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Key message1

Complementing genomic data with other "omics" predictors can increase the proba-2

bility of success for predicting the best hybrid combinations using complex agronomic3

traits.4

Abstract5

Accurate prediction of traits with complex genetic architecture is crucial for select-6

ing superior candidates in animal and plant breeding and for guiding decisions in7

personalized medicine. Whole-genome prediction (WGP) has revolutionized these8

areas but has inherent limitations in incorporating intricate epistatic interactions.9

Downstream "omics" data are expected to integrate interactions within and between10

different biological strata and provide the opportunity to improve trait prediction.11

Yet, predicting traits from parents to progeny has not been addressed by a combi-12

nation of "omics" data. Here, we evaluate several "omics" predictors — genomic,13

transcriptomic and metabolic data — measured on parent lines at early developmen-14

tal stages, and demonstrate that the integration of transcriptomic with genomic data15

leads to higher success rates in the correct prediction of untested hybrid combinations16

in maize. Despite the high predictive ability of genomic data, transcriptomic data17

alone outperformed them and other predictors for the most complex heterotic trait,18

dry matter yield. An eQTL analysis revealed that transcriptomic data integrate19

genomic information from both, adjacent and distant sites relative to the expressed20

genes. Together, these findings suggest that downstream predictors capture phys-21
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iological epistasis that is transmitted from parents to their hybrid offspring. We22

conclude that the use of downstream "omics" data in prediction can exploit impor-23

tant information beyond structural genomics for leveraging the efficiency of hybrid24

breeding.25
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Introduction28

Hybrid breeding, which entails crossing of lines from two genetically distant germplasm29

collections — called heterotic groups (Melchinger and Gumber, 1998) — has emerged30

as a prime strategy to meet demands for a sustainable intensification of agricultural31

production (Duvick, 2005). However, unlocking the full potential of hybrid breeding32

requires accurate prediction methods to efficiently identify the superior candidates33

out of the millions of possible hybrids that could potentially be produced in each cy-34

cle of an ordinary-sized breeding program. With the advent of the doubled haploid35

(DH) technology (Wedzony et al., 2009) this prediction problem has become even36

more challenging because, based on breeder’s experience, the vast majority (≈ 90%)37

of competing lines in each heterotic group are "new" lines without any phenotypic38

records on hybrid progeny from previous breeding cycles. Consequently, among all39

hybrid combinations possible between lines from two heterotic groups, about 81%40

are T0 hybrids, 18% are T1 hybrids and 1% are T2 hybrids having zero, one or41

two parents, respectively, that have been previously tested in other hybrid combina-42

tions. Preselection of a few hundred of the most favorable hybrids with high success43

rate could significantly reduce the labor-intensive and time-consuming field-testing44

(Kadam et al., 2016, Xu et al., 2016). This could greatly impact the efficiency of45

hybrid breeding and boost the annual selection gain (Longin, Mi and Würschum,46

2015).47

Whereas yield and other heterotic traits of hybrids are generally poorly predicted48

by the performance of their parent lines (Melchinger and Gumber, 1998), WGP has49

emerged as a major tool for tackling this challenge (Massman et al., 2013, Technow50
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et al., 2014). Nevertheless, there is evidence that, even with complete sequence in-51

formation, genomic prediction may not capture complex interactions between genes52

and downstream regulation, which act through the entire cascade from genotype53

to phenotype (Dalchau et al., 2011, Zhu et al., 2012, Rudd et al., 2015, Ritchie,54

Holzinger, Li, Pendergrass and Kim, 2015). Most studies have evaluated predic-55

tive ability by looking at only one kind of endophenotype (intermediaries between56

genotype and phenotype (Gottesman and Gould, 2003, Mackay, Stone and Ayroles,57

2009) such as the transcriptome (Swanson-Wagner et al., 2006, Zenke-Philippi et al.,58

2016, Xu et al., 2016) or the metabolome (Riedelsheimer et al., 2012, Xu et al., 2016,59

Dan et al., 2016). The integration of different endophenotypic and genomic data is60

expected to reflect more closely the variability across genotypes than genomic data61

alone (Mackay, Stone and Ayroles, 2009, Patti, Yanes and Siuzdak, 2012, Civelek62

and Lusis, 2014). Two recent studies that integrated multiple biological strata in63

predicting breast cancer risk (Vazquez et al., 2016) and performance of maize in-64

bred lines (Guo et al., 2016), respectively, demonstrated the benefit of this strategy.65

However, unlike forecasting clinical or agronomic traits from endophenotypes of the66

same genotype, hybrid breeding requires the prediction of the genotypic values (GV)67

of hybrid progeny based on parental information. To achieve this objective, we used68

the BLUP approach — originally developed in animal breeding (Henderson, 1984) —69

for the more complex setting of hybrids between parents from two heterotic groups70

(Bernardo, 1996, Massman et al., 2013). Here, we measured endophenotypes of par-71

ent lines to forecast the GV of T0, T1 and T2 hybrid progeny by using prediction72

equations trained with "omics" information from other parent lines and phenotypic73
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information on their hybrid offspring.74
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Materials and Methods75

