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ABSTRACT9

BACKGROUND10

Differential expression analysis on the basis of RNA-Seq count data has become a standard tool in
transcriptomics. Several studies have shown that prior normalization of the data is crucial for a reliable
detection of transcriptional differences. Until now it is not clear whether and how the transcriptomic
approach can be used for differential expression analysis in metatranscriptomics. The potential side
effects that may result from direct application of transcriptomic tools to metatranscriptomic count data
have not been studied so far.
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METHODS17

We propose a model for differential expression in metatranscriptomics that explicitly accounts for variations
in the taxonomic composition of transcripts across different samples. As a main consequence the correct
normalization of metatranscriptomic count data requires the taxonomic separation of the data into
organism-specific bins. Then the taxon-specific scaling of organism profiles yields a valid normalization
and allows to recombine the scaled profiles into a metatranscriptomic count matrix. This matrix can
then be analyzed with statistical tools for transcriptomic count data. For taxon-specific scaling and
recombination of scaled counts we provide a simple R script.
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RESULTS25

When applying transcriptomic tools for differential expression analysis directly to metatranscriptomic data
the organism-independent (global) scaling of counts implies a high risk of falsely predicted functional
differences. In simulation studies we show that incorrect normalization not only tends to loose significant
differences but especially can produce a large number of false positives. In contrast, taxon-specific
scaling can equalize the variation of relative library sizes from different organisms and therefore shows
a reliable detection of significant differences in all simulations. On real metatranscriptomic data the
results from taxon-specific and global scaling can largely differ. In our study, global scaling shows a high
number of extra predictions which are not supported by single transcriptome analyses. Inspection of the
scaling error suggests that these extra predictions may actually correspond to artifacts of an incorrect
normalization.
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CONCLUSIONS36

As in transcriptomics, a proper normalization of count data is also essential for differential expression
analysis in metatranscriptomics. Our model implies a taxon-specific scaling of counts for normalization
of the data. The application of taxon-specific scaling consequently removes taxonomic composition
variations from functional profiles and therefore effectively prevents the risk of false predictions due to
incorrect normalization.
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BACKGROUND42

Metagenome analysis can provide a comprehensive view on the metabolic potential of a microbial43

community (Eisen, 2007; Simon and Daniel, 2009). In addition to the static functional profile of the44

metagenome, metatranscriptomic RNA sequencing (RNA-Seq) can highlight the multi-organism dynamics45

in terms of the corresponding expression profiles (Poretsky et al., 2005; Frias-Lopez et al., 2008; Gilbert46

et al., 2008; Urich et al., 2008). In particular, metatranscriptomics makes it possible to investigate the47

functional response of the community to environmental changes (Gilbert et al., 2008; Poretsky et al.,48

2009).49

In single organism transciptome studies, differential expression analysis based on RNA-Seq data50

has become an established tool (Marioni et al., 2008; Trapnell et al., 2012). For the analysis, first,51

quality-checked sequence reads are mapped to the organisms genome for transcript identification. Then52

the transcript counts are compared between different experimental conditions to identify statistically53

significant differences. Several studies have shown that read count normalization has a great impact on54

the detection of significant differences (Bullard et al., 2010; Dillies et al., 2013; Lin et al., 2016). The55

aim of the count normalization is to make the expression levels comparable across different samples56

and conditions. This is an essential prerequisite for distinguishing condition-dependent differences from57

spurious variation of expression levels.58

In metatranscriptomics, already the transcript identification step can be challenging. In many cases,59

RNA-Seq faces a mixture of organisms for which no reference genome sequence is available. Several60

strategies have been suggested: de novo transcriptome assembly combined with successive homology-61

based annotation (Celaj et al., 2014), the direct functional annotation of reads by classification according62

to some protein database (Huson et al., 2011; Nacke et al., 2014; Hesse et al., 2015) or parallel sequencing63

of the corresponding metagenome with successive mapping of RNA-Seq reads to assembled and annotated64

contigs (Mason et al., 2012; Franzosa et al., 2014; Ye and Tang, 2016). For the subsequent comparison65

of counts between different conditions no standard protocol exists for differential expression analysis66

on metatranscriptomic data. Several studies and tools apply methods that have been developed for67

differential expression analysis in transcriptomics to metatranscriptomic count data (McNulty et al., 2013;68

