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Abstract

In  the  present  study,  we  developed  the  fluorescence  correlation  spectroscopy  theory  for

closed systems with either periodic or reflective boundaries. The illumination could be any

arbitrary function. We tested our theory with simulated data of both boundary conditions. We

also  tested  the  theory  with  experimental  data  of  membrane  nanotubes,  whose  circular

direction is a closed system. The result shows that the correlation function for nanotubes falls

between 1D and 2D diffusion model. The fitting with our model gives an accurate recovery

of the diffusion time and nanotube radius. We also give some examples of single molecule

experiments for which our theory can be potentially useful.
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1. Introduction: 

Lipid membranes can form different structures in cells. One of structures is the recently

discovered tunneling nanotubes (TNTs). Transportation through the tunneling nanotubes is

believed to be a new cell-cell communication mechanism (Davis and Sowinski 2008; Gerdes

and Carvalho 2008). These nanotubes are also found to be important in HIV virus spreading

among cells. The diameter of TNTs is between 50 and 400 nm, while the length can reach

from several to hundreds of micron(Davis and Sowinski 2008). They have been found in a

variety of cell types, such as epithelial cells (Lehmann, Sherer et al. 2005; Sherer, Lehmann

et al. 2007), immune cells  (Onfelt, Nedvetzki et al. 2004; Watkins and Salter 2005; Onfelt,

Nedvetzki et al. 2006; Sowinski, Jolly et al. 2008), and neural cells (Rustom, Saffrich et al.

2004; Wang, Cui et al. 2011). This indicates that transportation through the TNTs is a general

physical communication mechanism for cells separated with long-distances. 

A great amount of interest in TNTs has focused on the traffic of proteins and organelles

between  cells,  either  inside  of  the  TNT tunnels  or  in  the  TNT membranes  (Davis  and

Sowinski 2008; Gerdes and Carvalho 2008; Suhail, Kshitiz et al. 2013). There are still many

questions remaining about the trafficking mechanism and TNT formation. The formation of

some of the special membrane structures, like the virus bud, involves not only the clustering

of  the  relevant  proteins,  but  also certain  kinds  of  lipids  to  form lipid rafts  (Nguyen and

Hildreth 2000; Simons and Vaz 2004; Rajendran and Simons 2005). In the present study, we

are also interested in whether the membrane properties are the same between the cell body’s

membrane and the TNT membrane. Fluorescence correlation spectroscopy has been widely
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used to study the diffusivity of the molecules in the membrane as we have discussed in the

previous  chapters.  It  is  a  potentially  powerful  tool  to  study  the  trafficking  in  the  TNT

membrane and the membrane properties of TNTs. 

A straightforward assumption with FCS measurements on TNTs is to consider the TNTs

as a one-dimensional model. However, since the diameter of the TNTs is comparable to the

size of the observation area of FCS, it  is  necessary to  investigate the dependence of the

diffusion behavior on the TNT diameter. Unlike traditional FCS which usually deals with

open systems, the tube structure can be regarded as open system only in the direction along

the axis.  For the direction around the axis,  it  is  a closed system with periodic boundary

conditions. In the present study, we first derived the general expressions for FCS in the closed

systems and then applied them to the FCS measurements in the tubular membranes. We found

the correlation magnitude between the closed systems and the corresponding open systems is

differed by a value which equals to the inverse of the number of molecules in the system. We

also found that one-dimensional simplification is only good for tubes whose radius is less

than 80 nm with the laser waist being 250 nm. Our theoretical calculation also suggests that

the  apparent  correlation  time  decreases  with  the  increasing  tube  radius,  which  is  anti-

intuitive. The result is supported by a monte-carlo simulation. 
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Figure 1.  FCS measurement in the nanotube membrane. The molecules in the membrane

diffuse in two directions. One is the open direction in y and the other is the closed direction

around the tube. 
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2. Material and Methods:

2.1. Lipids and GUV preparation:

All the lipids were purchased from Avanti Polar Lipids. DiI-C20 was purchased from

Molecular Probes.  Lipids were stocked at  10 mM in chloroform and the DiI-C20 was in

ethanol at 0.01 mM. GUVs were made by electroformation (Morales-Penningston, Wu et al.