Genetic material and phenotyping76

The entire genetic material consisted of a set of 1,536 hybrids, denoted as HTot,77

produced in 16 factorial mating designs between 142 Dent and 103 Flint lines from78

the maize breeding program at the University of Hohenheim, on which agronomic79

data for silage maize production, as well as pedigree and genomic data were available.80

A subset of this material, albeit from different trials, has been used for genomic81

prediction of traits related to grain maize production (Technow et al., 2014). For82

hybrid prediction, we used a core set H ⊂ HTot of 617 hybrids, produced in six83

factorials with hybrid sets HFAC(i)(i = 1, 2, . . . , 6;H =
⋃6
i=1HFAC(i)) from crosses84

between 57 Dent and 41 Flint inbred lines, denoted as D = {1, 2, . . . , 57} and F =85

{1, 2, . . . , 41} (File S1). All hybrids were evaluated in field experiments at three86

or more agro-ecologically diverse locations across Germany. In the trials of each87

factorial, which included at least five common check genotypes, the entries were88

randomized in α lattice designs and planted in 2-row plots. Dry matter yield (DMY,89

t/ha) and dry matter content (DMC, %) of whole-plant aboveground biomass were90

determined by established procedures (Riedelsheimer et al., 2012). For quality traits,91

contents of fiber (ADF, %), fat (FAT, %�), protein (PRO, %�), starch (STA, %), and92

sugars (SUG, %�) in dry matter were measured in the harvested plant material using93

calibrated near-infrared spectroscopy (NIRS; Grieder et al. (2011), File S1).94
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Pedigree-based relationship coefficients95

Coancestry coefficients were calculated using SAS (version 9.4, SAS Institute) for all96

possible pairs of lines in each heterotic group according to established rules (Falconer97

and Mackay, 1996) under the following assumptions (Cox, Murphy and Rodgers,98

1986): (i) all lines in a pedigree are genetically homogeneous and homozygous, (ii)99

pairs of genotypes with no known common parentage are unrelated, and (iii) a line100

derived from a cross or backcross obtained a proportional fraction of the genome from101

each parent, as expected under Mendelian inheritance in the absence of selection.102

Genotyping103

Genotyping of all inbred lines was performed with the Illumina SNP chip MaizeSNP50104

(Ganal et al., 2011). After performing a commonly used quality check (Technow105

et al., 2014) and imputation of missing data (Browning and Browning, 2009), a total106

of 21,565 polymorphic SNPs was available and used for all further analyses.107

Metabolite profiling108

Seedlings of all parental inbred lines were grown under controlled conditions inside109

climate chambers to quantify the metabolite profiles of their roots 3.5 days after110

sowing, as detailed by de Abreu e Lima et al. (2017). The experiment was laid out111

as a randomized incomplete block design with replicated germination boxes. For leaf112

metabolic profiles (known metabolites and unannotated chromatographic peaks), a113

field experiment was carried out in an α lattice design with two replications at one114
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location in southern Germany in the spring of 2012. Excision of leaves at the third115

leaf stage was performed according to an established protocol (Riedelsheimer et al.,116

2012) 28 days after sowing, in the afternoon of a cloudy day, and finalized within117

45 minutes for the entire experiment. For both profiling procedures, all material118

was transferred directly into containers with dry ice and then into liquid nitrogen to119

quench metabolic activity.120

Transcriptome profiling121

For transcriptome profiling, five seeds per parent line were taken from the same122

seed lot as used for metabolite profiling and laid out inside a climate chamber in123

a randomized complete block design with five replications. Seedlings were sampled124

seven days after sowing, snap-frozen in liquid nitrogen, and stored at -80◦C until use.125

Prior to mRNA extraction, roots from all replicates of a genotype were pooled and126

homogenized. A custom 2K-microarray (GPL22267) was assembled from a subset127

of the 47K maize oligonucleotide array (GPL6438). Two-color hybridizations were128

carried out separately for each of the six factorials using interwoven loop designs (Kerr129

and Churchill, 2001). The average number of shared genotypes between factorials130

was 4.5 and ranged from 2 to 10.131

Statistical analysis of agronomic traits132

Agronomic data were analyzed in two stages, following Technow et al. (2014) by133

accounting for year, location, field replication, block and genotype effects as well as134

their interactions (File S1). In the first stage, and separately for each environment,135
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best linear unbiased estimates (BLUEs) of the α designs were computed for every136

hybrid using REML-based linear mixed-model analyses. In the second stage, BLUEs137

were computed for all hybrids inHTot. The BLUEs of hybrids in the core setH served138

as response variables in our hybrid prediction models and cross-validation routines.139

For all predictions we used computationally efficient best linear unbiased predictor140

(BLUP) models, which have the same properties as those of a selection index because141

we previously accounted for fixed effects (Mrode (2014), pp. 34, 311, 312). For142

general and specific combining abilities (GCA and SCA) of parent lines, we used143

