ Gamma(γ̄dn ∗ βdn, βdn) γ̄dn ∼ Gamma(¯̄γdn, β̄dn)

βdn = ea∗γ̄
b
dn+c

xca ∼ P (N1qγcc) γcc ∼ Gamma(γ̄cc ∗ βcc, βcc) γ̄cc ∼ Gamma(¯̄γcc, β̄cc)

βcc = ea∗γ̄
b
cc+c

q ∼ Gamma(ρ, ν) ρ
ν = mean(

∑
(xcn + xca))

ν = 200
xcn ∼ P (N0q) q ∼ Gamma(ρ, ν) ρ

ν = mean(
∑

(xcn + xca))
ν = 200

π ∼ Beta(1, 5)

Table 1: Parameter information used in all analyses. Ndn, N1, N0 are sample
sizes of families, cases and controls respectively. γ̄ is mean RRs and β controls
the dispersion of γ. ¯̄γ and β̄ are priors for γ̄ and are set in advance (they are

inferred from simulation data). β is inferred from the equation ea∗γ̄
b+c inside

the estimation process with a = 6.83, b = -1.29 and c = -0.58.

At each gene, a Bayes Factor (BFgene) can be calculated for each category to
compare models H1 and H0 (BF = P (data|H1)/P (data|H0)). BFgene can be
calculated as the product of BFs across multiple variant categories, either DN
and CC data or multiple annotation categories. Data could be from heteroge-
neous population samples; therefore, we extended TADA’s BFgene as the product
of BFs of all variant categories including population samples as in Equation 1,

BFgene =

Ndnpop∏
h=1

Cdn∏
k=1

BFdnhk

Nccpop∏
a=1

Ccc∏
b=1

BFccab

 (1)

in which Ndnpop, Nccpop are the numbers of DN and CC population samples,
and Cdn, Ccc are the number of annotation categories in DN and CC data. To
infer significant genes, BFs were converted to false discovery rates (FDRs) using
the approach of Newton et al. (2004).
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To calculate BFs in Equation 1, hyper parameters for different categories in
Table 1 are needed in advance. These were jointly estimated based on a mixture
model of the two hypotheses as in Equation 2,

P (x|φ1, φ0) =
Genes∏
i=1

[πP1i + (1− π)P0i] (2)

where P1i and P0i at the ith gene were calculated across populations and
categories as follows:

Pji = Pji(xi|φj)
=
[
Pji(dn)(xi(dn)|φj(dn))

] [
Pji(cc)(xi(ca), xi(cn)|φj(cc))

]
=

(
Ndnpop∏
h=1

Cdn∏
k=1

Pji(dn)hk(xi(dn)hk |φj(dn)hk)

)(
Nccpop∏
a=1

Ccc∏
b=1

Pji(cc)ab(xi(ca)ab , xi(cn)ab |φj(cc)ab)

)

(j = 0, 1 )
To simplify the estimation process in Equation 2, we approximated the orig-

inal TADA model for CC data P (xca, xcn|Hj) using a new model in which case
counts were conditioned on total counts: P (xca|xca+xcn, Hj) (see Methods and
Figure S1).

extTADA used Markov Chain Monte Carlo (MCMC) for Bayesian analysis.
We extracted posterior density samples from at least two MCMC chains. Pos-
terior modes were reported as parameter estimates for all analyses, with 95%
credible intervals (CIs).

2.2 Evaluating extTADA on simulated data

In order to assess extTADA in a realistic use case, we analyzed the main model
used in this study as described in Equation 2 on simulated DN and CC data
with one variant category each. We also analyzed simulated CC data with one
or two variant categories, to examine inference on a single variant class as well
as to assess the conditional probability approximation for CC data (Figures S3,
S4, S5 and S6, Supplementary Results 6.3). Trinucleotide context dependent
mutation rate estimates (Samocha et al., 2014; Fromer et al., 2014; De Rubeis
et al., 2014) were used for denovo data for both simulation and estimation. We
tested sample sizes ranging from that of the available data, 1,077 trios and 3,157
cases (equal controls) (see below), and larger sample sizes of up to 20,000 cases
(see Supplementary Results 6.3).

We saw little bias in parameter estimation (Table S1 and S2). Slight un-
der and over estimation were observed for risk gene proportions and CC mean
RRs, respectively, specifically for large simulated CC mean RRs ; we note that
these conditions appear outside the range of our SCZ analyses. Some bias can
be expected in Bayesian analysis and not expected have a large effect on the
risk gene identification results (He et al., 2013). We assessed this directly by
calculating observed FDR (oFDR, i.e. the proportion of genes meeting a given
FDR significance threshold that are true simulated risk genes). We observed
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high correlations between oFDR and the FDR significance thresholds over wide
parameter ranges (Figure 1). Only for small π (e.g., π = 0.02) oFDRs were
higher than FDRs when de novo mean RRs were small (∼ 5). We also saw
oFDR were equal to zero for some cases with small FDR, when very small num-
bers of FDR-significant genes were all true risk genes. We also ran extTADA

on null data, π = 0 and γ̄ = 1 for both DN and CC data (Table S3). MCMC
chains tended not to converge, π estimates trended to very small values, and
Bayes factors and FDRs identified almost no FDR-significant genes as expected
(Table S3).
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Figure 1: Observed false discovery rates (oFDR) with different FDR thresholds
for different π values (0.02, 0.05, 0.09 and 0.13).

2.3 extTADA Analyses of Schizophrenia

We next applied extTADA to available DN and CC SCZ data (Figure S2), for in-
ference of rare variant genetic architecture parameters, and for genic association.
In total, there were 6,699 cases, 13,028 controls, 1077 trio/quad families used
in this analysis (Table S12). Primary analyses included three variant categories
for DN data, LoF, MiD and silentFCPk, and a single category of CC singletons
(Purcell et al., 2014; Genovese et al., 2016) not present in the Exome Aggre-
gation Consortium (ExAC) (Lek et al., 2015) (termed NoExAC), LoF+MiD.
An array of secondary extTADA analyses were conducted to help validate and
dissect our results.
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2.3.1 SCZ data

De novo mutations and case-control variants were tested to select classes and
samples for the extTADA pipeline. Since currently extTADA requires integer
counts data, adjustment for ancestry and technical covariates is not possible.
For case-control data, there were multiple population samples and sequencing
centers; therefore, the data were restricted to non-heterogeneous population
samples. First, for the 4,929 cases and 6,232 controls of the Sweden popula-
tion sample, we clustered all cases and controls into different groups and then
tested for case-control differences with and without adjustment for covariates.
We aimed to generate clusters yielding very similar results with and without ad-
justment for covariates. The clustering process divided the data set into three
groups as in Figure S7: Group 1, 3,157 cases + 4,672 controls; Group 2, 681
cases + 367 controls; and Group 3, 1,091 cases + 1,193 controls. Only Groups
1 and 3 were used in the next stage because Group 2 showed some difference
between adjusted and unadjusted results and was relatively small. As in Gen-
ovese et al. (2016), NoExAC variants showed case-control significant differences
and InExAC variants did not (Figure S7). Second, only UK and Finnish sam-
ple case/control summary counts were available from the UK10K project data
(Singh et al., 2016), and we used only the larger UK population sample. Again
significance of case-control differences was observed only for NoExAC singleton
variants; therefore, we used only NoExAC singletons in primary extTADA anal-
yses, however we also used all singletons in secondary analyses for comparison.

For de novo mutations, we calculated the sample-adjusted ratios of mutation
counts between 1,077 cases and 731 controls (Table S12). Similar to Takata et al.
(2016), the highest ratio was observed for silentFCPk (2.57), followed by MiD
(2.3), LoF (1.83) and missense, silent (∼ 1.3) mutations (Figure S8). Three
classes (LoF, MiD and silentFCPk) were used in extTADA analyses.

2.3.2 Rare variant genetic architecture of SCZ

Three categories of de novo mutations and one category of case/control vari-
ants were used in integrative analysis using extTADA. They included LoF, MiD
and silentFCPk denovo mutations; and LoF+MiD case-control variants. LoF
and MiD variants showed similar enrichment in our case-control data analysis
(Figure S7); we pooled them in order to maximize the case-control information.
There were four population samples in total: one de novo population, and three
case-control populations including two Sweden clusters and the UK data from
the UK10K project.

extTADA generated samples from the joint posterior density of all genetic
parameters for SCZ. All MCMC chains showed convergences (Figure S9). The
estimated proportion of risk genes was 8.01% (95% CI = (4.59%, 12.9%)). LoF
de novo variants had the highest estimated mean RR, 12.25 (4.78, 22.22). Two
other de novo classes had estimated mean RRs 1.22 (1, 2.16) for silentFCPk
and 1.44 (1, 3.16) for MiD. For MiD+LoF case-control variants, two Sweden
populations had nearly equal values of mean RRs: 2.09 (1.04, 3.54) and 2.44
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(1.04, 5.73); however the signal was weak for the UK population with mean RR
1.04 (1, 1.19), (Table 2, Figure 2).

Parameter Estimated mode lCI uCI
SCZ pi (%) 8.01 4.59 12.9
SCZ meanRR silentFCPk denovo 1.22 1.00 2.16
SCZ meanRR MiD denovo 1.44 1.00 3.16
SCZ meanRR LoF denovo 12.25 4.79 22.22
SCZ meanRR MiD+LoF CCpop1 2.09 1.04 3.54
SCZ meanRR MiD+LoF CCpop2 2.44 1.05 5.73
SCZ meanRR MiD+LoF CCpop3 1.04 1 1.19

Table 2: Estimated parameters for de novo and case-control SCZ data. These
results are obtained by sampling 20,000 times of three MCMC chains. The two
last columns show the lower (lCI) and upper (uCI) values of CIs.
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Figure 2: The densities of the proportion of risk genes and mean relative risks for
SCZ data. These are obtained after 20,000 iterations of three MCMC chains.
The first two case-control populations are derived from the Sweden data set
while the third case-control population is the UK population.

To test the performance of the pipeline on individual data types and to
assess their contribution to the overall results, we ran extTADA separately on
each of four single variant classes: silentFCPk, MiD and LoF de novo mutations,
and MiD+LoF case-control variants (Table S4). All parameter estimates were
consistent with the integrative analysis, with broad credible intervals. The much
larger γ̄ CIs than in integrative analyses demonstrates extTADA’s borrowing of
information across data types (also observed in simulation, Figure S4).

We also assessed the sensitivity of genetic parameter inference in several
secondary analyses. We observed that synonymous de novo mutation counts
were lower than expected, suggesting that mutation rates may be systemati-
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cally underestimated. Adjusting mutation rates by a factor 0.81, DNM mean
RR estimates slightly increased as expected, and the estimated proportion of risk
genes increased slightly to 9.37% (5.47-15.12%), while case-control parameters
were highly similar (Table S5). Above we assummed that different case-control
population samples may have different mean RRs, which could be due to clinical
ascertainment, stratification or population specific genetic architectures. Anal-
ysis using a single mean RR parameter for all three case-control samples yielded
similar π and DNM mean RRs and an intermediate CC MiD+LoF mean RR
with relatively narrower credible interval, γ̄CC = 1.93 (1.08-3.21) (Table S6,
Figure S11). Considering all CC singleton variants (not just those absent from
ExAC) in extTADA also generated similar genetic parameter estimates, with
predictably slightly lower case-control mean RRs (Table S7). We note that
these alternative analyses also slightly impact support for individual genes as
described below.