2010; Walde, Cosentino et al. 2010). DiD-C20 stock solutions were first mixed with DLPC

solution and deposited onto two platinum wires by dragging the lipid solution along the wires

back and forth until the chloroform and ethanol dried. Then the two wires were put into a

home-made Teflon cylinder chamber filled with 300 mM sucrose solution. The chamber cap

has two holes to hold the wires and separate them at a distance of 2 mm. The chamber was

next put at room temperature or on a heating stage, which keeps the temperature at 70 oC. The

wires were then connected to a function generator giving a 10 Hz/1.5 volt square wave for 1-

2 hour. 

2.2. Nanotube preparation:

The Lab-tek 8 well chamber was used for nanotube experiments. The chamber glass was

first treated with poly-lysine (0.1% w/v) for 1 hour. 200  l  water was first added to the

chamber and the chamber with water was then heated to 60 degree before the GUVs in the

Teflon chamber were rapidly transferred. After transferring, the chamber was then put in the

60 degree oven for 5 minute to allow the GUVs sediment to the bottom. Then the chamber

was taken out and shaken laterally by hand. Because the bottom of some of the GUVs will
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attached to the glass surface, nanotubes form when these GUVs move with chamber shaking. 

2.3. Fluorescence microscopy and FCS measurements: 

Fluorescence  microscopy  and  FCS  measurements  were  performed  on  a  LSM  510

ConfoCor 2 CombinationSystem from Carl Zeiss, Germany. The system is based on a Zeiss

Axiovert  200M inverted microscope.  A C-Apochromat 40X objective (numerical aperture

1.2) was used. GUVs and nanotubes were first found in the imaging mode and then moved

using  the  microscope  stage  to  the  position  defined  for  FCS  measurements.  For  the

measurements on GUVs, a z-scan was first performed to find the apex of the vesicle. For the

measurements on nanotubes, both z-scan and x-scan are needed to position the nanotube in

the center of the exitation laser. 5-20 FCS measurements were performed for each GUV. The

FCS curves were fitted using home-made Matlab programs. 
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3. Theory: 

3.1. FCS for the closed systems

The (temporal) autocorrelation function, which is the correlation of a time series with

itself shifted by time , is calculated as following:

2

( ) ( )
( )

( )

I t I t
G

I t

  



                                      

2
( )I t is the square of the mean fluorescence, considered as a normalization factor in the

calculation  of  the autocorrelation function.  In  the theory of  FCS,  it  can  be  expressed as

following.

 
22

( ) ( )I t Cq W r dr                                        

C the concentration of the fluorescence particles and q is the brightness per molecule. ( )W r

is the detectable emission intensity distribution (spatial detectivity function). It can be noticed

that
2

( )I t is independent of the lag time . 

In  the  following  context,  we  use  lower  case  ( )g   to  represent  the  unnormalized

autocorrelation  function.  The  standard  unnormalized  autocorrelation  function  for  open

systems is calculated as follows. 

2( ) ( ) ( ) ' ( ) ( ') ( , ', )openg I t I t CB dr dr W r W r p r r    
 

 

              
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C is the concentration of molecules and B is the brightness per molecule.  ( , ', )openp r r   is

called  the  number  density  autocorrelation,  which  is  the  probability  density  for  a  single

molecule that started a random walk at time 0 at the point r to be at r’ at a lag time , and it

can be expressed as (Schwille, Korlach et al. 1999).

2
'1

( , ', ) exp( )
44

open

r r
p r r

DD


 
 

                         

We can see  that  ( , ', )openp r r   approaches  0 as  the  lag  time goes  to  infinity. This  is

because the probability of one molecule returning the same position is zero at the infinite

time when the system is open. Therefore, ( ) 0openG   .At the other end, when r=r’, and  =

0,  ( , ', )openp r r   approaches the Dirac delta function. Therefore,  2 2(0) ( )g Cq W r dr  , and

 
2

2

( )1
(0)

( )

W r dr
G

C W r dr
 


.The term 

  2

2

( )

( )

W r dr

W r dr




is often called effective volume, effectiveV .
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Figure 2. Illustration of the closed systems and open systems. The boundary condition can be

either reflective and periodic for the closed systems. The curve is the illumination profile

( )W r .

For closed systems, molecules can not diffuse to infinity, therefore, 

2

0 0

( ) ( ) ( ) ' ( ) ( ') ( , ', )
d d

closed closedg I t I t CB dr dr W r W r p r r                

There  are  two  different  boundary  conditions,  periodic  and  reflective.  For  reflective

boundaries, the molecules are reflected back into the system once they diffuse into the system

boundary “wall”. Periodic boundary conditions are used to account for diffusion that arrives

at its starting point after traversing the whole system. This usually happens in a ring structure.