ASReml (Butler et al., 2009) to compute best linear unbiased predictors (BLUPs),144

variance components (σ2
GCAD , σ2

GCAF , σ2
SCA) and entry-mean heritabilities (H2) of all145

hybrids in HTot, treating all effects in the model as random. The covariance matrices146

of the GCA and SCA effects were defined by multiplying the variance components147

with their respective genomic relationship matrices (File S1).148

Statistical analysis of endophenotypes149

Raw data were normalized using established procedures for metabolites (van den Berg150

et al., 2006) and transcripts (Smyth and Speed, 2003, Ritchie et al., 2007). From these151

data, we obtained BLUEs for metabolite levels and transcript abundance of each line152

using REML-based mixed-model analyses. The statistical models for the analysis of153

metabolite profiles accounted for various experimental effects as detailed by de Abreu154

e Lima et al. (2017). After applying quality checks and computing BLUEs, 92 leaf155

metabolic analytes and 283 root metabolic analytes remained for further analyses.156

BLUEs for transcriptomic data were computed using the R-package limma (Ritchie,157
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Phipson, Wu, Hu, Law, Shi and Smyth, 2015) in reference to established protocols158

(Smyth and Speed, 2003, Ritchie et al., 2007, Frisch et al., 2010). The design matrix159

for the linear model was based on the dye-labeling of a reference genotype. To account160

for possible differences between the microarrays, replicates of some genotypes across161

at least two factorials were included, and modeled through a fixed effect term. All162

gene expression values were subsequently computed, based on the log-ratio relative163

to this common genotype (Smyth, 2004). In total, 1,323 gene expression profiles were164

available. Repeatabilities (w2) were estimated for each endophenotype at the inbred165

line level using the same models as for the computation of BLUEs, but treating the166

genotype effect as random. This analysis was performed jointly for the Dent and167

Flint lines allowing for different means and heterogeneous genotypic variances of the168

heterotic groups, but assuming a common error variance. Variance components were169

estimated by Gibbs sampling using the R package MCMCglmm (Hadfield, 2010).170

Prediction models and model evaluation171

Predictions of hybrid performance were compared on the basis of the core set of172

hybrids H and the corresponding sets of parent lines D and F on which data for173

all five predictors (P, pedigree; G, genomic; T, transcriptomic; L, leaf metabolic;174

R, root metabolic data) were available with the exception of data on a few lines175

missing at random for R due to fungal contamination. The matrices WD and WF176

are matrices of standardized feature measurements for the various predictors (G, T,177

L, R). The matrix W has dimension ’number of parent lines in the corresponding178

heterotic group’ (nD = 142, nF = 103) times ’number of features’ (wG = 21, 565,179
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wT = 1, 323, wL = 92, wR = 283). The columns in WD and WF are centered and180

standardized to unit variance, respectively.181

The kernels pertaining to each predictor and lines from each heterotic group —

corresponding to genomic relationship matrices in the case of SNPs — can then be

defined as

GD =
1

W
WDW

>
D, GF =

1

W
WFW

>
F , (1)

where W denotes the number of features (VanRaden, 2008). In the case of pedi-182

gree data (P), coancestry coefficients were used directly for GD and GF , respectively.183

The universal model for GCA and SCA effects was:184

y = µ+
C∑
c=1

ZDgDc +
C∑
c=1

ZFgFc +
C∑
c=1

ZSsc + ε, (2)

where y is the vector of observed hybrid performance (BLUEs), µ is the fixed185

model intercept, ZD is the corresponding design matrix associating the random GCA186

effects of the lines in D (gDc) with y, ZF is the corresponding design matrix asso-187

ciating the random GCA effects of the lines in F (gFc) with y and ZS is a design188

matrix associating the SCA effects (sc), pertaining to hybrid combinations for the189

c-th predictor data type with the corresponding hybrid measurements in y. Thus,190

the model in Eq. 2 can accomodate just one (C = 1) or multiple (C > 1) predictors191

simultaneously. The random effects (gDc and gFc) have expectation zero and covari-192

ance matrices equal to GDcσ
2
GCADc and GFcσ

2
GCAFcfor the GCA effects of the Dent193

and Flint lines, respectively, Scσ2
SCAc for the SCA effects and Iσ2

ε for the residual er-194

ror. For each combination between crosses of lines i× k and j× l, the corresponding195
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elements in Sc were obtained as the product of the respective elements fij in GDc and196

fkl in GFc, respectively (Schnell, 1965, Henderson, 1985, Bernardo, 1996, Massman197

et al., 2013, Technow et al., 2014, Jiang and Reif, 2015) (File S1). Note that, in198

the majority of cases, only GCA effects were considered. In the absence of epistasis,199

this model is equivalent to a feature model accounting for dually defined additive200

effects in each heterotic group and dominance effects between them. Extensions of201

the single-predictor models were made by adding GCA and SCA effects for any ad-202

ditional predictor assuming stochastic independence of effects. In order to obtain203

unbiased estimates of the predictive ability and to compare different models and pre-204

dictor combinations, following Technow et al. (2014), we devised a cross-validation205

(CV) scheme, stratified by the parent lines and using 1,000 runs (CV1000, File S1).206