2.3.2.1 Identifying SCZ risk genes using extTADA

extTADA also generates Bayes factors for all genes, from which we calculated
posterior probabilities of association (PPAs) (Stephens and Balding, 2009) and
false discovery rates (FDRs) (Benjamini and Hochberg, 1995) (Table S8, which
includes supporting data as well as association results). Four genes achieved
PPA > 0.8 and FDR < 0.1 (SETD1A, TAF13, PRRC2A, RB1CC1). Two
genes SETD1A (FDR = 0.0033) and TAF13 (FDR = 0.026) were individually
significant at FDR < 0.05. SETD1A has been confirmed as the highest statisti-
cally significant gene of SCZ in previous studies (Singh et al., 2016; Takata et al.,
2016), while TAF13 was only reported as a potential risk gene in the study of
Fromer et al. (2014). Interestingly for the RB1CC1 gene, rare duplications were
reported to be associated with SCZ with very high odds ratio (8.58) in the study
of Degenhardt et al. (2013), but has not been reported in other studies since.
In addition, as discussed by the authors, duplications at this gene were also
observed by Cooper et al. (2011) with an odds ratio = 5.29 in a study of 15,767
children with ID and/or DD. If we increase the FDR threshold to 0.3 as in the
previous ASD study of De Rubeis et al. (2014), we identify 24 candidate SCZ
risk genes (SETD1A, TAF13, RB1CC1, PRRC2A, VPS13C, MKI67, RARG,
ITSN1, KIAA1109, DARC, URB2, HSPA8, KLHL17, ST3GAL6, SHANK1,
EPHA5, LPHN2, NIPBL, KDM5B, TNRC18, ARFGEF1, MIF, HIST1H1E,
BLNK). Of these, EPHA5, KDM5B and ARFGEF1 did not have any de novo
mutations (Table S8). We note that still more genes showed substantial support
for the alternative hypothesis over the null under the model (Jeffreys, 1998) (58
genes with PPA > 0.5, corresponding to BF > 11.49, FDR < 0.391; Table S8).

Secondary extTADA analyses had predictable effects on risk gene identifica-
tion. Considering all CC singleton variants (not just those absent from ExAC)
decreased the impact of CC data and yielded slightly fewer significant genes
(three and seventeen genes with FDR < 0.1, 0.3, respectively). Using a single
CC γ̄ parameter for the model also resulted in 4 and 22 significant genes for
FDR < 0.1 and 0.3 respectively. Mutation rate adjustment increased support
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for individual genes with DNMs, increasing the findings to three and six genes
at FDR < 0.05, < 0.1, respectively, including (Table S9). Generally the top
genes were consistent across analyses, specifically SETD1A and TAF13 were
always the top significant genes (FDR < 0.05 in all analyses).

2.3.3 Enrichment of gene sets in extTADA SCZ risk genes candidates

From extTADA, we extracted the FDR of each gene to test the enrichment of
gene sets. We used gene set mean FDR to test for significant enrichment in
comparison to random gene sets, and empirical P-values were FDR corrected
(Benjamini and Hochberg, 1995).

2.3.3.1 Top SCZ significant genes from extTADA are enriched in known
gene sets

We first tested 161 gene sets previously implicated in SCZ genetics or with
strong genetic evidence relevant to SCZ rare variation (Table S10) (Purcell
et al., 2014; Genovese et al., 2016; Pardinas et al., 2017; Ji et al., 2016; Epi4K
Consortium and Epilepsy Phenome/Genome Project, 2013; Lin et al., 2012).
FDR-significant results were observed for 61 gene sets including those reported
using these data (Purcell et al., 2014; Fromer et al., 2014; Genovese et al., 2016)
(Table 3). The most significant gene sets were genes harboring de novo SNPs
and Indels in DD and ASD, missense constrained and loss-of-function intoler-
ant (pLI09) genes, targets of the fragile X mental retardation protein (FMRP)
and CELF4 genes, targets of RBFOX1/3 and RBFOX2 splicing factors, CHD8
promoter targets, and post-synaptic density activity-regulated cytoskeleton-
associated (ARC), NMDA-receptor (NMDAR) and mGluR5 complexes (all P
< 8.0e-04, FDR < 4.5e-03), Table 3). Genes exhibiting allelic bias in neuronal
RNA-seq data Lin et al. (2012) were also strongly enriched in SCZ extTADA

results (P = 1.1e-05, FDR = 1.4e-04). Significant enrichments were also ob-
tained for several gene sets enriched in the recent SCZ GWAS of Pardinas et al.
(2017), including the mouse mutant gene sets with psychiatric-relevant pheno-
types including abnormal behavior, and abnormal nervous system morphology
and physiology, as well as genome-wide significant genes from the SCZ gene-level
GWAS itself (Pardinas et al., 2017) (P = 9.4e-03, FDR = 5.0e-03), showing con-
vergence with common-variant genetic signal in genes hit by rare variation in
SCZ. In addition, novel results were observed for essential genes, and known
epilepsy genes (p ≤ 2.0e-04, FDR ≤ 1.6e-03; Table 3). The essential gene set
was just reported recently by Ji et al. (2016) as ASD risk genes. De novo genes
for other neurodevelopmental diseases (see below) were also strongly enriched
in SCZ (DD, P = 1.0e-07, FDR = 2.3e-06; ASD, P = 2.1e-06, FDR = 3.4e-05;
ID, P = 7.9e-04, FDR = 4.4e-03).
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2.3.3.2 Top SCZ genes are enriched in other gene sets from a data-
driven approach

To test more novel gene sets for enrichment in the SCZ extTADA results, we
tested 1,878 gene sets from several data bases, and FDR-adjusted for the full
set of 1,717 + 161 = 1,878 gene sets tested (Tables S11). We used GO, KEGG,
REACTOME and C3 sets from MSigDB (http://software.broadinstitute.
org/gsea/msigdb), filtered for sets including greater than 100 genes (see Meth-
ods for details).

Significant results were observed in 103 gene sets including 36 gene sets in
the above 161 gene sets. The top known gene sets still had the lowest p values
in these results. We observed significant enrichment of several C3 conserved
non-coding motif genesets showing brain specific expression (Xie et al., 2005):
GGGAGGRR V$MAZ Q6, genes containing the conserved M24 GGGAGGRR
motif, a MAZ transcription factor binding site; ACAGGGT,MIR-10A,MIR-10B,
including microRNA MIR10A/B targets; M12 CAGGTG V$E12 Q6, E12/TCF3
targets; M17 AACTTT UNKNOWN, IRF1 targets; and M13 CTTTGT V$LEF1 Q2,
LEF1 targets (P ≤ 1.5e-04, FDR < 0.01; Table S11). Relatively specific sig-
nificant GO gene sets included GO:0045202/synapse and GO:0043005/neuron
projection (P ≤ 2e-04, FDR ≤ 0.01). GO:0051179/localization (P = 6.4e-05,
FDR = 5.2e-03) was reported by Murphy and Beńıtez-Burraco (2016) in a study
relating to language evolution and SCZ.
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Gene set P value FDR Gene set P value FDR

FMRP targets 1.0e-07 2.3e-06 PSD-95 (core) 1.6e-03 7.9e-03
rbfox13 1.0e-07 2.3e-06 abnormal learning|memory|conditioning 1.7e-03 8.2e-03
constrained 1.0e-07 2.3e-06 abnormal excitatory postsynaptic currents 1.7e-03 8.2e-03
celf4 1.0e-07 2.3e-06 abnormal associative learning 2.4e-03 1.1e-02
pLI09 1.0e-07 2.3e-06 abnormal synapse morphology 2.7e-03 1.2e-02
rbfox2 1.0e-07 2.3e-06 abnormal social investigation 2.8e-03 1.2e-02
DD.allDenovoMiDandLoF 1.0e-07 2.3e-06 abnormal neuron morphology 2.8e-03 1.2e-02
abnormal behavior 3.0e-07 6.0e-06 abnormal neuron physiology 3.2e-03 1.3e-02
abnormal sensory capabilities|reflexes|nociception 1.9e-06 3.4e-05 abnormal brain morphology 4.5e-03 1.8e-02
AST.allDenovoMiDandLoF 2.1e-06 3.4e-05 abnormal CNS synaptic transmission 5.5e-03 2.1e-02
abnormal motor capabilities|coordination|movement 2.8e-06 4.1e-05 PSD (human core) 6.4e-03 2.4e-02
chd8.human brain 9.2e-06 1.2e-04 abnormal aggression-related behavior 7.2e-03 2.7e-02
AlleleBiasedExpression.Neuron 1.1e-05 1.4e-04 abnormal parental behavior 8.0e-03 2.9e-02
abnormal emotion|affect behavior 1.3e-05 1.5e-04 abnormal spatial learning 8.2e-03 2.9e-02
abnormal nervous system morphology 2.7e-05 2.8e-04 abnormal brain size 8.3e-03 2.9e-02
ARC 7.8e-05 7.8e-04 abnormal consumption behavior 8.4e-03 2.9e-02
synaptome 1.2e-04 1.1e-03 abnormal forebrain morphology 9.3e-03 3.1e-02
abnormal social|conspecific interaction 1.3e-04 1.1e-03 abnormal innervation 9.9e-03 3.2e-02
essentialGenes 1.8e-04 1.5e-03 abnormal telencephalon morphology 1.3e-02 4.1e-02
Known EPI genes 2.0e-04 1.6e-03 abnormal response to new environment 1.3e-02 4.1e-02
mir137 2.4e-04 1.8e-03 abnormal corpus callosum morphology 1.4e-02 4.1e-02
NMDAR network 2.5e-04 1.8e-03 abnormal temporal lobe morphology 1.4e-02 4.1e-02
mGluR5 3.7e-04 2.5e-03 abnormal discrimination learning 1.4e-02 4.3e-02
abnormal fear|anxiety-related behavior 6.0e-04 3.9e-03 abnormal contextual conditioning behavior 1.6e-02 4.5e-02
abnormal cued conditioning behavior 6.1e-04 3.9e-03 abnormal inhibitory postsynaptic currents 1.6e-02 4.5e-02
abnormal synaptic transmission 7.0e-04 4.3e-03 abnormal response to novelty 1.6e-02 4.6e-02
seizures 7.3e-04 4.3e-03 abnormal brain vasculature morphology 1.7e-02 4.6e-02
abnormal behavioral response to xenobiotic 7.7e-04 4.4e-03 abnormal excitatory postsynaptic potential 1.7e-02 4.7e-02
ID.allDenovoMiDandLoF 7.9e-04 4.4e-03 abnormal cerebrum morphology 1.8e-02 4.8e-02
GWAS (Pardinas et al 2017) 9.4e-04 5.0e-03 Cav2 channels 1.8e-02 4.8e-02
ID.allKnownGenes 9.9e-04 5.1e-03

Table 3: Enrichment of 161 known gene sets from extTADA results. These P values were obtained by 10,000,000 simulations,
and then adjusted by using the method of Benjamini and Hochberg (1995). The information for these gene sets is summarised
in Table S10.
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2.3.4 Power analysis for SCZ exome sequencing studies across sam-
ple sizes

We simulated risk gene discovery using extTADA using the genetic architecture
of SCZ inferred from the current data. Different samples sizes from 500-20,000
trio families and 1,000-50,000 cases (controls = cases) were simulated as in our
validation analyses, using parameters from the posterior distribution samples
given the SCZ data. The number of risk genes with FDR ≤ 0.05 ranged from 0
to 238. Based on this analysis, we expect > 50 risk genes with total sample sizes
of trio families plus case-control pairs ∼ 24,000 (Figure 3). The results imply
that, assuming sequencing costs are proportional to the number of individuals,
generating case-control data is more efficient than trio data despite the larger
relative risks of de novo mutations.
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Figure 3: Number of risk genes with different sample sizes based on genetic
architecture predicted by extTADA. Case/control number is only for cases
(or controls); therefore if Case/control number = 10,000 this means total
cases+controls = 20,000. The numbers in brackets show risk-gene numbers
if we use only case-control data or only de novo mutation data.
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2.4 extTADA Analyses of Other Neurodevelopmental Dis-
orders

We also used the current pipeline to infer rare variant genetic architecture pa-
rameters from available data for autism spectrum disorder (ASD), intellectual
disability (ID), developmental disorders (DD), and epilepsy (EPI). Sample sizes
of these diseases are presented in Table S12, Figure S2. Numbers of trios ranged
from 365 for EPI, 1,112 for ID, 4,293 for DD, 5,122 trios for ASD. As previously
reported (see references in Table S12, these data have strong signals for de novo
mutations contributing to disease (Table S13). Only ASD data included case-
control samples (404 cases, 3,654 controls) from the Swedish PAGES study of
the Autism Sequencing Consortium (De Rubeis et al., 2014) (see Methods for
details).