For both of the two conditions, the number density autocorrelation can be derived using the

superposition method which involves folding the unconfined number density autocorrelation,

( , ', )openp r r  , along the system walls. The confined probability for the closed systems is then
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obtained by summing up all the parts derived from the reflections or reenterings. 

Figure 3. Unfold the closed system along the wall. The Gaussian curve is the number density

autocorrelation. Therefore, 

2

2 2

'1
( , ', ) exp( )

44

' 2 ' 21
( , ', ) exp( ) exp( )

4 44

periodic
closed

n

reflective
closed

n

r r nd
p r r

DD

r r nd r r nd
p r r

D DD


 


  









  


       
  

  




 

d is the size of the closed system. 

3.2. Amplitude of the correlation:

For equation   and , both these two probability density distributions approach the Dirac

delta function when r=r’, and  = 0. On the other hand, when    ,

1
( , ', )

1
( , ', )

periodic
closed

reflective
closed

p r r
d

p r r
d









This  means the probabilities of a molecule starting from one position and ending at  any

positions in the system are identical and constant. This constant probability is just the inverse

of the size of the system. 
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For closed systems, when r=r’, and  = 0, ( , ', )openp r r   also approaches the Dirac delta

function as the open systems do. Therefore, 2 2(0) ( )g Cq W r dr  , and  
2

2

( )1
(0)

( )

W r dr
G

C W r dr
 



.                                

However, at the infinite lag time, because the
1

( , ', )periodic
closedp r r

d
  , 

2

1
( ) ( ') '1 1 1

( )
( )

closed
total

W r W r drdr
dG

C Cd NW r dr
   

 
 




           

totalN is the total number of particles in the system. It can only take positive integer number

values for a closed system, while the average number of particles in the excitation area for the

open systems can be any positive number. Because (0)G is the same for both closed and open

systems, the magnitude of the correlation function ( (0) ( )G G  ) is different by a factor of

1

totalN
 when the average number of the particles in the open systems is the same as the total

number  of  particles  in  the  corresponding closed  systems.  The smaller  magnitude  for  the
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closed systems can be attributed to the fact that the fluorescence fluctuation is only caused by

the unevenness of the ( )W r . When ( )W r is constant, there will not be any fluctuation and the

correlation goes to zero for the closed systems. However, this is not the case for the open

systems  because  the  number  of  particles  still  fluctuates  around  the  average,  resulting  in

fluorescence fluctuation and positive correlation. 

For a simple one-component system, the fluorescence fluctuation is from three major

sources:  (1)  dye  concentration  fluctuation;  (2)  nonuniform illumination  or  unevenness  of

illumination; (3) shot noise. Since shot noise is not correlated, we will next only discuss the

first two kinds of sources. On one hand, for closed systems, the total number of molecules is

constant, so the fluctuation is only caused by the unevenness of illumination. As we have

shown above, the zero time magnitude of the correlation function is different by a factor of

1

totalN
 for  the closed and open systems.  On the other  hand, for an open system that  has

uniform illumination, the fluctuation is only induced by the concentration fluctuation. It can

be easily shown that the zero time magnitude of the correlation function for such an open

system is   
2

2 2

( )1 1 1
(0)

( ) total

W r dr d
G

C C d NW r dr
  


, which is exactly the difference between
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the closed system and the open system. Therefore, the magnitude of the correlation function

(0) ( )G G  for any open system is the sum of the magnitudes of the correlation function for

the  corresponding  closed  system  and  for  the  corresponding  uniform  illumination  open

system. This provides a way to quantitatively elucidate the contributions by the two sources

for the fluorescence fluctuation. Briefly, the contribution by the unevenness of illumination is

 
2

2

( )1 1

( )

W r dr

C dW r dr

 
  
  




 and the contribution by dye concentration fluctuation is 
1

totalN
. 

3.3. Evaluation the correlation function

3.3.1 In real space

Instead  of  calculating  the  correlation  function  by  folding  up  the  number  density

autocorrelation  function,  we  can  also  keep  this  function  extended  but  also  extend  the

illumination to infinity, as depicted in Figure 3. By doing this, the complicated summing up

in equations  and  can be avoided. The correlation function can be expressed by

2

0

( ) ( ) ( ) ' ( ) ( ') ( , ', )
d

closed openg I t I t CB dr dr W r f r p r r    




         

( )f r is the extended version of ( )W r . For periodic boundaries, ( )f r  is the repeat of ( )W r

and the period of  ( )f r  is  d. For reflective boundaries,  ( )f r  is the repeat of  ( )W r  and its
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image. Therefore, the period of ( )f r  is 2d. 