All prediction models were implemented using the R package BGLR (Pérez and de207

Los Campos, 2014).208

Comparison of predictive abilities209

Predictive abilities were obtained by calculating Pearson correlations between pre-210

dicted (ŷ) and observed phenotypes (y), separately for three test set partitions (T0,211

T1 and T2 hybrids). For each CV run, the training and validation sets were stored to212

ensure the validity of comparisons between any predictor and combinations thereof.213

For any two predictors, say A and B, we then have orthogonal vectors with predictive214

abilities rA and rB of length ’number of cross validation runs’.215
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Evaluation of a pre-selection bias in transcriptomic data216

A custom 2K-microarray (GPL22267) was assembled from a subset of the 47K maize217

oligonucleotide array (GPL6438), based on association of genes with hybrid perfor-218

mance or mid-parent heterosis for grain yield and grain dry matter content of maize.219

These two traits were evaluated in separate grain-yield trials with hybrids from fac-220

torial HFAC(1) (Frisch et al. (2010), Thiemann et al. (2010), File S1). To ensure that221

no pre-selection bias was introduced in hybrid prediction using these transcriptomic222

data, we compared predictive abilities among the various predictors when excluding223

HFAC(1) from the entire set H.224

Association mapping225

For each of the seven agronomic traits, we performed a genome-wide association study226

(GWAS) with GCA effects of all 142 Dent and 103 Flint parent lines as response227

variables using the EMMAX-method (Kang et al., 2010) as implemented in cpgen228

(Heuer, 2015). To avoid using the marker data twice, GCA effects were calculated229

using only pedigree information. Furthermore, an eQTL analysis was carried out230

to examine statistically significant associations between genomic and transcriptomic231

data for the parent lines (D and F ) of the core set H plus five additional lines. This232

was accomplished in the same way as in the GWAS for agronomic traits, but here the233

BLUPs of the transcriptomic data of each mRNA were used as the response variables.234

Associations in each GWAS were declared statistically significant at α = 0.05 after235

Bonferroni correction.236
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Probability of success237

Following Robson, Powers and Urquhart (1967), we calculated the probability of suc-238

cess (P [r, β]) that a hybrid, selected at random from the upper β percent fraction of239

the distribution of predicted values for predictor A, has a phenotypic value contained240

in the upper β percent of the distribution of observed values. Denoting the predictive241

ability of a given predictor by r, this conditional probabilty was calculated assuming242

a bivariate normal distribution243

ŷ
y

 ∼ N

(0

0

 ,
1 r

r 1

). (3)

The required integrals were solved within the R statistical environment using the244

mvtnorm package (Genz et al., 2017).245

Principal component analysis246

Principal component analyses (PCA) were carried out to examine whether differ-247

ent predictors can distinguish between Dent and Flint parent lines and to explore248

whether subpopulations exist within either hetrotic group. Prior to each PCA, all249

variables were scaled and centered. Clusters represent two component mixtures of250

bivariate t-distributions, which were estimated using Maximum Likelihood. Ellipses251

were drawn based on the 0.95 quantiles of the respective bivariate t-distributions.252

Unless stated otherwise, all statistical analyses were carried out inside the R envi-253
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ronment for statistical computing (R Core Team, 2016).254

Data availability255

The data and the code used to analyze the data are available upon request.256
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Results257

Agronomic data258

Mean values of the 1,536 hybrids for the seven evaluated agronomic traits, relevant259

for animal feed and biogas production, were of the same magnitude as reported260

by Riedelsheimer et al. (2012) and Grieder et al. (2011). For all traits, σ2
GCAD and261

σ2
GCAF , describing the main effects of the parents from each heterotic group, together262

explained more than 93% of the genotypic variance among hybrids (Table 1). Heri-263

tabilities were moderate to high for all agronomic traits, indicating a high precision264

of field experiments and data collection (Table 1).265

[Table 1 about here.]266

Predictor data267

Repeatabilities (w2) for endophenotypes varied considerably in both groups of par-268

ents (Fig. S1a) with average values ranging from 0.31 to 0.41, except for transcrip-269

tomic data in Flint material where the average repeatability was only 0.18. Never-270

theless, in the latter case, 291 out of 1,323 transcripts still exceeded a threshold of271

w2 = 0.4.272

Dent and Flint lines were clearly separated in principal component analyses of273

genomic and transcriptomic data (Fig. 1a) without signs of subpopulations within274

either group. However, they overlapped for leaf metabolic and, to an even greater275

extent, for root metabolic data. Off-diagonal elements of the kernels GD and GF ,276

respectively, showed moderate correlations between genomic and transcriptomic data277
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(ρD ≈ 0.56, ρF ≈ 0.44, Fig. S2). Correlations between the off-diagonal elements of278

the G-matrices were highest for the comparison between genomic and pedigree data279

(ρD ≈ 0.72, ρF ≈ 0.63). Intriguingly, the associations between the G-matrices for280

the root and leaf metabolic data were very low (ρD ≈ 0.12, ρF ≈ 0.06).281

[Figure 1 about here.]282

We observed high median pairwise linkage disequilibrium (LD) between SNP283

markers (r2 ≈ 0.39 in Dent and r2 ≈ 0.37 in Flint material) at a distance of ∆Mbp ≤284