2.4.1 Rare variant genetic architectures of ASD, ID, DD, EPI

extTADA genetic parameter estimates are presented in Figure 4 and Table 4.
MCMC analyses showed good convergence, except for the small sample size EPI
(392 families compared with > 1000 families for other diseases). The numbers
of risk genes (π) in these diseases were lower than that of SCZ (Figure 4, Tables
2 & 4). For ASD, the estimated proportion of risk genes π was 4.59% (95% CI
3.19% - 6.01%), consistent with the result of 550-1000 genes estimated in the
original TADA model (He et al., 2013) using only LoF de novo data. For ID, π
was smaller than that of ASD; estimated value was 2.76% (2.1% - 3.7%). For
DD π = 2.87% (2.34% - 3.49%) was similar to that of ID. The estimated π value
for EPI, 1.65% (0.8% - 3.21%) was the lowest but with a broad credible interval
owing to its much smaller sample size. Mean RRs of de novo mutations in all
four neurodevelopmental diseases were much higher than those of SCZ. This
was expected because of the strong signal of de novo mutations in these data
for other diseases. For ASD, estimated mean RRs for de novo mutations were
consistent with previous results and much lower than for the other diseases. ID
and DD had the highest estimated de novo LoF mean RRs, 96.0 (68 - 131) and
86.5 (66 - 112), respectively. Even though the EPI estimated de novo LoF mean
RR, 77.0 (37 - 138), was slightly lower than those of ID and DD, the estimate
for EPI de novo MiD mean RR, 48 (20 - 87) was somewhat higher than those
of other diseases. The previously estimated (Epi4K Consortium and Epilepsy
Phenome/Genome Project, 2013) EPI MiD mean RR of 81 is consistent with the
current results, and it will be of interest to see if this result remains consistent
in additional data in the future.
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Parameter Estimated mode lCI uCI
ASD pi (%) 4.59 3.19 6.01
ASD meanRR MiDdenovo 3.67 1.98 8.68
ASD meanRR LoFdenovo 23.4 13.63 36.94
ASD meanRR LoFcc 4.18 2.04 9.96
ID pi (%) 2.76 2.07 3.7
ID meanRR MiDdenovo 28.61 16.18 41.86
ID meanRR LoFdenovo 96.04 67.57 130.73
EPI pi (%) 1.65 0.8 3.21
EPI meanRR MiDdenovo 47.5 19.77 87.32
EPI meanRR LoFdenovo 77 37.19 138.24
DD pi (%) 2.87 2.34 3.49
DD meanRR MiDdenovo 22.55 13.19 32.53
DD meanRR LoFdenovo 86.53 65.79 111.61

Table 4: Estimated parameters for de novo and case-control SCZ data and four
other diseases: ID, EPI, ASD and DD. These results are obtained by sampling
20,000 times of three MCMC chains. The two last columns show the lower (lCI)
and upper (uCI) values of CIs.
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Figure 4: The densities of the proportion of risk genes and π mean relative risks
(γ) for ASD, EPI, ID and DD data. For ASD, there are two de novo (dn) classes
and one case-control (cc) class. For other diseases, only two de novo classes are
publicly available for our current study.

2.4.2 Novel risk genes in ID and DD

The extTADA risk gene results of the four disorders ID, DD, ASD and EPI
are presented in Tables S14, S15, S16 and S17. Results of other de novo mu-
tation methods using these same data have been recently reported (Lelieveld
et al., 2016; Deciphering Developmental Disorders Study, 2017); nevertheless,
extTADA identified novel genes with strong statistical support from these recent

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/135293doi: bioRxiv preprint 

https://doi.org/10.1101/135293
http://creativecommons.org/licenses/by-nc-nd/4.0/


data. There were 58 and 73 genes for ID with FDR ≤ 0.05 and 0.1, respectively,
and 164 and 201 genes for DD. In ID 15 of 58 FDR≤ 0.05 genes (TCF7L2, USP7,
ATP8A1, FBXO11, KDM2B, MED12L, MAST1, MFN1, TNPO2, CLTC, CEP85L,
AGO1, AGO2, SLC6A1-AS1, POU3F3) were not on the list of previously re-
ported known and novel ID genes (Lelieveld et al., 2016). Of the 15 genes, six
(TNPO2, AGO2, CLTC, CEP85L, FBXO11, MFN1) were strongly significant
(FDR < 0.01); these are genes hit by two or three MiD or LoF de novos but
were not identified by the simulation based analyses of Lelieveld et al. (2016).
In DD, only 59 of 164 FDR ≤ 0.05 genes were reported by Deciphering Devel-
opmental Disorders Study (2017); 101 genes are novel. Similar to ID, the total
MiD+LoF de novo counts of these 101 genes were not high (between two and
six). Surprisingly, there were 58 of the 101 genes with FDRs < 0.01.

2.4.3 Multiple gene sets are enriched in top significant genes across
neurodevelopmental diseases

We also tested for gene set enrichment in the four NDs and combined this infor-
mation with the SCZ gene-set information above (Tables S18 and S19, Figures
5 and S12). First, we tested 161 known or strong-candidate gene sets tested
in SCZ (see Methods for details). The numbers of significant gene sets (FDR
< 0.05) were 51, 74, 29 and 17 for ID, DD, ASD and EPI respectively. There
were five gene sets significant across five diseases; these included Cav2 channels,
FMRP targets, NMDAR network, PSD95, abnormal excitatory postsynaptic
currents (all FDR ≤ 0.0097). Second, we tested our 1,877 data-driven gene
sets; only one gene set which was significant in all five diseases after FDR ad-
justment: NMDAR network genes (all FDR ≤ 0.024). FMRP target genes were
also very high significant across ASD, ID, DD, SCZ (all FDR ≤ 3.1e-05) but
not significant for EPI (FDR = 0.058, Figure S12, Table S19).

The number of significant gene sets was not as high in EPI as in the other
diseases, likely due to its smaller sample size and power; therefore, we removed
this disorder and repeated our assessment of significant gene sets overlap in the
four disorders SCZ, DD, ID and ASD. Twelve gene sets were significant in all
four disorders. These consisted of the five gene sets above and seven other gene
sets: constrained genes (constrained and pLI09), rbfox1/3 and rbfox2 targets,
CHD8 targets (chd8 human brain), and the mouse mutant gene sets abnormal
social investigation and abnormal brain size. In an analysis of all 1,877 data-
driven gene sets, FMRP targets, constrained and pLI09 genes, and NMDAR-
network genes remained significant across the four disorders. In addition, one
other gene set, GO:0016568/chromatin organization, was also enriched for each
of SCZ, ASD, DD and ID (Table S19, Table S18).

3 Discussion

In this work, we have built an integrative pipeline extTADA for Bayesian analysis
of de novo mutations and rare case-control variants, to infer genetic architecture
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Figure 5: The overlaps of significant gene sets in SCZ, ASD, EPI, DD and ID
from the analysis of the 161 genes.

parameters and identify risk genes. We applied extTADA to available data in
schizophrenia and four other neurodevelopmental disorders (Figure S2). The
pipeline is based on our previous work in autism sequencing studies, TADA (He
et al., 2013; De Rubeis et al., 2014), and conducts fully Bayesian analysis of a
simple rare variant genetic architecture model. Unlike TADA, which was devel-
oped for studies where LoF de novo mutations have strong discernible effects,
we developed extTADA for schizophrenia, where de novo and case-control vari-
ants have more subtle effects discernible only at the level of gene set analysis.
extTADA borrows information across all annotation categories and between de
novo and case-control samples in genetic parameter inference, critical for sparse
rare variant sequence data, and we hope that it will be generally useful for rare
variant analyses across complex traits.

Using Markov Chain Monte Carlo, extTADA samples from the joint posterior
density of risk gene proportion and mean relative risk parameters. Inference
of rare variant genetic architexture is of great interest in its own right (Zuk
et al., 2014), but of course risk gene discovery is one of the most important
objectives of genetics. We provide Bayesian statistical support for risk gene
status in the form of Bayes factors for each gene, and we further calculate
posterior probabilities (Stephens and Balding, 2009) and false discoery rates
(Benjamini and Hochberg, 1995). Although we use TADA for inference of genetic
parameters, and joint analysis certainly impacts genetic parameter estimation
(see the primary analysis vs single class analyses in Tables S8 and S4), we
found that the empirical Bayesian approach of calculating genic BFs from model
parameter point estimates (He et al., 2013) is highly similar to joint posterior
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mean genic BFs (see Methods). Therefore, the approach of He et al. (2013)
is a good one if model parameters are known approximately, and we maintain
this functionality in extTADA if users have prior information on the rare variant
genetic architecture of the tested disease.

As in all Bayesian and Likelihood analyses, we must specify a statistical
model; the true model underlying the data is unknown and could in principle
yield different results. This is addressed by analyzing a simple model that can
allow illustrative, interpretable results, and by assessing the sensitivity of results
to a range of alternative model specifications. extTADA uses relatively agnos-
tic hyper-parameter prior distributions (Figure S2), without assuming known
parameters and without any previously known risk gene seeds. Still, extTADA
makes important assumptions, both in common with TADA and uniquely. First,
both models assume Poisson distributed counts data and Gamma distributed
mean relative risks across genes for analytical convenience, making alternative
model specification inconvenient. Poisson counts are likely to be a good approxi-
mation for genetic counts data (He et al., 2013), assuming linkage disequilibrium
can be ignored, and that stratification has been adequately addressed. Alterna-
tives should be explored for Gamma distributed mean relative risk distributions.
Poisson de novo muation counts further assume known mutation rates, uncer-
tainty in which may introduce bias for multiple reasons; in our data, mutation
rate adjustment for silent de novo count rates was actually anti-conservative S9.
Differences between de novo studies is not unlikely even though previous studies
of De Rubeis et al. (2014); Singh et al. (2016) did not adjust mutation rates
to account for it. The ability to incorporate covariates, perhaps with Gaussian
sample frequency data and Gaussian effect sizes, would be an important further
extention of TADA-like models.

Second, extTADA assumes that different variant classes share risk genes such
that the mixture model parameter π applies to all data types, facilitating bor-
rowing of information across classes. This is supported by convergent de novo
and case-control rare variant results in SCZ (Fromer et al., 2014; Purcell et al.,
2014; Singh et al., 2016; Genovese et al., 2016) (Table S4); however, some evi-
dence exists for disjoint risk genes for de novo vs case-control protein-truncating
variants e.g. in congenital heart disease (CHD) Sifrim et al. (2016). We em-
phasize that we do consider multiple population samples as different categories
in extTADA, since sequence data are very often from different countries and/or
centers. (Here we used multiple categories of case-control data but multiple de
novo categories could be important as well.)