3.3.2 In Fourier space

The double integration in equation  still takes a relatively long time to evaluate and is not

suitable for curve fitting. In order to accelerate the calculation, Fourier transform method can

be used, by which the double integral can be changed into a single integral. For open systems,

(Elson and Webb 1975; Koppel, Axelrod et al. 1976) 

° 2
2

( ) ( ) ( ) ( ) q Dg I t I t f q e dq 
 


    .                             

° ( )f q is the Fourier transform of the beam shape, °
1

( ) ( )
2

irqf q f r e dr


 


  . 

Sanguigno L et  al  (Sanguigno,  De Santo et  al.  2010) have  derived the  expression for  a

confined box system using the Fourier transform method. Here, we generalize the method for

both  reflective  and periodic boundary conditions  and provide a  basic  framework for  any

beam profile (see Appendix for derivations):

2 2 2
2

2

2 2 2
2

2

4
( ) exp( )

( ) exp( )

periodic periodic
closed k

k

reflective reflective
closed k

k

CB k D
g c

d d

CB k D
g c

d d

 

 









 

 




                  

The factors periodic
kc and reflective

kc are given by: 

2 /

0

0

( )

( ) cos( / )

dperiodic k ri d
k

dreflective
k

c W r e dr

c W r k r d dr







 




Therefore, the normalized correlation functions are:
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2 2
2

2 2
0

2 2
2

2 2
0

1 4
( ) exp( )

[ ]

1
( ) exp( )

[ ]

periodic periodic
closed kperiodic

ktotal

reflective reflective
closed kreflective

ktotal

k D
G c

N c d

k D
G c

N c d

 

 









 

 





The factors periodic
kc and reflective

kc are independent of the lag time and diffusion rate, so they can

be pre-calculated to accelerate the function evaluation. Unlike the Gaussian laser, most ( )W r

s do not have explicit expressions for the correlation functions; evaluation with the Fourier

transform method is still much faster than the double integration in equation . 

As discussed above, the total number of molecules for a closed system only takes integer

numbers, so whether the total number of molecules is close to an integer indicates whether

the selected  ( )W r is  accurate.  One common reason that  makes the  ( )W r inaccurate  is  the

background fluorescence. This can be solved by adding a background term to the ( )W r . If

the background is uniform, it only changes the value of 0
reflectivec or 0

periodicc . Therefore, instead

of  recalculating all  the  periodic
kc and  reflective

kc for  different  ( )W r s,  a  single parameter  can be

added to 0
reflectivec or 0

periodicc for evaluation. 
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3.4. FCS in rings and tubes

For  tubular  membranes  placed in  the  center  of  the  focused laser  and parallel  to  the

surface (xy plane)  as shown in Figure 1,  the system can be considered as open in the y

direction and closed in the xz plane. In the y-direction, the correlation function can be shown

as:

1 1
( )

1 /
y

y
effective d

G
CV


 


 ,                                         

where y
effectiveV   and 22 dD           

We will focus on the closed direction in the following paragraphs. In the xz plane, the

molecules diffuse in a ring, meaning this system has a periodic boundary condition. The size

of the system is 2d R , where R is the radius of the ring/tube. Since we are interested in

nanotubes, whose diameters are much smaller than the size of beam in the z direction, we

consider the excitation in z to be constant. Therefore, 

2
2

2

2
( ) exp cos ( )

R r
W r

R
   
 

                                          

r

R
 , as shown in Figure 1. 

With the size of the system and the laser profile, the correlation function can be obtained for

different  diffusion  coefficients  using  the  Fourier  transform  method  described  above.

Particularly,  we  want  to  discuss  the  zero  time  magnitude  of  the  correlation  which  is

independent of the diffusion rate. Although the full correlation function does not have an

explicit expression, the zero time magnitude does. 

137

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/134742doi: bioRxiv preprint 

https://doi.org/10.1101/134742
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 2

0 02 2

2 22 2

0 02 2

2 2
( ) ( )1 1

(0)
2

( ) ( )
total

R R
I I

G
RC CR R

I I

  


 

 
 

   
    

   

                      

0I is the modified Bessel function of first kind. It can also be expressed as:

1
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For the tube structure, the correlation function is the product of the correlation functions in

both directions. 
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Here, 
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4. Results

4.1. FCS for rings

Figure 4. Comparison between the theoretical and the simulated correlation functions for the

FCS in a ring. The ring radius is 100 nm and the laser waist is 250 nm. The center of the ring

is place in the middle of the laser.