0.125 (Fig. 1b). After an initial drop in r2 for ∆ > 0.125, substantial long-range285

LD remained. Large differences in allele frequencies in the two heterotic groups were286

present for 57% of SNPs (Fig. 2a,b) — particularly in the telomeric regions of the287

genome. An eQTL analysis performed with the parent lines suggests that transcript288

abundance integrates variegated genetic information given the fact that i) on the289

same chromosome, significant associations not only occurred between adjacent but290

also between distant pairs of expressed genes and SNPs and ii) 50% of the significant291

associations (α = 0.05, Bonferroni-corrected) occurred between expressed genes and292

SNPs on different chromosomes (Fig. 2).293

[Figure 2 about here.]294

Predictive abilities295

Assuming a polygenic architecture for all traits, as suggested by results from a GWAS296

(Fig. S3), we chose the best linear unbiased predictor (BLUP) method as a baseline297

for prediction of T0, T1 and T2 hybrids. Given that we corrected for fixed effects298
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in advance, this method corresponds to a selection index. A cross-validation scheme299

with 1,000 runs (CV1000), stratified by the parent lines, was devised (File S1, Fig.300

S4). Our main emphasis was on predicting T0 hybrids given the fact that they301

constitute the majority of possible hybrids in practical breeding programs (Kadam302

et al., 2016).303

For predictive abilities (r) of T0 hybrids, transcriptomic data alone were the best304

predictor for the most complex and highly heterotic trait, DMY, as well as for PRO305

(Fig. 3a). With transcriptomic data, the predictive ability r for DMY was 14.9%306

higher than for genomic data, resulting in an 85% increase in the probability of307

successfully selecting the best hybrid candidates P [r, β] for β = 0.01% (Fig. 3b).308

This selection intensity corresponds to picking the top 100 out of 106 predicted309

hybrids for production and intensive testing in field trials.310

[Figure 3 about here.]311

Compared to other individual predictors, r obtained with genomic data alone312

were higher for FAT and SUG. Root metabolites displayed moderate to high predic-313

tive abilities for DMY and FAT, but did not perform well otherwise. Leaf metabo-314

lites performed relatively poorly for all traits. Regardless of the trait, combinations315

of genomic and transcriptomic information displayed robust and consistently high316

predictive abilities. Except for PRO, incorporating additional endophenotypes as317

predictors into our models did not yield notable improvements but remained at the318

same level compared to combining genomic and transcriptomic data. Incorporating319

SCA effects into our models did not further improve predictive abilties (Fig. S5).320

Results for the combination of other predictors with metabolic data are not presented321
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because no improvement of predictive abilities over the combination of genomic data322

with transcriptomic data and pedigree data could be achieved. Finally, we assessed323

the influence of the number of SNPs and mRNAs on predictive abilities. For genomic324

data, a subset of 5,000 SNPs already yielded the same predictive ability as when us-325

ing the entire available set. For transcriptomic data, the predictive ability improved326

only marginally with subsets larger than 50% of the available transcripts (Fig. S6).327
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Discussion328

A paradigm shift in hybrid breeding329

Hybrid breeding programs are generally based on genetically divergent heterotic330

groups. Their use enables a better exploitation of heterosis when conducting crosses331

between them (Melchinger and Gumber, 1998) and is expected to reduce the ratio of332

specific to general combining ability variance (σ2
SCA : σ2

GCA) in the crosses, thereby333

allowing for the selection of hybrids largely on the basis of GCA of their parent lines334

(Reif et al., 2007). However, obtaining accurate estimates of GCA requires the eval-335

uation of new lines in combinations with testers from the opposite heterotic group336

in multi-environment field trials. The promise of hybrid prediction is to accelerate337

breeding programs by skipping a large share of these tests in favor of selecting the338

most promising hybrids before they are even produced (Technow et al., 2014). This339

approach involves the prediction of an impressive number of putative hybrid candi-340

dates (n2) using predictor data collected on only 2n parent lines. Crucial for hybrid341

prediction are predictors, which not only reflect the relationship between parental342

inbred lines but also the interaction of the two parental genomes in their hybrid343

progeny.344

Heterotic groups Because of genetic drift and selection for hybrid performance,345

allele frequencies are expected to diverge in the two heterotic groups, thereby en-346

larging their genetic distance (Falconer and Mackay, 1996, Reif et al., 2007, Larièpe347

et al., 2017). Consistent with this hypothesis and two pilot studies with U.S. maize348
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lines (Gerke et al., 2015, Hall et al., 2016), Dent and Flint lines in our study were349

clearly separated in principal component analyses of genomic and transcriptomic350

data. With large differences in allele frequencies pI and pII in the two heterotic351

groups, as observed for 57% of SNPs, dominance variance σ2
D becomes very small352

because it is a function of the product pI(1− pI)pII(1− pII) (Stuber and Cockerham353

(1966), File S1).354

Dominance variance (σ2
D) is the main component contributing to the variance355

of the specific combining ability effects (σ2
SCA), describing all types of interactions356

among the parental genomes in hybrid combinations. It was therefore not surpris-357

ing that the variances of the general combining ability (GCA) effects (σ2
GCAD and358