The current study replicated previous studies, and supplies new information
about SCZ. First, SETD1A (Singh et al., 2016; Takata et al., 2016) is the most
significant gene across analyses (FDR∼ 1.5×10−3), TAF13 (Fromer et al., 2014)
is also significant across analyses. Of two genes with FDR < 0.1, RB1CC1 was
reported in a study of copy-number variation in SCZ (Degenhardt et al., 2013).
Second, we found substantial overlap of top genes in this study and gene sets
known from previous reports on these same SCZ data Genovese et al. (2016).
Several conserved non-coding motif gene sets (Xie et al., 2005) and a few GO
gene sets were also significant (Table 3). Third, in this study, we describe in
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detail the rare variant genetic architecture of SCZ. It appears more complex
than those of ASD, ID, DD and EPI; the estimated risk gene proportion for
SCZ (∼ 8%) is higher than those of the four other diseases (Figure 2 and 4,
Tables 2 and 4). We also see that disease risk information is concentrated in
ultra-rare variants not present in the ExAC database (Kosmicki et al., 2016;
Genovese et al., 2016) (Table S7). Finally, we see substantial overlap between
de novo and case-control, and common variant (Pardinas et al., 2017) genes in
SCZ.

We used extTADA to infer genetic parameters for four other neurodevelop-
mental diseases ASD, EPI, DD and ID (Table 4, Figure 4). The ASD results of
extTADA are comparable to previous results (He et al., 2013; De Rubeis et al.,
2014). We note the exceptionally high de novo missense damaging mean RR
estimated for EPI, also consistent with previous analyses (EuroEPINOMICS-
RES Consortium et al., 2014). We also highlight the sharing of gene sets en-
riched across multiple neurodevelopmental diseases (Figure 5), including diverse
synaptic gene sets, and possible distinguishing EPI as less similar to the other
disorders. Multi-phenotype analyses leveraging shared this could have higher
power to to detect novel risk genes. Finally, importantly, many novel significant
genes which were missed in recent studies are discovered by extTADA (101 for
DD and 15 for DD).

4 Data and methods

4.1 Data

Figure S2 shows the workflow of all data used in this study.

4.1.1 Variant data of SCZ, ID, DD, EPI and ASD

High-quality variants were obtained from published analyses (Table S12). Vari-
ants were annotated using Plink/Seq (using RefSeq gene transcripts, UCSC
Genome Browser, http://genome.ucsc.edu) as described in Fromer et al.
(2014). SnpSift version 4.2 (Cingolani et al., 2012) was used to further an-
notate these variants using dbnsfp31a (Liu et al., 2015). Variants were grouped
into different categories as follows. Loss of function (LoF): nonsense, essential
splice, and frameshift variants. Missense damaging (MiD): defined as missense
by Plink/Seq and damaging by all of 7 methods (Genovese et al., 2016)- SIFT,
Polyphen2 HDIV , Polyphen2 HV AR, LRT, PROVEAN, MutationTaster and
MutationAssessor. Recently, Takata et al. (2016) reported significant results for
synonymous mutations in regulatory regions; therefore, this category was also
analyzed. To annotate synonymous variants within DNase I hypersensitive sites
(DHS) as Takata et al. (2016), the file wgEncodeOpenChromDnaseCerebrum-
frontalocPk.narrowPeak.gz was downloaded from http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnase/ on April 20, 2016.
Based on previous results with SCZ exomes Purcell et al. (2014); Genovese et al.
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(2016), only case-control singleton variants were used in this study. The data
from Exome Aggregation Consortium (ExAC) (Lek et al., 2015) were used to
annotate variants inside ExAC (InExAC or not private) and not inside ExAC
(NoExAC or private). On April 20, 2016, the file ExAC.r0.3.nonpsych.sites.vcf.gz
was downloaded from ftp://ftp.broadinstitute.org/pub/ExAC_release/

release0.3/subsets/ and BEDTools was used to obtain variants inside (In-
ExAC) or outside this file (NoExAC).

4.1.2 Gene sets

Multiple resources were used to obtain gene sets for our study. First, we used
known gene sets with prior evidence for involvement in schizophrenia and autism
from several sources. Second, to identify possible novel significant gene sets, we
collected genes sets from available data bases (see below).

4.1.2.1 Known gene sets

These gene sets and their abbreviations are presented in Table S10.

• Gene sets enriched for ultra rare variants in SCZ which were described
in detailed in Genovese et al. (2016): missense constrained genes (con-
strained) from Samocha et al. (2014), loss-of-function tolerance genes
(pLI90) from Lek et al. (2015), RBFOX2 and RBFOX1/3 target genes
(rbfox2, rbfox13) from Weyn-Vanhentenryck et al. (2014), Fragile X men-
tal retardation protein target genes (fmrp) from Darnell et al. (2011),
CELF4 target genes (celf4) from Wagnon et al. (2012), synaptic genes
(synaptome) from Pirooznia et al. (2012), microRNA-137 (mir137) from
Robinson et al. (2015), PSD-95 complex genes (psd95) from Bayés et al.
(2011), ARC and NMDA receptor complexes (arc, nmdar) genes from
Kirov et al. (2012), de novo copy number variants in SCZ, ASD, bipolar
as presented in Supplementary Table 5 of Genovese et al. (2016).

• Allelic-biased expression genes in neurons from Table S3 of Lin et al.
(2012).

• Promoter targets of CHD8 from Cotney et al. (2015).

• Known ID gene set was from the Sup Table 4 of Lelieveld et al. (2016)
and the 10 novel genes reported by Lelieveld et al. (2016).

• Gene sets from MiD and LoF de novo mutations of ASD, EPI, DD, ID.

• The essential gene set from the supplementary data set 2 of Ji et al. (2016).

• Lists of human accelerated regions (HARs) and primate accelerated re-
gions (PARs) (Lindblad-Toh et al., 2011) were downloaded from http://

www.broadinstitute.org/scientific-community/science/projects/

mammals-models/29-mammals-project-supplementary-info on May 11,
2016. The coordinates of these regions were converted to hg19 using
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Liftover tool (Kent et al., 2002). We used a similar approach as Xu et al.
(2015) to obtain genes nearby HARs. Genes in regions flanking 100 kb
of the HARs/PARs were extracted to use in this study (geneInHARs,
geneInPARs).

• List of known epilepsy genes was obtained from Supplementary Table 3 of
Phenome et al. (2017).

• List of common-variant genes was obtained from Extended Table 9 of
Pardinas et al. (2017).

• 134 gene sets from mouse mutants with central nervous system (CNS)
phenotypes were obtained from Pardinas et al. (2017). Steps which were
used to obtain the gene sets were described in Pocklington et al. (2015).
We finally obtained 134 gene sets from this step after removing overlapping
gene sets between previous studies and the 161 gene sets.

In the gene-set tests for a given disease, we removed the list of known genes
and the list of de novo mutation genes for that disease. As a result, we tested
161 known gene sets for ASD, DD and SCZ; and 159 gene sets for EPI and ID.

4.1.2.2 Other gene sets

We also used multiple data sets to identify novel gene sets overlapping with the
current gene sets. Gene sets from the Gene Ontology data base (Consortium
et al., 2015), and KEGG, REACTOME and C3 motif gene sets gene sets col-
lected by the Molecular Signatures Database (MSigDB) (Subramanian et al.,
2005). To increase the power of this process, we only used gene sets with be-
tween 100 to 4995 genes. In total, there were 1717 gene sets. These gene sets
and the above gene sets above were used in this data-drive approach.

4.2 Methods

4.2.1 extTADA pipeline: extended transmission (case-control) and de
novo analysis

4.2.1.1 extTADA for one de novo population and one case/control pop-
ulation

extTADA is summarized in Table 1 and Figure S1. There,
xd ∼ Pois(2Ndµ, γdn), xca ∼ Pois(qN1γcc), xcn ∼ Pois(qN0), and
γdn ∼ Gamma(γ̄dnβdn, βdn), γcc ∼ Gamma(γ̄ccβcc, βcc), q ∼ Gamma(ρ, ν).

Let K be the number of categories (e.g., LoF, MiD), and xi = (xi1, .., xiK)
be the vector of counts at the ith given gene. The Bayes Factor for each jth
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category to test two hypotheses: H0 : γ = 1 versus H1 : γ 6= 1 was:

Bij =
P (xij |H1)
P (xij |H0)

=
∫
P (xij |γ,q)P (q|H1)P (γ|H1)dqdγ∫
P (xij |γ,q)P (q|H0)P (γ|H0)dqdγ

Because γ = 1for H0

=
∫
P (xij |γ,q)P (q|H1)P (γ|H1)dqdγ∫

P (xij |q)P (q|H0)dq

(3)

In Equation 3, xij = xd for de novo data and xij = (xca, xcn) for case-
control data. In addition, the integral over q was not applicable for de novo
data because there is no q parameter for de novo data.

As in He et al. (2013), the BF for the ith gene combining all categories is:

Bi =
K∏
j=1

Bij (4)

To calculate BFs, hyper parameters in Table 1 need to be inferred. Let φ1j

and φ0j be hyperparameters for H1 and H0 respectively. A mixture model of
the two hypotheses was used to infer parameters using information across the
number of tested genes (m) as:

P (x|φ1, φ0) =
m∏
i=1

[
π

K∏
j=1

P (xij |φ1j) + (1− π)
K∏
j=1

P (xij |φ0j)

]
(5)

Equation 5 was calculated across categories as in Equation 4.
We used the same approach for the analysis of multiple population samples.

Let Ndnpop, Cdn and Nccpop, Ccc be the number of populations, categories for
de novo and case-control data respectively. The total Bayes Factor of a given
gene was the product of Bayes Factors of all populations as in Equation 1, and
all hyper parameters were estimated using Equation 2.

The hyperparameters φ1j = (γj(dn), γj(cc), βj(dn), βj(cc), ρj , νj) were estimated
using a Hamiltonian Monte Carlo (HMC) Markov chain Monte Carlo (MCMC)
method implemented in the rstan package (Carpenter et al., 2015; R Core
Team, 2016). However, the model was first simplified by removing q (see be-
low).

4.2.1.2 Simplified approximate case-control model

For case-control (transmitted) data, q ∼ Gamma(ρ, ν), and hyper-parameters
ρ and ν controlled the mean and dispersion of q; therefore, as in the previous
studies (He et al., 2013; De Rubeis et al., 2014), ν was heuristically chosen (200
was used in all analyses) and ρ

ν = the mean frequency across genes in both cases
and controls.

We simplified the case-control model by expressing it as

P (xca, xcn|Hj) = P (xca|xca + xcn, Hj)P (xca + xcn|Hj) (6)
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Because xca ∼ Pois(N1qγcc) and xcn ∼ Pois(N0q), assuming that xca and
xcn were independent, the case data could be modeled as:

xca|xca + xcn, Hj ∼ Binomial(xca + xcn, θ|Hj)

with θ|H1 = N1γcc
N1γcc+N0

and θ|H0 = N1

N1+N0

The marginal likelihood was
P (xca|xca + xcn, Hj) =

∫
P (xca|xca + xcn, γcc, Hj)P (γcc|Hj)dγcc

Based on simulation results, the first part P (xca|xca + xcn, Hj) can be used
to infer mean RRs (γ̄cc); therefore only this part was used in the extTADA

estimation process.