 

Figure  4 shows the  correlation  function for  diffusion  in  a  ring.  Both  theoretical  and

simulated results are shown. There’s one thing that should be noticed: The ACF decay to zero

has to be imposed by subtracting the  ( )G  . Sanguigno L argued that in the open systems,

any kind of fluctuation, considered as an initial condition, approaches zero at infinite time.

However, in closed systems, the ACF decay to zero has to be imposed by subtracting the

( )G   since it is not always true for all possible initial conditions (Sanguigno, De Santo et al.

2010). We also provide an alternative explanation in the section of PCH and FIDA for closed

system. 

We can  see  that  the  theory  predicts  the  correlation  function  very  accurately.  In  the
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simulation, there is only one molecule in the ring. For an open system whose average number

of molecules is one, the magnitude of the correlation should be the 1/ effectiveV , which is 1.012

according to equation 7. But as shown in Figure 4, the magnitude for the closed system is

0.012, which is much smaller than the open system. It means in the FCS measurement, the

contribution by the number fluctuation is much large than the contribution by the unevenness

of the illumination. 

4.2. FCS for tubes

Figure 5. Theoretical correlation functions for nanotubes. (left) the correlation function for

different ring sizes (lines), compared to the correlation function in the y direction which is

open direction (pink dot). (right) the product of the correlation functions in the two directions

(lines).  For comparison, the correlation function for simple 1D and 2D systems are also

shown in green and black dots. 

We calculated the theoretical correlation functions (Figure 5, left) for different ring radii

with the identical beam size,   = 250 nm. As shown in Figure 5, the correlation function

(normalized by the G(0)) is close to 1 for a small radius, which means the system fluctuates

less. Secondly, the lag time for the correlation to decrease to half magnitude becomes longer.
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This is caused by the fact that it takes longer for molecules to diffuse around bigger ring

sizes.  Overall,  the  decay  time  in  the  ring  is  smaller  than  the  decay  time  in  the  open

dimension.  Thirdly, because  the  curvature  of  the  ring becomes  more  and more  flat  with

increasing radius, the diffusion in the ring will approach 2D diffusion with large ring radius.

This is supported by our results. As shown in Figure 5 left, when the R = 3000 nm, the ( )G 

is almost identical to the ( )yG  .

Figure 6. Comparison between the theoretical and the simulated correlation functions for the

FCS in a nanotube. The laser waist is 250 nm. The tube radii are 10 and 500 nm.

The right panel of Figure 5 shows the result for the real tube system, whose correlation

function is the product of the correlation functions of the closed ring and the open dimension.

Our simulation shows that the theory predicts the correlation function very well for the tube

membrane system (Figure 6). In order to understand the system, we are interested in two
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extremes. At one extreme point, when the tube radius is zero, ( )G   will constantly equal to

1,  leading to  ( ) ( )yG G  .  This means the system is  just  one dimensional.  At  the other

extreme point, when the radius is infinitely large, ( )G   will equal to ( )yG   and therefore,

the system will be a two dimensional system. Our theoretical calculation shows this gradual

transition from one-dimension to two-dimensions as the tube radius increases. 

One thing to notice is that the apparent correlation time (roughly the lag time that the

correlation decreases to half of magnitude) changes in opposite directions for the ring and the

tube. This means for a multi-dimensional system, the change of the correlation time in one of

the dimensions does not necessarily causes the same change in the overall correlation time. In

the current case, the decrease of the overall correlation time is due to the switch from one-

dimensional diffusion to two-dimensional diffusion. 

For the nanotube membranes, we would like to know whether we can use the simplified

one-dimension model to fit the experimental data. In order to answer this question, we used

the one dimension model to fit the theoretical correlation function for the nanotubes. The

fitted correlation time and 2 are plotted in Figure 7. As we expected, the fitted correlation

time gradually decreases with the increasing radius and the  2 increases. It is also obvious
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the confidence interval of the fitted correlation time gets bigger. These results all suggest the

unsuitability of the one-dimension model for large radius. For the 2 , the main turning point

is at the 200 nm. For tubes larger than 200 nm, the  2  was obviously large. However, the

fitted correlation time is only about 0.6 fold of the real value for 200 nm tubes. The turning

point for the fitted correlation time is smaller, which is around 80 nm. So we conclude that,

for nanotubes whose radius is less than 80 nm, it is sufficient to simplify the system and use

the one dimensional model. However, for nanotubes larger than 80 nm, it is recommended to

use the more complete model which takes the fluctuation in the closed ring into account. 