σ2
GCAF ), describing the main effects of the parents from each heterotic group, to-359

gether explained more than 93% of the genotypic variance among hybrids for agro-360

nomic traits, which is consistent with earlier studies on silage maize of the Dent ×361

Flint heterotic pattern (Geiger, Melchinger and Schmidt, 1986, Argillier, Méchin and362

Barrière, 2000). While the magnitude of SCA effects was trait specific, it was low for363

all observed traits, which is in agreement with previously reported values for yield364

and quality traits in silage maize (Grieder et al., 2012). The importance of GCA in365

our material was further corroborated by merely marginal differences in predictive366

abilities between models using only GCA effects and those that additionally incor-367

porated SCA effects (Fig. S5). Nevertheless, in crops such as wheat, with yet no368

clearly defined heterotic groups (Zhao et al., 2015) and greater importance of SCA,369

inclusion of SCA effects in the model should improve predictive abilities.370

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/134668doi: bioRxiv preprint 

https://doi.org/10.1101/134668
http://creativecommons.org/licenses/by-nc-nd/4.0/


Properties of well-established predictors While pedigree data reflect the ex-371

pected relationship between genotypes, they do not necessarily depict their realized372

relationship. Genomic data and downstream endophenotypes offer to improve upon373

this pedigree-based approximation by more closely mirroring the transmission of374

genes between genotypes and their interactions. Genomic data have the advantage375

of reliably capturing Mendelian sampling, thereby improving pedigree-based predic-376

tion for many traits. However, genomic data alone may not be the final answer for377

the prediction of complex traits for two major reasons: First, the number of samples378

in most studies is considerably smaller than the number of genetic markers or even379

nucleotides of a genome. This implies that just modeling additive effects already380

necessitates shrinkage of effects. More importantly, however, interactions between381

loci throughout the genome can be frequent (Brem et al., 2005, Brown et al., 2014),382

but attempts to incorporate this epistasis for the prediction of heterotic traits using383

genomic data have been disappointing when the prediction and training set did not384

share the same or closely related parents (Jiang and Reif, 2015). This was true even385

when using recently developed, efficient models (Jarquín et al., 2014, Martini et al.,386

2016) and suggests that genomic data capture only statistical epistasis, referring to387

genetic variation at the population level (Sackton and Hartl, 2016), which is gener-388

ally of negligible magnitude (Hill, Goddard and Visscher, 2008, Mackay, 2014, Guo389

et al., 2016, Vazquez et al., 2016).390
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Complementation of predictors391

Flow of biological information It is well-known that genetic effects on the phe-392

notype are mediated through multiple layers of endophenotypes (Civelek and Lusis,393

2014, Ritchie, Holzinger, Li, Pendergrass and Kim, 2015) with information mainly394

flowing from the genome toward the phenotype via the transcriptome, the proteome395

and the metabolome with metabolite fluxes ultimately governing energy production396

and growth (Fiévet, Dillmann and de Vienne, 2010). For most traits in our material,397

metabolite- and pedigree-based predictive abilities were lower than those obtained398

with either transcriptomic or genomic information. However, consistently high pre-399

dictive abilities across multiple traits could be realized when combining multiple400

predictors, as has been reported previously in humans (Vazquez et al., 2016) and401

maize inbred lines (Guo et al., 2016). This suggests complementary properties of the402

different predictors resulting in better proxies for the complex interplay in gene net-403

works than genomic information alone. Such an advantage is particularly important404

for hybrid prediction when parents of prediction set hybrids are not closely related405

to parents of training set hybrids (File S1) as was shown by the relative excellence406

of transcriptomic data and the use of multiple predictors for the prediction of traits407

in T0 hybrids compared to T1 and T2 hybrids.408

Tapping new sources of information Whereas pedigree and genomic informa-409

tion are static, subsequent endophenotypes are characterized by pervasive interac-410

tions among and between each other (Dalchau et al., 2011, Zhu et al., 2012) and are,411

to varying degrees, influenced by biotic (Rudd et al., 2015, Tzin et al., 2015) and abi-412
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otic perturbations (Caldana et al., 2011, Witt et al., 2012). So while endophenotypes413

do not exclusively report on physiological epistasis but also on non-heritable effects,414

they seem to capture important information not represented by the genome given415

their intermediate position in the genotype-phenotype cascade. We get support for416

this hypothesis from (i) merely low to moderate correlations between off-diagonal417

elements of the kernels of different predictors in our study, (ii) mounting evidence for418

further improvements of predictive abilities when complementing genomic prediction419

with other endophenotypes despite sufficient marker densities (Fig. S6, Guo et al.420

(2016)) and (iii) the integration of SNP information from close and distant eQTL421

in the transcripts analyzed in our study. However, we concede that the number422

of parental genotypes in our mRNA assays was too small to warrant a reasonable423

statistical power for detecting epistasis in the expression of transcripts. In breed-424

ing programs, predictive abilities are largely driven by relationships — including425