4.2.1.3 Control of an implied proportion of protective variants using
the relative risk dispersion hyper-parameter

If γ̄ and β were small then we could see a high proportion of protective vari-
ants when γ̄ is not large. Although this might be of biological interest, it is
not currently accounted for in the model. To control the proportion of pro-
tective variants, we tested the relationship between β and γ̄ in determining∫ 1

0
Gamma(γ̄dnβdn, βdn). We set this proportion very low (0.5%) (Figure S10)

and built a nonlinear relationship β = ea∗γ̄
b+c. The R package nls was used to

estimate a, b and c, as 6.83,−1.29 and −0.58 respectively.

4.2.1.4 Power analyses for extTADA risk gene identification

We simulated DN and CC data for ranges of sample sizes, using random sam-
ples from the posterior density of our primary genetic architecture inference
analysis. The original case-control model was used in this calculation; how-
ever, we changed the order of the integral of parameters to not rely on q be-
cause the range of this parameter was not frequently known in advance (Sup
Information 6.3). BFs of genes were calculated according to Equation 1, and
Newton et al. (2004) false discovery rates (FDRs) were calculated following
De Rubeis et al. (2014). Posterior probability (PP) for each gene was calcu-
lated as PP = π ∗ BF/(1 − π + π ∗ BF ) (Stephens and Balding, 2009). The
number of risk genes could be predicted based on the FDR threshold, for which
we chose 0.05.

4.2.2 Testing the model on simulated data

To calculate the ability of the model in predicting significant genes, we used the
simulation method described in the TADA paper (He et al., 2013). We simulated
one case-control (CC) variant class, two CC classes, or one CC and one de novo
(DN) class. For CC data, the original case-control model in TADA (He et al.,
2013) was used to simulate case-control data and then case-control parameters
were estimated using the approximate model. The frequency of SCZ case-control
LoF variants was used to calculate prior information of q ∼ Gamma(ρ, ν) as
described in Table 1. For DN data, we used exactly the original model of TADA
in both the simulation and estimation process.
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Different sample sizes were used. For CC data, to see the performance of the
approximate model, we used four sample sizes: 1092 cases plus 1193 controls,
3157 cases plus 4672 controls, 10000 cases plus 10000 controls, 20000 cases plus
20000 controls. The first two sample sizes were exactly the same as the two
sample sizes from Sweden data in current study. The last two sample sizes were
used to see whether the model would be better if sample sizes increased. For
DN and CC data, we used exactly the sample sizes of the largest groups in our
current data sets: family numbers = 1077, case numbers = 3157 and control
numbers = 4672.

To see correlations between simulated and estimated parameters, the Spear-
man correlation method (Spearman, 1904) was used. To see the performance
of the estimation process of parameters inside the model, we compared between
expected FDRs and observed FDRs (oFDRs).

We defined oFDR for a FDR threshold as follows. Let G be the set of
significant genes under the FDR threshold, and n1 be the length of G. Let
n2 be the number of true risk genes (information from simulated data) inside
G. oFDR for the FDR threshold was the ratio of n2 and n1 (oFDR = n2/n1).
Estimated paramters from extTADA were used in this calculation.

For each combination of simulated parameters, we re-ran 100 times and
obtained the medians of estimated values to use for inferences.

We also used different priors of hyper parameters (e.g., ¯̄γ, β̄ in Table 1) in
the simulation process and chose the most reliable priors corresponding with
ranges of γ̄. Because β̄ mainly controled the dispersion of hyper parameters, ¯̄γ
was set equal to 1, and only β̄ was tested.

4.2.2.1 Test NULL model (π = 0, γ̄ = 1)

We also tested the situation in which no signal of both de novo mutations and
rare case-control variants was present. We simulated one DN category and one
CC category with π = 0, γ̄ = 1. To see the influence of prior information of γ̄
(γ̄ ∼ Gamma(1, β̄)) on these results, we used different values of β̄.

4.2.3 Calculate mutation rates

We used the methodology which was based on trinucleotide context, depth of
coverage as described in Fromer et al. (2014) to obtain mutation rates (MRs) for
different classes. There were genes whole mutation rates were equal to 0 (0-MR
genes). To adjust for this situation for each mutation class, we calculated the
minimum MR of genes having this value > 0, then this minimum value divided
by 10 was used as MRs of 0-MR genes.
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4.2.4 Analyze SCZ data

4.2.4.1 Obtain non-heterogeneous populations for case-control data
of SCZ

The case-control data sets were divided into three big populations: Finland,
United Kingdom and Sweden. For the Sweden population, this was a large data
set and was also sequenced at different centers (Genovese et al., 2016), therefore
we divided this population as follows.

A simple combination between a clustering process using a multivariate nor-
mal mixture model and a data analyzing strategy using linear and generalized
linear models was used to divide the Sweden data into non-heterogeneous pop-
ulations. Genovese et al. (2016) recently analyzed all case-control data sets
by adjusting for multiple covariates: genotype gender of individuals (SEX), 20
principal components (PCs), year of birth of individuals (BIRTH), Aligent kit
used in wet-labs (KIT) by using linear regression and generalized linear regres-
sion models as in Equation 7. They reported significant results for NonExAC
LoF and MiD variants; therefore, this information was used in this step. We
defined homogeneous populations as populations which were not much affected
by the covariates. Thus, for the populations, analyzing results using Equation
7 (adjusting covariates) would not be much different from those results using
Equation 8 (not adjusting covariates). The mclust package Version 5.2 (Fraley
and Raftery, 1999) which uses a multivariate normal mixture model was used to
divide 11,161 samples (4,929 cases and 6,232 controls) into different groups. To
see all situations of the grouping process, we used mclust with three strategies
on 11,161 samples: grouping all 20 PCs, grouping all 20 PCs and total counts,
and grouping only the first three PCs. The number of groups were set between
2 and 6. For each clustering time, Equation 7 and 8 were used to calculate p
values for each variant category of each group from the clustering results (p1
and p2 respectively); then, Spearman correlation (Spearman, 1904) between p-
value results from the two Equations (cPvalue) was calculated. Next, to filter
reliable results from the clustering process, we set criteria:

• cPvalue ≥ 0.85 and p-values for NonExAC ≤ 0.005.

• Ratio p1/p2 from Equation 7 and 8 had to between 0.1 and 1.

From results satisfied the above criteria, we manually chose groups which
had similar results between Equation 8 and 7.

logit(P (SCZ = 1)) ∼ count+ countAll + sex+ birth+ kit+
20∑
i=1

PCi

count ∼ SCZ + countAll + sex+ birth+ kit+
20∑
i=1

PCi

(7)

SCZ ∼ count
count ∼ SCZ (8)
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For the data from the UK10K project (Singh et al., 2016), we divided the
data into two separate populations England and Finland, and tested NoExAC
variants in these populations by calculating sample-size-adjusted ratios between
cases and controls. The ratios were 0.91 and 0.95 for the UK data. Regarding
the Finland data, the ratio for MiD variants was only 0.41 which were extremely
low. This could be a special case for the population or might be because of other
technical reasons. We did not use this population in the next stage because it
showed a different trend with other populations.

4.2.4.2 Estimate genetic parameters for SCZ

De novo mutations and case-control variants from the non-heterogeneous pop-
ulations were integratively analyzed. Three de novo classes (MiD, LoF and
silentFCPk mutations) and two case-control classes (MiD and LoF variants)
were used in Equation 5 to obtain genetic parameters for SCZ. Case-control
MiD and LoF variants were pooled into one class in the estimation process.

4.2.4.3 Estimate number of risk genes for SCZ

Based on estimated genetic parameters from the data sets available, the num-
ber of risk genes were predicted as described in the extTADA pipeline above.
Different thresholds of FDRs were used to report their corresponding risk-gene
numbers.

4.2.4.4 Test enrichment in known gene sets

Based on the extTADA results, we tested the enrichment of gene sets by using
gene FDRs as follows. At each gene, we obtained FDR from extTADA. For each
tested gene set, we calculated the mean of FDRs (m0). After that, we randomly
choose gene sets n times (n = 10 millions in this study) from the whole genes
and recalculated the means of FDRs of the chosen gene sets (vector m). The p

value for the gene set was calculated as: p = length(m[m<m0])+1
length(m)+1 . To correct for

multiple tests, the p values were adjusted using the method of Benjamini and
Hochberg (1995) for all the number of tests.

4.2.4.5 Predict number of risk genes for different sample sizes

Based on the genetic architecture of SCZ, we predicted the number of risk
genes for the disease. To simplify the calculation, we assumed that sample
sizes of cases and controls were the same and only one de novo and case-control
population. In addition, a threshold FDR = 0.05 was used in this process to
predict a number of individually significant genes. Therefore, a grid of different
simulated counts of family numbers between 500 and 20000 and case/control
numbers between 1000 and 50000 were generated. From these simulated counts,
we inferred how many risk genes with FDR ≤ 0.05.
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4.2.4.6 Test for single classes

To have a general picture of all classes, extTADA was used to test for single
classes (LoF/MiD/silentFCPk de novo mutations, LoF/MiD case-control vari-
ants only). All parameters were set as the integration analysis.

4.2.4.7 Test genetic architecture of SCZ using both InExAC and
NoExAC variants

To test whether InExAC variants could increase (or decrease) the strength of
identifying significant genes, we pooled all InExAC and NoExAC case-control
variants and then used extTADA to analyze this pooled data set.

4.2.4.8 Test the influence of mutation rates to the analyzing results
of SCZ

The de novo data in current study were from different sources; therefore, de novo
counts could be affected by differences in coverage, technologies. We therefore
tested the analyzing results by adjusting for mutation rates by using synonymous
mutations. We divided the observed counts by expected counts (= 2 x family
numbers * total mutation rates), and then used this ratio to adjust for all
mutation rates. The new mutation rates and the original data (NoExAC) were
re-analyzed using extTADA.

4.2.4.9 Test extTADA with the same mean relative risks for case-
control data

To test the performance of the model when mean RRs (γ̄CC) were equal, we
re-ran the analysis for SCZ data with an adjustment inside the model: γijCC ∼
Gamma(γ̄CC ∗ βCC , βCC) (γijCC was the relative risk at the ith gene in the jth

population).

4.2.5 Use extTADA to predict genetic parameters of other neurode-
velopmental diseases

Use exTADA, we analyzed the integration architecture of genetics for four other
neurodevelopmental diseases: EPI, ID, DD and ASD. For ASD, genetic param-
eters were estimated simultaneously for both de novo and case-control data. For
the three other diseases, the estimation process was only carried out for de novo
data because there were not rare case-control data publicly available.

4.2.6 Infer parameters using MCMC results

The rstan package (Carpenter et al., 2015) was used to run MCMC processes.
For simulation data, 5,000 times and a single chain were used. For real data,
20,000 times and three independent chains were used. In addition, for SCZ data
we used two steps to obtain final results. Firstly, 10,000 times were run to obtain
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parameters. After that, we calculated β values from estimated mean RRs as the
Equation described in Table 1. Finally, extTADA was re-run 20,000 times on the
SCZ data with calculated β values set as constants to re-estimate mean RRs
and the proportions of risk genes. For each MCMC process, a burning period =
a half of total running times was used to assure that chains did not rely on their
initial values. For example, we ran and removed 2,500 burning times before the
5,000 running times for simulation data.