Figure 7. Fitting results to the theoretical correlation functions for the nanotube using 1D

model. 

4.3. Experimental test of the FCS for nanotubes
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Figure 8. FCS for nanotubes comparing 2D and 1D diffusion. The bright green line is the

experimental correlation function obtained from GUVs and the red line is the theoretical

fitting with the 2D FCS model. The dark green line is the predicted 1D correlation curve

based  on  the  diffusion  coefficient  given  by  the  2D  fitting  (red).  The  circles  define  the

experimental correlation curve obtained from nanotubes with the same composition as the

GUVs described earlier (only DLPC). The black line is the fitting to the nanotube data with

our model. 

To test  our  theory,  we  made  some  lipid  membrane  nanotubes  and  conducted  FCS

experiments on them. The nanotubes were made from DLPC GUVs which are labeled by

DiI-C20. The protocol is described in the method section. We did FCS measurements on both

GUVs and nanotubes to compare the diffusion coefficients. As shown in Figure 8, the 2D

FCS model  fits  to  the  correlation  function  of  the  GUVs  very  well.  This  fitting  gives  a

diffusion coefficient of 1.06±0.01×10-7 cm2/s. By using this diffusing coefficient, we were

able to predict the correlation function in one dimension (the dark green line in Figure 8). The
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experimental correlation function of the nanotubes is shown as circles in Figure 8. It falls

between the 2D and 1D models, consistent with the result shown in Figure 5. Fitting this

correlation function with our model gives a diffusion coefficient of 1.02±0.06×10 -7 cm2/s,

which is very similar to the values obtained from the GUVs. Furthermore, the fitting also

gives a tube radius of 295±16 nm, which is consistent to our estimate from the fluorescence

image (275-330 nm). 
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5. Discussion: 

5.1. Photon counting histogram in the closed system 

In  1999,  two  different  groups  developed  two  similar  techniques  for  analyzing  the

distribution  of  photon counts/intensity. One of  them is  called  photon counting  histogram

(PCH)(Chen,  Muller  et  al.  1999) and  the  other  one  is  called  fluorescence  intensity

distribution  analysis  (FIDA)(Kask,  Palo  et  al.  1999).  These  two  techniques  are

mathematically related  (Meng and Ma 2006). However, there are still differences between

them. One difference is that the generating function is used for FIDA. In other words, FIDA

is the Fourier transform of PCH. Beside this difference, there is another important difference

lying in the derivation procedures of these two methods. For PCH, the PCH for one molecule

is  first  calculated.  The  fluctuation  for  one  molecule  is  due  to  the  unevenness  of  the

illumination. Then the PCH for n molecules is the convolution of the PCH for one molecule

by n times. In comparison to this, FIDA considers the fluctuation in a small volume (dV) first.

The overall distribution is the convolution of the distributions for all dVs, leading to the sum

of  the  logarithm of  the  generating  function  and  therefore  an  integration  over  V.  In  the

following context, I compare the two strategies for PCH and FIDA convolution of molecules

and  convolution  of  space,  respectively.  As  we  can  see,  PCH  theory  assumes  that  the

distribution for different molecules are independent on each other, while the FIDA theory

takes the assumption that the distribution for different positions are independent from other

positions. Although these two procedures give the same result for open systems, FIDA is not

suitable  for  closed systems.  The reason is  the  distribution  for  different  positions  are  not

independent from each other for closed systems. For open systems, the distribution of the
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number of particles at on position is a Poisson no matter how many particles there are in

other positions. However, in the closed system, the total number of particles is constant and

all the positions compete with each other to have particles. Therefore, the convolution for all

dVs is not suitable. 

Chen et al (Chen, Muller et al. 1999), have already derived the PCH for closed systems.

Here, we derived the Fourier transform of it. For one molecule in a closed system, the photon

counting distribution is,

1 1
( ) ( , ( ))

1 exp( ( ))[ ( )]

!

m

P m Poiss m qW r dV
V

qW r qW r
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V m
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m is the number of photons. 

Therefore, the generating function is 
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It can be easily shown that the distribution goes to a Poisson when ( )W r
v

 is constant over r
v

,

meaning the fluctuation is only due to the shot noise.  

The generating function compares to the form for open systems (Kask, Palo et al. 1999):

  1 ( ) exp exp ( 1) ( ) 1openG qW r dV     
v
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A fast way to calculate the generating function is to expand it into Talor series, 

1
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It compares to the logarithm of the generating function for open systems (Kask, Palo et al.