Mendelian sampling — among genotypes compared to LD between SNP markers426

and causal QTL (Schopp et al., 2017). Increasing marker densities therefore have427

limited utility for improving genomic predictions as observed in our material, where428

SNP-based predictive abilities reached a plateau after using 5,000 equally spaced429

SNPs (Fig. S6). While two other studies also attempted to model interactions be-430

tween different predictors, we refrained from this approach given that their reported431

predictive abilities based on interactions were not different from those in additive432

models despite using much larger sample sizes (Vazquez et al., 2016, Guo et al.,433

2016).434
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Transcriptomic data435

Utility of transcriptomic data for trait predictions Of particular note was436

the excellent performance of transcriptomic data in predicting dry matter yield and437

protein. Evidence that parental gene expression patterns might be predictive of438

hybrid performance is given by (i) prevailing additive expression patterns in maize439

hybrids (Springer and Stupar, 2007a, Stupar et al., 2008), (ii) a positive correlation of440

the proportion of additive gene expression with the yield of hybrids (Guo et al., 2006),441

and (iii) co-localization of additively expressed genes with heterotic QTL (Thiemann442

et al., 2014). According to metabolic flux theory, gene expression in hybrids at the443

mid-parent level can generate hybrid vigor by counterbalancing opposing detrimental444

expression levels in their parent lines on a genome-wide scale (Kacser and Burns,445

1981, Springer and Stupar, 2007b). The same concept is expected to apply to other446

quantitative endophenotypes (Lisec et al., 2011).447

Pre-selection bias As pointed out earlier, our transcripts were pre-selected based448

on associations with grain dry matter yield and grain dry matter content in hybrids,449

using a subset of the data included in our study (HFAC(1)). Hence, genotypes used450

for the pre-selection (i.e. HFAC(1)) could be regarded as a training set. By combining451

this "training set" and genotypes from the remaining five factorials, we might have452

introduced a bias by using predictors that have already seen the response variable453

in the HFAC(1) genotypes. To rule out the existence of such a bias, we have com-454

pared the predictive abilities of different predictors for the complement of HFAC(1) .455

Two findings indicate that no bias in the comparison of predictive abilities was in-456
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troduced: (i) Relative differences in predictive abilities between transcriptomic and457

pedigree or genomic data did not change when excluding genotypes from HFAC(1)458

from the data (Fig. S7) and (ii) transcriptomic data performed rather poorly in459

predicting dry matter content although this trait was also among the criteria for the460

pre-selection procedure. Finally, an independent study using RNA-Seq data for the461

prediction of traits in maize inbred lines also reported exceptionally good perfor-462

mance of transcriptomic data in the prediction of multiple yield-related traits (Guo463

et al., 2016).464

Relative excellence of predictors for different traits465

Tissue and sampling time Despite the great prospects of using endophenotypes466

for trait predictions, some aspects require careful consideration when using this ap-467

proach. A particular challenge in endophenotype-based prediction efforts is the choice468

of a suitable tissue and sampling time. Tissue-related effects regarding gene expres-469

sion were found in studies on humans (Yang et al., 2015, Mele et al., 2015, Searle470

et al., 2016) and A. thaliana (Schmid et al., 2005) and in maize hybrids with respect471

to metabolome composition and metabolite abundance (Witt et al., 2012). Moreover,472

the age of an organism can selectively influence the expression of genes as observed in473

studies on humans (Mele et al., 2015, Yang et al., 2015) and C. elegans (Vinuela et al.,474

2010, Francesconi and Lehner, 2014). The low correlations between the off-diagonal475

elements of the kernels calculated from root and leaf metabolites might therefore476

be a reflection of highly dynamic processes differing between tissues and during477

different developmental stages. Whereas root metabolic data and transcriptomic478
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data were obtained from seedlings germinated in standard controlled conditions, leaf479

metabolic data were derived from field-grown plants at a much later developmental480

stage, thereby increasing the possibility of environmentally-induced modifications.481

One might hypothesize, that the choice of sampling time and tissue could influence482

the chances of successful trait prediction if such age- or tissue-dependent transcripts483

and metabolites are associated with a phenotypic or clinical trait.484

Feature selection Another explanation for trait-dependent excellence of any pre-485

dictor might lie in the sampling of features. In this study, only a small subset of486

metabolites was sampled and even very recent technologies (Xu et al., 2016, Dan487

et al., 2016) capture only a fraction of the estimated set of metabolites (Fernie,488

2007). Moreover, the smaller differences in metabolite levels between both heterotic489

groups (Fig. 1) were most likely not conducive to capturing basic components un-490

derlying complex heterotic traits. It is also possible that transcriptomic data are491

associated with more biological processes than metabolite data and better capture492

the genetic effects relevant for the prediction of T0 hybrids.493

Prospects for metabolites Previously observed moderate metabolite-based pre-494

dictive abilities for T1 hybrids (Riedelsheimer et al., 2012) were confirmed in our495

study (Fig. S8), but for the majority of traits, root metabolites reached only medium496

and leaf metabolites even lower predictive abilities when predicting T0 hybrids. De-497

spite the aforementioned shortcomings of metabolites, they have shown to be intrigu-498

ing predictors due to their phsyiological proximity to the phenotype, which provides499

information that is impossible to infer from DNA or proteins (Fernie and Stitt, 2012),500
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as well as encouraging results from other studies (Guo et al., 2016, Dan et al., 2016).501