We just chose 1,000 samples of each chain from MCMC results to do further
analyses. For example, with a chain with 20,000 run times, the step to obtain
a sample was 20 run times. For all estimated parameters from MCMC chains,
the convergence of each parameter was diagnosed using the estimated potential
scale reduction statistic (R̂) introduced in Stan (Carpenter et al., 2015). To
produce heatmap plots, modes as well as the credible intervals (CIs) of estimated
parameters, the Locfit (Loader, 2007) was used. The mode values were used as
our estimated values for other calculations.
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6 Supplementary information

6.1 Supplementary Tables

Parameter Q50 Q5 Q95
π 0.02 0.0224 0.0125 0.0253

0.05 0.0535 0.0351 0.0611
0.09 0.0965 0.0752 0.1063
0.13 0.1381 0.11 0.149

γ̄DN 5 4.265 3.5608 4.947
10 8.575 5.7255 10.4417
15 13.23 9.9955 15.925
20 17.07 14.2005 20.3087

γ̄CC 1.5 1.64 1.5938 1.7888
2 2.21 2.1638 2.2662

2.5 2.76 2.7138 2.8575
3 3.225 3.14 3.31

3.5 3.675 3.5812 3.7663

Table S1: Simulated and estimated values of de novo (DN) and case-control
(CC) parameters. Q50, Q5 and Q95 are for quantile values of 0.5, 0.05 and 0.95
respectively.
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pi dn RR cc RR e.pi Q50 Q5 Q95 e.dn RR Q50 Q5 Q95 e.cc RR Q50 Q5 Q95

0.02 5 1.5 0.0126 0.0051 0.0224 4.72 2.65 9.22 1.83 1.70 2.53
0.02 5 2 0.0158 0.0054 0.0394 4.08 2.33 11.88 2.27 1.88 3.01
0.02 5 2.5 0.0230 0.0093 0.0419 3.49 2.05 10.25 2.83 2.22 3.43
0.02 5 3 0.0219 0.0123 0.0355 3.52 2.06 8.49 3.31 2.74 4.25
0.02 5 3.5 0.0269 0.0171 0.0373 3.76 2.10 9.59 3.80 3.15 4.73
0.02 10 1.5 0.0185 0.0085 0.0280 5.72 2.82 10.08 1.80 1.54 2.57
0.02 10 2 0.0176 0.0076 0.0373 5.22 2.55 13.43 2.24 1.85 3.05
0.02 10 2.5 0.0218 0.0118 0.0342 5.13 2.39 17.29 2.80 2.27 3.57
0.02 10 3 0.0227 0.0137 0.0344 7.29 2.35 15.88 3.28 2.64 4.23
0.02 10 3.5 0.0255 0.0163 0.0328 7.87 2.79 14.28 3.73 3.07 4.69
0.02 15 1.5 0.0152 0.0046 0.0315 11.63 4.65 28.84 1.77 1.48 2.67
0.02 15 2 0.0213 0.0091 0.0348 10.19 3.32 23.63 2.25 1.86 2.84
0.02 15 2.5 0.0230 0.0118 0.0377 9.73 4.00 20.84 2.69 2.06 3.50
0.02 15 3 0.0226 0.0128 0.0370 10.51 3.53 21.52 3.18 2.55 4.11
0.02 15 3.5 0.0240 0.0140 0.0364 10.56 3.58 20.62 3.62 3.04 4.70
0.02 20 1.5 0.0138 0.0062 0.0398 14.96 5.47 47.26 1.68 1.35 2.29
0.02 20 2 0.0188 0.0079 0.0363 14.10 4.79 36.13 2.28 1.81 3.20
0.02 20 2.5 0.0233 0.0110 0.0343 13.61 5.67 26.36 2.76 2.12 3.54
0.02 20 3 0.0243 0.0140 0.0371 13.89 6.44 23.95 3.41 2.63 4.30
0.02 20 3.5 0.0240 0.0146 0.0352 14.87 6.90 24.81 3.77 2.96 4.65
0.05 5 1.5 0.0343 0.0120 0.0688 4.55 2.26 14.06 1.71 1.51 2.17
0.05 5 2 0.0479 0.0279 0.0699 4.86 2.32 10.44 2.21 1.88 2.60
0.05 5 2.5 0.0556 0.0351 0.0743 4.59 2.06 8.03 2.81 2.31 3.17
0.05 5 3 0.0558 0.0427 0.0722 4.36 2.08 8.18 3.35 2.91 3.74
0.05 5 3.5 0.0621 0.0435 0.0727 3.65 1.89 7.36 3.73 3.22 4.48
0.05 10 1.5 0.0381 0.0161 0.0723 9.20 3.92 15.41 1.74 1.45 2.18
0.05 10 2 0.0531 0.0293 0.0801 8.71 3.70 12.99 2.26 1.91 2.71
0.05 10 2.5 0.0528 0.0386 0.0727 8.76 4.15 14.48 2.74 2.47 3.11
0.05 10 3 0.0569 0.0416 0.0737 8.22 4.47 13.57 3.25 2.83 3.72
0.05 10 3.5 0.0615 0.0491 0.0733 8.06 3.97 13.17 3.66 3.30 4.29
0.05 15 1.5 0.0406 0.0182 0.0877 13.51 6.94 24.71 1.67 1.43 1.98
0.05 15 2 0.0489 0.0311 0.0723 14.04 8.16 22.70 2.19 1.90 2.61
0.05 15 2.5 0.0522 0.0327 0.0734 13.13 8.28 20.66 2.72 2.38 3.11
0.05 15 3 0.0577 0.0449 0.0732 12.37 7.27 18.59 3.19 2.83 3.75
0.05 15 3.5 0.0607 0.0465 0.0756 11.97 8.23 18.55 3.61 3.11 4.29
0.05 20 1.5 0.0418 0.0205 0.0814 18.37 9.74 32.56 1.63 1.37 1.97
0.05 20 2 0.0482 0.0325 0.0697 17.08 10.14 29.26 2.27 1.91 2.60
0.05 20 2.5 0.0537 0.0406 0.0733 16.59 10.57 23.23 2.77 2.29 3.06
0.05 20 3 0.0569 0.0424 0.0770 16.15 10.37 24.32 3.23 2.84 3.75
0.05 20 3.5 0.0596 0.0449 0.0765 15.50 10.23 21.45 3.75 3.19 4.61
0.09 5 1.5 0.0767 0.0404 0.1207 4.46 2.17 9.59 1.66 1.51 1.97
0.09 5 2 0.0904 0.0666 0.1115 4.52 2.04 7.33 2.23 2.03 2.54
0.09 5 2.5 0.0963 0.0753 0.1256 4.70 2.52 7.54 2.79 2.49 3.11
0.09 5 3 0.1040 0.0879 0.1217 3.90 2.08 6.71 3.19 2.85 3.68
0.09 5 3.5 0.1039 0.0876 0.1211 4.22 2.34 7.93 3.70 3.35 4.13
0.09 10 1.5 0.0778 0.0423 0.1208 10.01 5.56 17.73 1.64 1.46 1.93
0.09 10 2 0.0925 0.0660 0.1196 9.26 5.85 13.45 2.16 1.96 2.49
0.09 10 2.5 0.0963 0.0729 0.1170 9.30 7.16 12.50 2.82 2.40 3.18
0.09 10 3 0.0992 0.0831 0.1189 9.25 6.11 12.76 3.22 2.95 3.61
0.09 10 3.5 0.1070 0.0885 0.1222 8.29 5.81 10.94 3.67 3.36 4.20
0.09 15 1.5 0.0822 0.0507 0.1257 14.59 9.22 22.62 1.61 1.43 1.89
0.09 15 2 0.0911 0.0668 0.1217 14.35 9.39 20.13 2.16 1.94 2.45
0.09 15 2.5 0.0978 0.0754 0.1202 13.77 10.40 17.99 2.72 2.40 3.00
0.09 15 3 0.0997 0.0844 0.1206 13.50 10.60 16.88 3.13 2.82 3.49
0.09 15 3.5 0.1036 0.0861 0.1229 12.95 9.89 16.86 3.60 3.20 4.15
0.09 20 1.5 0.0804 0.0495 0.1236 19.92 13.06 31.58 1.60 1.38 1.82
0.09 20 2 0.0920 0.0694 0.1205 18.18 12.71 24.69 2.21 1.95 2.51
0.09 20 2.5 0.0958 0.0742 0.1166 18.28 13.76 22.90 2.75 2.49 3.05
0.09 20 3 0.0974 0.0816 0.1202 17.55 13.32 22.38 3.28 2.95 3.59
0.09 20 3.5 0.1067 0.0925 0.1171 16.49 13.66 20.83 3.68 3.32 4.21
0.13 5 1.5 0.1163 0.0720 0.1671 4.87 2.51 8.11 1.65 1.49 1.83
0.13 5 2 0.1250 0.0991 0.1603 5.15 2.82 7.72 2.22 2.04 2.53
0.13 5 2.5 0.1387 0.1173 0.1654 4.65 2.51 7.04 2.77 2.52 3.08
0.13 5 3 0.1469 0.1220 0.1649 4.40 2.83 6.17 3.20 2.93 3.47
0.13 5 3.5 0.1467 0.1293 0.1747 4.45 2.46 6.13 3.69 3.36 4.25
0.13 10 1.5 0.1094 0.0707 0.1660 10.69 7.35 17.96 1.68 1.53 1.84
0.13 10 2 0.1306 0.1113 0.1529 9.40 6.89 13.22 2.17 2.01 2.36
0.13 10 2.5 0.1432 0.1197 0.1595 9.15 7.21 11.97 2.73 2.52 3.01
0.13 10 3 0.1457 0.1308 0.1682 8.89 6.64 11.08 3.23 3.00 3.54
0.13 10 3.5 0.1497 0.1320 0.1728 8.54 6.62 10.61 3.60 3.26 3.97
0.13 15 1.5 0.1180 0.0778 0.1677 15.08 10.41 22.63 1.60 1.46 1.80
0.13 15 2 0.1277 0.1044 0.1593 14.45 11.56 18.45 2.15 1.96 2.40
0.13 15 2.5 0.1380 0.1124 0.1625 14.34 11.23 17.93 2.72 2.45 3.04
0.13 15 3 0.1432 0.1254 0.1667 13.41 11.03 16.81 3.13 2.87 3.63
0.13 15 3.5 0.1488 0.1281 0.1674 13.00 10.35 16.30 3.56 3.20 3.98
0.13 20 1.5 0.1203 0.0862 0.1765 19.72 13.93 26.77 1.61 1.48 1.83
0.13 20 2 0.1325 0.1093 0.1546 18.54 15.11 23.43 2.21 1.99 2.39
0.13 20 2.5 0.1351 0.1130 0.1601 18.38 14.63 22.97 2.79 2.50 3.00
0.13 20 3 0.1434 0.1256 0.1645 18.43 14.94 22.27 3.24 2.94 3.60
0.13 20 3.5 0.1488 0.1320 0.1637 16.81 13.99 20.18 3.64 3.34 4.11

Table S2: Estimated values for the cases in Table S1, for each uniqe set of
parameter values. The first three columns are simulated values. The following
columns show estimated π, de novo mean relative risk (dn RR) and case-contorl
(cc) RR; for each parameter, shown are median (Q50) and 5th and 95th %-iles
(Q5 and Q95) estimates over 100 simulation replicates.
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β̄DN β̄CC e.π e.β̄DN e.β̄CC e.βDN e.βCC FDR0.01 FDR0.05 FDR0.1 FDR0.25 FDR0.5