1999):
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For n molecules
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closed closedG G                                            

5.2. The problem of convolution of space

In retrospect to FCS, the problem of convolution of space also exists. This is the reason

why the above correlation functions do not reach to zero at infinite time. To get ( , ', )p r r  ,

the  diffusion  equation  2( ', )
( ', )

C r t
D C r t

t

  


 is  solved  with  the  initial  condition

( ,0) ( ',0) ( ')C r C r C r r    .  (see  Appendix).  This  initial  condition  means  the

concentration  fluctuations  for  different  positions  are  uncorrelated.  However,  this  initial

condition is  only valid  for the open system. Since for closed systems,  different  positions

compete with each other to have molecules, there is a negative correlation between different
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positions.  The  correct  initial  condition  should  be  ( ,0) ( ',0) ( ')
C

C r C r C r r
d

     .

Therefore, equations  can be revised as
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



The derivation can also be performed using the convolution of molecules strategy as used

for PCH. This approach will also give correlation functions that do not need to be forced to 0.

See Appendix II. 

5.3. Example for reflective boundaries:

The theory for reflective boundaries can be useful for some single molecules studies. As

depicted in Figure 9, we give two potential applications in the single molecule study. 

The diffusion of proteins along DNA is usually studied with very long DNA molecules

whose length is much longer than the optical resolution. To obtain the diffusion rates, a fitting

step is required to get the precise position of the proteins. This is also the basic principle of

the STORM and PALM super-resolution microscopy. One of the drawbacks is that the fitting

step is time consuming. Here, we propose a single molecule experiment in which short DNA

can be used (Figure 9A). For this experiment, a pair of FRET fluorphores are conjugated on

the proteins and the end of the DNA, respectively. The diffusion of protein leads to a change

of the distance between the FRET pair and causes a fluctuations of the detected intensity. The
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correlation function can be calculated and fitted with our theory for the reflective boundaries.

In this case, the illumination function 6
0

1
( )

1 ( / )
W r

r R


 , in which 0R is the Foster distance

of the FRET pair. 

Bacterial cells provide another popular field for single molecule studies. A typical E.coli

cell spans 2 micron and has a 1 micron diameter. The diffusion of molecules in the cells is

usually measured using TIRF (total internal reflection fluorescence microscope) in the x-y

directions which are parallel to the surface. However, if the diffusion is confined in a region

that is smaller than the optical resolution, it is difficult to obtain the diffusion rates. Here, we

proposed a method to study the diffusion in the z-direction taking advantage of the decaying

excitation intensity for  TIRF  (Mattheyses,  Simon et  al.).  As shown in  Figure 9B,  as  the

protein moves in the z-direction, the brightness will change. The intensity can be recorded

and the correlation function can be calculated and fitting with our theory. In this case, the

illumination intensity decays exponentially. 0( ) exp( / )W r r z 

As shown in Figure 9, for reflective boundaries, the apparent diffusion time ( G(t) decay

to half of the G(0) ) increases with the size of the system, as for periodic boundaries. More

prominently, the zero time amplitude change increases with the size of the system. This is

because there is only one molecule for single molecule study. 
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Figure 9. examples of single molecule experiments for which our theory could be useful. (A)

protein diffusion along a short DNA. (B) diffusion in a confined region in the cell studied

using TIRF (total internal reflection fluorescence microscopy). 
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Appendix:

Appendix I: The correlation function calculated using in the Fourier space. 

( , ', )openp r r   is the solution of the diffusion equation 2( ', )
( ', )

C r t
D C r t

t

  


 divided 

by C with the initial condition ( ,0) ( ',0) ( ')C r C r C r r    . But since the expression is 

already known, ( , ', )openp r r   can be directly calculated by finding the inverse Fourier 

transform of its Fourier transform. Therefore, the following expression is obtained. 
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Substituting equation 1.1 into 10, the following equation can be obtained:  
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Because ( )f r is periodic, its Fourier transform ° ( )f q is composed of infinite series of pulses.
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For the periodic boundaries, the factor periodic
kc is 
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For reflective boundaries, ( )f r  can be expressed in cosine series only. Therefore, 

/

2

0 0

1 1
( ) ( )cos( / )

2 2
1

( ) cos( / ) ( )cos( / )
2

d dreflective k ri d
k d d

d d

c f r e dr f r k r d dr

f r k r d dr W r k r d dr

 

 



 
  

   

 

 
                 

Therefore, for periodic boundary conditions, 

22

0

2 2 2

2
0

2 2 2
2

2

1 2 2
( ) ( ) ( )

2

4 2
exp( ) ( )exp( )

4
exp( )

d
periodic iqr q D
closed k

k

d
periodic
k

k

periodic
k

k

k
g CB dq drW r e c q e

d d

CB k D i kr
c drW r

d d d

CB k D
c

d d

  


  

 

 












 





 

 



   

In the same way, the expression for the reflective boundaries can be obtained.