A recently introduced technology, allowing for live-measurements of small molecules502

in the blood of living and awake animals (Arroyo-Currás et al., 2017), might overcome503

the problem of poorly time-resolved snap-shots of some metabolites with extremely504

fast turnover rates (Arrivault et al., 2009) if modified to properly work in plants.505

Predictor requirements Besides improving upon predictions based on pedigree506

relationships by capturing Mendelian sampling, the widespread use of genomic in-507

formation in trait prediction has been driven by the ease of its application. In508

order to compete with genomic data, other ’omics’ data therefore require the use509

of standardized sampling conditions to obtain large repeatabilities and the possibil-510

ity of season-independent sample extraction from seeds, seedlings or young roots to511

achieve high throughput.512

Conclusions513

The use of whole-genome information has considerably advanced trait prediction over514

traditional pedigree-based BLUP by incorporating previously unobservable Mendelian515

sampling. Combining variegated sources of information promises to capture complex516

interactions between genes and endophenotypes, leading to stable predictions across517

traits. Especially if an extremely small fraction of the candidates is selected from the518

millions of possible new hybrids from each breeding cycle, the success of forecasts519

is a strongly convex function of predictive ability (Fig. 3b). Therefore, consider-520

ing endophenotypes could have a substantial effect on the success and economics521
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of hybrid breeding. Given the anticipated technological improvements in RNA-Seq522

and metabolite profiling, as well as the forthcoming adoption of the DH-technology523

for many crops (Kelliher et al., 2017), a paradigm shift from exclusively genomic524

prediction models to more inclusive approaches seems imminent.525
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Figure 1: Properties of predictor data for Dent (red) and Flint (teal) parent lines. (a)
Principal component analysis (PCA) of both groups for genomic (G), transcriptomic
(T), leaf metabolic (L) and root metabolic (R) data. The variance explained by PC
1 (x axis) and PC 2 (y axis) are shown in the caption of each facet. (b) Linkage
disequilibrium decay as a function of the distance between two loci using 40 bins of
0.125 Mbp width, each. The median r2 is depicted as a horizontal bar whereas the
mean r2 is depicted as a white diamond.
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Figure 2: Distribution and relationship of genomic and transcriptomic data for the
ten maize chromosomes. Centromeres for each chromosome are depicted as vertical
red lines. (a,c) Density of SNPs and mRNAs, respectively, across the ten maize chro-
mosomes. (b) Statistical significance (− log10 p-value) for differences in SNP allele
frequencies between Dent and Flint lines. (Center) Links between any statistically
significant (α = 0.05 after Bonferroni correction) association between SNPs and mR-
NAs. Associations are displayed as links for SNPs on chromosome 5, for which the
distribution of associations is representative for the entire genome, using red color
for Dent parent lines and teal color for Flint parent lines.
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Figure 3: Predictive abilities (r) from BLUP models using a CV scheme with sam-
pling of |HTRN | = 200 hybrids, |DTRN | = 40 Dent and |FTRN | = 33 Flint parent
lines for various predictors and combinations thereof (P, pedigree; G, genome; T,
transcriptome; L, leaf metabolome; R, root metabolome). (a) Comparison of r val-
ues from 1,000 CV runs for T0 hybrids and seven agronomic traits. (b) Success rate
of selecting superior hybrids (P [r, β]). P [r, β] is a function of the predictive ability
r = r(y, ŷ) and refers to the conditional probability of a hybrid, selected at random
from the upper β% fraction of the distribution of predicted values (ŷ), having a phe-
notypic value contained in the upper β% of the distribution of phenotypic values y.
Observed predictive abilities (r) for T0 hybrids and the trait DMY are displayed as
vertical, colored lines for three predictors.
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Table 1: Summary of agronomic traits. Traits are characterized by overall mean (µ),
variance components of GCA effects for Dent (σ2

GCAD) and Flint lines (σ2
GCAF ) and

SCA effects (σ2
SCA) (followed by s.e.m.) as well as entry mean heritabilities (H2).

Trait µ σ2
GCAD σ2

GCAF σ2
SCA H2

DMY (t/ha) 19.00 1.51± 0.22 1.00± 0.18 0.17± 0.03 0.82
DMC (%) 34.13 4.17± 0.59 5.03± 0.79 0.49± 0.07 0.91
ADF (%) 20.93 0.27± 0.06 0.40± 0.09 0.02± 0.02 0.43
FAT (%�) 30.02 1.01± 0.19 2.10± 0.37 0.17± 0.05 0.73
PRO (%�) 69.65 3.11± 0.53 2.77± 0.51 0.29± 0.10 0.70
STA (%) 35.56 2.95± 0.51 3.33± 0.63 0.24± 0.10 0.69
SUG (%�) 38.12 31.33± 5.15 31.90± 5.73 4.12± 1.02 0.77
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