0.01 0.11 0.0008985 12.16 2.37 0.82 1.38 0 0 0 0 0
0.01 0.14 0.0013925 7.76 2.02 0.84 2.08 0 0 0 0 0
0.01 0.2 0.0011444 7.38 1.66 0.86 3.2 0 0 0 0 0
0.01 0.33 0.0014319 10.32 1.46 0.83 5.06 0 0 0 0 0
0.01 1 0.0010192 6.12 1.26 0.87 24.04 0 0 0 0 0
0.02 0.11 0.0012389 5.7 1.72 0.88 2.07 0 0 0 0 0
0.02 0.14 0.00339 6.25 1.6 0.88 5.1 0 0 0 0 0
0.02 0.2 0.0036757 12.62 1.53 0.83 4.77 0 0 0 0 0
0.02 0.33 0.0040126 3.34 1.32 1.14 15.47 0 0 0 0 0
0.02 1 0.0057346 5.27 1.15 0.92 51.7 0 0 0 0 0
0.03 0.11 0.0012311 7.23 1.63 0.87 2.43 0 0 0 0 0
0.03 0.14 0.0009967 6.37 1.61 0.87 3.88 0 0 0 0 0
0.03 0.2 0.0022818 5.16 1.55 0.92 5.4 0 0 0 0 0
0.03 0.33 0.0110319 4.16 1.35 1.02 16.06 0 0 0 0 2
0.03 1 0.004111 3.75 1.19 1.03 42.34 0 0 0 0 0
0.05 0.11 0.0018204 5.78 1.38 0.9 5.92 0 0 0 0 0
0.05 0.14 0.0015779 7.84 2.04 0.86 2.14 0 0 0 0 0
0.05 0.2 0.0034645 4.75 1.34 0.94 9.15 0 0 0 0 0
0.05 0.33 0.0123621 1.75 1.24 2.27 24.09 0 0 0 0 0
0.05 1 0.0035687 3.63 1.18 1.03 47.33 0 0 0 0 0

Table S3: Estimated values in the case π = 0 and γ̄ = 1. The first two columns
are β̄ values (prior information of γ̄: γ̄ ∼ Gamma(1, β̄)). The third to the
seventh columns are genetic parameters estimated from extTADA. Next columns
are the number of risk genes estimated with the corresponding FDR values in
the header.

Parameters Estimated mode lCI uCI
SCZ pi silentFCPkdn 0.0056 0 0.1977
SCZ hyperGammaMean silentFCPkdn 1.5802 1.001 21.5139
SCZ pi MiDdn 0.012 0 0.2368
SCZ hyperGammaMean MiDdn 1.7486 1 17.8548
SCZ pi LoFdn 0.0548 0.0124 0.2062
SCZ hyperGammaMean LoFdn 11.1857 3.3973 31.3602
SCZ pi MiD+LoFcc 0.069 0.0296 0.1359
SCZ hyperGammaMean MiD+LoFcc 2.0176 1.2133 5.3694
SCZ hyperGammaMean MiD+LoFcc 3.2288 1.2372 17.1478
SCZ hyperGammaMean MiD+LoFcc 1.0691 1.0002 2.9574

Table S4: Genetic parameters for SCZ data if single class is used in the analysis.

Parameters Estimated mode lCI uCI
SCZ pi0 0.0937 0.0547 0.1512
SCZ meanRR silentFCPkdenovo 1.3068 1.0005 2.7489
SCZ meanRR MiDdenovo 2.2246 1.0006 5.3491
SCZ meanRR LoFdenovo 15.1491 5.8606 27.3941
SCZ meanRR MiD+LoFccPop1 1.8677 1.0374 3.0736
SCZ meanRR MiD+LoFccPop2 2.2632 1.003 4.9168
SCZ meanRR MiD+LoFccPop3 1.0372 1.0002 1.1807

Table S5: SCZ genetic parameters after adjusting mutation rates (NoExAC).
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Parameter Mode lCI uCI
pi0 0.0821 0.0487 0.1398
hyperGammaMeanDN[1] 1.2199 1.0001 2.2
hyperGammaMeanDN[2] 1.4407 1.0043 2.9893
hyperGammaMeanDN[3] 11.9591 4.1894 23.9414
hyperGammaMeanCC 1.9498 1.0845 3.2072

Table S6: Estimated genetic parameters for SCZ data with the same mean RRs
for case-control data.

Parameters Estimated mode lCI uCI
SCZ pi 0.0732 0.0306 0.1506
SCZ meanRR silentFCPkdenovo 1.2353 1.0021 3.6086
SCZ meanRR MiDdenovo 1.4459 1.0008 4.7004
SCZ meanRR LoFdenovo 12.0403 4.6136 25.8786
SCZ meanRR MiD+LoFccPop1 1.5856 1.1255 4.0881
SCZ meanRR MiD+LoFccPop2 1.7361 1.0438 4.8856
SCZ meanRR MiD+LoFccPop3 1.0698 1.0001 2.9991

Table S7: SCZ genetic parameters using all variants in and not in ExAC
database (InExAC + NoExAC).

Table S8: extTADA results of SCZ risk gene identification (See LongSupTa-
bles.xlsx Download).

Table S9: extTADA results of SCZ risk gene identification after adjusting mu-
tation rates (See LongSupTables.xlsx Download ).
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Gene set name Abbreviation Author
Missense constrained genes constrained Samocha et al. (2014)
Loss-of-function tolerance genes pLI90 Lek et al. (2015)
RBFOX2 and RBFOX1/3 genes rbfox2, rbfox13 Weyn-Vanhentenryck

et al. (2014)
FMRP genes fmrp Darnell et al. (2011)
CELF4 genes celf4 Wagnon et al. (2012)
synaptic genes synaptome Pirooznia et al. (2012)
microRNA-137 mir137 Robinson et al. (2015)
PSD-95 complex genes psd95 Bayés et al. (2011)
ARC and NMDA receptors genes nmdarc Kirov et al. (2012)
Essential genes essential Ji et al. (2016)
Human accelerated regions and primate
accelerated regions

HARs, PARS Lindblad-Toh et al. (2011)

Known ID gene sets IDallKnownGenes Lelieveld et al. (2016)
Voltage-gated Calcium Channel Genes vacc
CHD8 promoter targets chd8 hNSC, chd8 hNSC

specific, chd8 human
brain, chd8 hNSC human
brain, chd8 hNSC human
mouse

Cotney et al. (2015)

Allelic-biased expression genes in neu-
rons

AlleleBiasedExpression.NeuronLin et al. (2012)

De novo copy number variants Genovese et al. (2016)
ASD CNV.denovo.gain/loss.asd
Bipolar CNV.denovo.gain/loss.bd
SCZ CNV.denovo.gain/loss.scz
MiD and LoF de novo mutations
DD DD.allDenovoMiDandLoF
ASD ASD.allDenovoMiDandLoF
EPI EPI.allDenovoMiDandLoF
ID ID.allDenovoMiDandLoF

Table S10: Abbreviations of known gene sets used in this study.
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Gene set P value FDR
FMRP targets 1.0e-07 2.7e-05
rbfox13 1.0e-07 2.7e-05
constrained 1.0e-07 2.7e-05
celf4 1.0e-07 2.7e-05
pLI09 1.0e-07 2.7e-05
rbfox2 1.0e-07 2.7e-05
DD.allDenovoMiDandLoF 1.0e-07 2.7e-05
abnormal behavior 3.0e-07 7.0e-05
GGGAGGRR V$MAZ Q6 7.0e-07 1.5e-04
abnormal sensory capabilities|reflexes|nociception 1.9e-06 3.6e-04
AST.allDenovoMiDandLoF 2.1e-06 3.6e-04
abnormal motor capabilities|coordination|movement 2.8e-06 4.4e-04
chd8.human brain 9.2e-06 1.3e-03
ACAGGGT,MIR-10A,MIR-10B 1.1e-05 1.4e-03
AlleleBiasedExpression.Neuron 1.1e-05 1.4e-03
GO:0016043 1.2e-05 1.4e-03
abnormal emotion|affect behavior 1.3e-05 1.5e-03
GO:0045202 2.2e-05 2.3e-03
GO:0071840 2.6e-05 2.5e-03
abnormal nervous system morphology 2.7e-05 2.5e-03
CAGGTG V$E12 Q6 2.9e-05 2.6e-03
GO:0008104 5.7e-05 4.9e-03
GO:0051179 6.4e-05 5.2e-03
GO:0006996 7.1e-05 5.6e-03
GO:0043234 7.4e-05 5.6e-03
ARC 7.8e-05 5.7e-03
AACTTT UNKNOWN 8.8e-05 6.1e-03
CTTTGT V$LEF1 Q2 9.3e-05 6.3e-03
GO:0048519 1.0e-04 6.8e-03
synaptome 1.2e-04 7.6e-03
abnormal social|conspecific interaction 1.3e-04 7.7e-03
GGATTA V$PITX2 Q2 1.5e-04 8.6e-03
KEGG AXON GUIDANCE 1.7e-04 9.5e-03
GO:0043005 1.8e-04 9.8e-03
essentialGenes 1.8e-04 9.8e-03
Known EPI genes 2.0e-04 1.0e-02
GO:0045211 2.1e-04 1.0e-02
GO:0044456 2.3e-04 1.1e-02
mir137 2.4e-04 1.2e-02
NMDAR network 2.5e-04 1.2e-02
GO:0022839 2.7e-04 1.2e-02
GO:0022836 2.7e-04 1.2e-02
GO:0034702 2.8e-04 1.2e-02
GO:0033036 2.9e-04 1.2e-02
AATGTGA,MIR-23A,MIR-23B 3.1e-04 1.3e-02

39

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/135293doi: bioRxiv preprint 

https://doi.org/10.1101/135293
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gene set P value FDR
GO:0097060 3.2e-04 1.3e-02
GO:0044765 3.4e-04 1.4e-02
mGluR5 3.7e-04 1.4e-02
GO:0022834 3.7e-04 1.4e-02
GO:0015276 3.8e-04 1.4e-02
GO:0048193 4.2e-04 1.5e-02
CTTTGA V$LEF1 Q2 4.5e-04 1.6e-02
GO:0097458 5.0e-04 1.8e-02
GO:0019226 5.1e-04 1.8e-02
GO:0022892 5.4e-04 1.8e-02
GO:0005261 5.8e-04 1.9e-02
GO:0008022 5.9e-04 1.9e-02
abnormal fear|anxiety-related behavior 6.0e-04 1.9e-02
abnormal cued conditioning behavior 6.1e-04 1.9e-02
GO:0005215 6.2e-04 1.9e-02
GO:0048592 6.3e-04 1.9e-02
REACTOME TRANSMISSION ACROSS CHEMICAL SYNAPSES 6.6e-04 2.0e-02
GO:0048523 6.8e-04 2.0e-02
abnormal synaptic transmission 7.0e-04 2.1e-02
GO:0035637 7.2e-04 2.1e-02
seizures 7.3e-04 2.1e-02
abnormal behavioral response to xenobiotic 7.7e-04 2.2e-02
ID.allDenovoMiDandLoF 7.9e-04 2.2e-02
GO:0007268 7.9e-04 2.2e-02
GO:0005886 9.3e-04 2.5e-02
GWAS (Pardinas et al 2017) 9.4e-04 2.5e-02
GO:0000904 9.8e-04 2.5e-02
ID.allKnownGenes 9.9e-04 2.5e-02
GO:0007399 1.0e-03 2.5e-02
GO:0022612 1.2e-03 3.0e-02
GO:0006810 1.2e-03 3.1e-02
GO:0015031 1.3e-03 3.1e-02
GO:0016568 1.3e-03 3.2e-02
GO:0048589 1.4e-03 3.3e-02
REACTOME NEURONAL SYSTEM 1.4e-03 3.3e-02
GO:0051234 1.4e-03 3.3e-02
GO:0071944 1.5e-03 3.5e-02
PSD-95 (core) 1.6e-03 3.6e-02
GO:0042995 1.6e-03 3.6e-02
abnormal learning|memory|conditioning 1.7e-03 3.7e-02
abnormal excitatory postsynaptic currents 1.7e-03 3.7e-02
GO:0007154 1.7e-03 3.7e-02
GO:0005216 1.7e-03 3.7e-02
GO:0010646 1.8e-03 3.7e-02
GO:0007267 1.9e-03 3.8e-02
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Gene set P value FDR
GO:0030662 1.9e-03 3.8e-02
GO:0044700 1.9e-03 3.8e-02
GO:0023052 1.9e-03 3.8e-02
GO:0045184 2.0e-03 4.1e-02
GO:0007519 2.1e-03 4.1e-02
GO:0000139 2.1e-03 4.1e-02
abnormal associative learning 2.4e-03 4.6e-02
GO:0023051 2.4e-03 4.7e-02
GO:0022838 2.5e-03 4.7e-02
GO:0048731 2.6e-03 4.8e-02
GO:0032991 2.6e-03 4.9e-02
abnormal synapse morphology 2.7e-03 4.9e-02
GO:0010629 2.7e-03 4.9e-02