2 2 2
2

2
( ) exp( )reflective reflective

closed k
k

CB k D
g c

d d

 




                       

Appendix II: proof of the initial condition ( ,0) ( ',0) ( ')
C

C r C r C r r
d

     :

(1) First, we consider the case when 'r r , then 2( ,0) ( ',0) ( ,0)C r C r C r   , which is 

the variance of the number of molecules at position r. For the closed system whose size is d, 

the distribution of the number of molecules at any positions should be a binomial distribution,

  (1 )n k n k
k p p  , with totaln N  and 

1
p

d
 . So the variance is 
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1 1 1
(1 ) (1 )totalN C

d d d
                                         

(2) Second, when 'r r , a new random variable is introduced: the sum of the number of 

molecules at two positions ( , ',0) ( ,0) ( ',0)C r r C r C r  . ( , ', 0)C r r  also follows the binomial

distribution while the totaln N  and 
2

p
d

 . Therefore, the variance of ( , ', 0)C r r  is

2 2 2
(1 ) 2 (1 )totalN C

d d d
   . The variance of the sum of two random variables is:

2 2 2( , ',0) ( ,0) ( ', 0) 2 ( ,0) ( ', 0)C r r C r C r C r C r        

Therefore,  ( ,0) ( ',0)
C

C r C r
d

                            

(3) Combind equations  and . ( ,0) ( ',0) ( ')
C

C r C r C r r
d

    

Appendix III: calculate the correlation function through the convolution-of-molecules 

strategy. 

(1) First, for any single molecule i, the probability that it is at position r is 
1

( )iP r r
d

  , and 

the probability that it diffuses to position r’ after a lag time is then ( , ', )closedp r r   as indicated 
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in  equations (6) and (7). At any positions r, the fluorescence from single molecule is ( )BW r .

Therefore, the mean fluorescence of a single molecule is 
0

( ) ( )
d

i

B
I t W r dr

d
  , and

2

0 0

( ) ( ) ' ( ) ( ') ( , ', )
d d

i i closed

B
I t I t dr dr W r W r p r r

d
     , so

0 0
2 2

0

' ( ) ( ') ( , ', )
( ) ( )

( )
( )

d d

closed
i i

d
i

d dr dr W r W r p r r
I t I t

I t
W r dr





 
 
 

 


               

(2) Second, the total fluorescence intensity is usually calculated by ( ) ( ) ( , )I t B W r C r t dr 

for the convolution-of-molecules strategy. Here, instead of integrating over space, the 

intensity can also be calculated by summing up the contributions from all the molecules.

1 2( ) ( ) ( )... ( )
totalNI t I t I t I t  ,and ( ) ( ( ))iI t BW r t for each individual molecules. The 

fluctuation can be calculated in the same way: 1 2( ) ( ) ( )... ( )
totalNI t I t I t I t     . Here

( ) ( )i i iI t I t I   . The mean in this equation is the mean fluorescence from individual 

molecules, therefore 1 2

0

... ( )
d

i

B
I I I W r dr

d
    .       
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For the correlation function 2

( ) ( )

( )

I t I t

I t

  
, the denominator

22 22
1 2( ) ( ) ( )... ( )

totalN total iI t I t I t I t N I   .                     

The nominator 
1 1

( ) ( ) ( ) ( )
total totalN N

i j
i j

I t I t I t I t     
 

   

Because different molecules are uncorrelated,

1

( ) ( ) ( ) ( ) ( ) ( )
totalN

i i total i i
i

I t I t I t I t N I t I t        


           

Combining equations  and , 

2 2 2

( ) ( ) ( ) ( ) ( ) ( )1 1 1

( ) ( ) ( )
i i i i

total total totali i

I t I t I t I t I t I t

N N NI t I t I t

        
     

2

( ) ( )

( )
i i

i

I t I t

I t


is given by equation .

It can be noticed in equation  that the term 
1

totalN
is already subtracted and the correlation 

function approaches to zero.
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