Table S11: Enrichment of gene sets from different databases with
SCZ genes from extTADA results. These p values were obtained by
10,000,000 simulations, and then adjusted by using the method of
Benjamini and Hochberg (1995).
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Source Disease DN DN control Case Control

Fromer et al. (2014) SCZ 617
Girard et al. (2011) SCZ 14
Gulsuner et al. (2013) SCZ 105 84
McCarthy et al. (2014) SCZ 57
Xu et al. (2012) SCZ 231 34
Guipponi et al. (2014) SCZ 53
Genovese et al. (2016) SCZ 4954/4248 6239/5865
Singh et al. (2016) SCZ 1745/1353 6789/4769

Deciphering Develop-
mental Disorders Study
(2017)

DD 4293

EuroEPINOMICS-RES
Consortium et al. (2014)

EPI 365

De Ligt et al. (2012) ID 100
Hamdan et al. (2014) ID 41
Rauch et al. (2012) ID 51 20
Lelieveld et al. (2016) ID 820

Turner et al. (2016) ASD 5122
De Rubeis et al. (2014) ASD 404 3654
Iossifov et al. (2012) ASD 343
ORoak et al. (2012) ASD 50
Sanders et al. (2012) ASD 200

Table S12: De novo and case/control data. For ASD studies, Turner et al.
(2016) integrated previous results in their study; therefore only de novo meta
data in this study are shown in the table. In addition, for ASD case-control
data, only one homogeneous Sweden population from De Rubeis et al. (2014)
was used. For case-control data of SCZ, after correcting for the population
stratification, only 4,248 cases (3,157 + 1,091) + 5,865 (4,672 + 1,193) controls
from Genovese et al. (2016) and 1,353 cases + 4,769 controls from Singh et al.
(2016) are used in this study.
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Disease Mutation Count Sample size Mutation count per sample size
SCZ silentFCPk 50 1077 0.05

MiD 105 1077 0.1
LoF 116 1077 0.11

ASD MiD 620 5122 0.12
LoF 638 5122 0.12

ID MiD 222 1022 0.22
LoF 230 1022 0.23

EPI MiD 67 356 0.19
LoF 58 356 0.16

DD MiD 1056 4293 0.25
LoF 1078 4293 0.25

Table S13: De novo mutation counts of categories and their mutation counts per
sample size for schizophrenia (SCZ), autism spectrum disorder (ASD), epilepsy
(EPI), intellectual disorder (ID) and developmental disorder (DD).
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Table S14: extTADA risk gene identification results of ID data (See LongSupT-
ables.xlsx Download).

Table S15: extTADA risk gene identification results of DD data (See LongSupT-
ables.xlsx Download).

Table S16: extTADA risk gene identification results of ASD data (See Long-
SupTables.xlsx Download).

Table S17: extTADA risk gene identification results of EPI data (See Long-
SupTables.xlsx Download).

Table S18: The p values of enrichment tests for 161 known gene sets in SCZ,
DD, ID, ASD and EPI (See LongSupTables.xlsx Download).

Table S19: The p values of enrichment tests for whole gene sets in SCZ, DD,
ID, ASD and EPI (See LongSupTables.xlsx Download).
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6.2 Sup Figure

Figure S1: Comparison between TADA and extTADA. They both use the same
model for de novo data (xdn and case/control (xca, xcn) data. extTADA com-
bines all categories to obtain parameters while TADA is based on LoF mutations.
extTADA uses an approximate model for case-control data, and constrains β and
γ̄ in the estimation process. extTADA is designed to work for multiple popula-
tions. TADA can be used inside extTADA.
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CC non-heterogenous populations
5,601 cases + 10,634 controls

SCZ case-control (CC) data
6,699 cases + 13,028 controls

Missense damaging (MiD) + Loss 
of function (LoF)  variants

extTADA
(Estimate simultaneously 

genetic parameters)

SCZ genetic parameters

Top SCZ genes
FDR < 0.1: SETD1A, TAF1B, RB1CC1, 
PRRC2A
FDR < 0.3: 
SETD1A,TAF13,RB1CC1,PRRC2A,VPS13C,
MKI67,RARG,ITSN1,KIAA1109, 
DARC, 
URB2,HSPA8,KLHL17,ST3GAL6,SHANK1,E
PHA5,LPHN2,NIPBL,KDM5B,TNRC18,
ARFGEF1,MIF,HIST1H1E,BLNK

Enrichment in 
gene sets

Other disorders 

DD: 4,293 trios
ID: 1,012 trios
ASD: 5,122 trios + 
4,058 CCs
EPI: 365 trios
(731 control families)

1) Genetic 
parameters for DD, 
ID, ASD and EPI
2) Novel genes for 
ID and DD
3) Significant gene 
sets for these orders

SCZ DN data
1,077 families 

(731 control families)

Missense damaging (MiD) + 
Loss of function (LoF) + DHS-
region silent (silentCFPK) 
mutations

FDRs for each gene Predict number of risk genes for different 
sample sizes 

3 populations

Figure S2: Workflow of data analysis.
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Figure S3: Correlations between estimated and simulated values for one CC
class with different sample sizes. X and Y axes describe simulated (S) and
estimated (E) values respectively. The top picture is for mean relative risks
(MeanRRs) while the bottom picture is for the proportion of risk genes (π).
Legends show sample sizes and correlations.
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Figure S4: Correlation between simulated and estimated values for one-category
case/control data.
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Figure S5: Correlations between estimated and simulated values for two CC
class with different sample sizes. X and Y axes describe simulated (S) and
estimated (E) values respectively. A range of mean relative risks for two classes
(MeanGamma1 and MeanGamma2) and risk-gene proportions (π) were used in
the simulation process. Legends show sample sizes and correlations.
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Figure S6: Correlation between simulated and estimated values for two-category
case/control data.
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Figure S7: Odds ratios for the analysis of all case-control samples. Top left
picture shows odds ratios for all Sweden samples while the three other pictures
show odds ratios for three groups after the clustering process. Only group 1 and
3 are used in the current analysis because there are strong differences between
results using covariates and not using covariates in group 2. P values were
calculated for variants in (InExAC), not in (NoExAC) the ExAC database, and
all variants (Both).
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Figure S8: Ratios of de novo mutations between SCZ probands and controls
(unaffected siblings). ”silentFCPk” describes for silent mutations within frontal
cortex-derived DHS (silentCerebrumfrontalocPk.narrowPeak). MiD mutations
are missense mutations derived from 7 methods.

52

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/135293doi: bioRxiv preprint 

https://doi.org/10.1101/135293
http://creativecommons.org/licenses/by-nc-nd/4.0/


pi0 hyperGammaMeanDN[1] hyperGammaMeanDN[2]

hyperGammaMeanDN[3] hyperGammaMeanCC[1] hyperGammaMeanCC[2]

hyperGammaMeanCC[3]

0.05

0.10

0.15

1

2

3

4

2

4

6

10

20

30

1

2

3

4

5

3

6

9

1.0

1.2

1.4

1.6

500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000

500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000

500 600 700 800 900 1000

chain

1

2

3

Figure S9: MCMC results for SCZ data.
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Figure S10: A grid of β and γ̄ values. Points on the red line are corresponding
with the proportion of protective variants less than 0.05%.
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Figure S11: SCZ genetic parameters when mean RRs of case-control data are
equal.
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Figure S12: The overlaps of significant gene sets in SCZ, ASD, EPI, DD and
ID in the genes collected from multiple databases.

6.3 Sup Information

6.3.1 Sup Results

6.3.1.1 Simulation case-control data only

To evaluate the performance of the approximate CC model for different parame-
ter values, we simulated a single CC sample with either one or two variant/anno-
tation classes. We tested sample sizes ranging from that of the available data,
1,092 each cases and controls (ASD), and 3,157 cases and controls (SCZ), to
larger sample sizes of 10,000 cases and controls, and 20,000 cases and controls.

Overall, high correlations (∼ 1) between estimated and simulated parameter
values indicate little bias in inference based on CC data (Figure S3 and S5).
Slight over estimation was observed for the sample size of 1092, especially for
risk-gene proportions.

An additional analysis was carried out to assess the performance of specific
simulated values. Correlations were calculated for each mean RR and π value.
For one CC class, mean RRs were estimated well by the model with correla-
tions ∼ 1 (Figure S4). However, the proportion of risk genes was affected by
mean RRs. They were estimated well when mean RRs were between 1.5 and
3.5, but underestimated with smaller mean RRs and slightly overestimated with
larger mean RRs (Figure S4). For two CC classes, high correlations (≥ 0.97)
between simulated and estimated values were seen for all parameters. In ad-
dition, small mean RRs of a given class did not directly affect the estimated
values of proportions of risk genes (Figure S6).

The issue of poor estimation for one class, but good estimation for > one
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class was expected. This was an advantage of using multiple classes compared
to using only one class in the estimation process when the clustering signal was
not very strong. Small mean RRs could result in difficulties in the calculation
process to differentiate between a risk gene (mean RR > 1) and a non-risk gene
(mean RR ∼ 1). If one class was used then many risk genes would be considered
to be non-risk genes. If more than one class was used, such risk genes would
be assigned as genuine risk genes due to the information available from other
classes.

6.3.2 Sup methods

6.3.2.1 Calculate Bayes Factor for case/control data

At a given gene, Bayes Factor for each class was calculated as BF = P (x1,x0|H1)
P (x1,x0|H0) .

The probability for each model (Hj , j = 0, 1) was calculated in order to rely only
γ parameters as follows.

P (xca, xcn|Hj) = P (xcn|Hj)P (xca|xcn, Hj) (9)

• The first part P (xcn|Hj) was the same as De Rubeis et al. (2014):

P (xcn|Hj) =

∫
P (xcn|q,Hj)P (q|ρ, ν,Hj)dq = NegBin(xcn|ρ,

N0

ν +N0
), j = 0, 1

(10)

• The second part:

P (xca|Hj , xcn) =
∫
P (xca|q, γcc)P (q|Hj , xcn)P (γcc|Hj)dqdγcc

=
∫

[P (xca|q, γcc)P (q|Hj , xcn)dq]P (γcc|Hj)dγcc
=
∫
NegBin(xca|ρ+ xcn,

N0+ν
N1γcc+N0+ν )P (γcc|Hj)dγcc

(11)

To identify the lower and upper limits of γCC for the integral, we randomly
sampled 10,000 times values from the Gamma(γ̄cc ∗ βcc, βcc) and used the min-
imum and maximum values for the lower and upper limits respectively.
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