Martinez et al., 2016; Macklaim et al., 2013). However, the question under which conditions established69

models from single organism transcriptomics also apply to organism communities has not been addressed70

sufficiently so far.71

Here we present an extended statistical model for count data from metatranscriptomic RNA-Seq72

experiments. Theoretical considerations as well as studies on simulated and real count data show that73

correct normalization of the data is crucial and in general requires an organism-specific rescaling of74

expression profiles. This implies that a valid differential analysis should only include data that can be75

attributed to single organisms. The application of differential expression analysis to mixed-species data76

without prior separation can be found in several metatranscriptomic studies (Nacke et al., 2014; McNulty77

et al., 2013; De Filippis et al., 2016) as well as in dedicated pipelines for metatranscriptome analysis78

(Martinez et al., 2016; Westreich et al., 2016). Our results suggest that inadequate normalization of79

metatranscriptomic count data always bares the risk of serious errors in differential expression analysis80

and should be avoided consequently.81

NORMALIZATION82

To clarify our arguments for an alternative normalization of metatranscriptomic data we need to explain83

the statistical nature of the normalization problem. We first follow the approach of Anders and Huber84

(Anders and Huber, 2010) for single organism RNA-Seq count data and start with a basic model for the85

mean of the observed counts. The expected (mean) count E [Yi j] for gene (feature) i and sample j arises86

from a product of the per-gene quantity λic j under condition c j and a size factor s j:87

E [Yi j] = λic j s j (1)

The factor λic j is proportional to the mean concentration of feature i under condition c j. The size factor s j88

represents the sampling depth or library size. Usually, both factors are unknown. If we assume the i-th89

feature to be non-differentially expressed (NDE) we can represent the corresponding row of the count90

matrix by91
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E
[
Y (NDE)

i•

]
= λis (2)

where the relative feature abundance is equal for all samples and all size factors have been comprised in92

the row vector s. Thus, for NDE features the size factors are proportional to the expected counts. If we93

knew which features are actually NDE, we would be able to estimate the required size (scaling) factors94

for normalization from the corresponding counts.95

With the common choice of a mean scaling factor of 1 the scaling factors can be estimated by96

ŝ =
Y (NDE)

i•
1
n ∑ j Y

(NDE)
i j

(3)

where n is the number of samples. The denominator in the above equation corresponds to the arithmetic97

mean of the counts for feature i. If the library sizes of the samples strongly diverge, possibly by orders of98

magnitude, the geometric mean is more suitable (Anders and Huber, 2010).99

To make the expected counts of different samples comparable, i.e. in order to compare the feature100

concentrations, the columns of the data matrix are divided by the sample-specific scaling factors prior to101

the testing for significant differences. As above, it is common to choose an average scaling factor 1. Thus,102

if we would actually know an NDE feature beforehand, in principle, we could use it to estimate the scaling103

factors. Usually this is not the case and we need to make some assumptions. A common assumption that104

is used in current tools is that most of the features are NDE. Then it is possible to estimate the scaling105

factors by some robust statistics. In DESeq for each sample the putative scaling factors from all features106

are calculated and then the median of all these values is used as an estimator of the sample-specific scaling107

factor (Anders and Huber, 2010). The median is highly robust, with a breakdown point of 50% and108

therefore the estimator can be used if at least half of the data corresponds to NDE features. Without any109

distinction between DE and NDE features the scaling factors have also been estimated from the count110

sums of all samples. However, the potential shortcomings of this total count normalization have widely111

been discussed (Anders and Huber, 2010; Robinson and Oshlack, 2010; Soneson and Delorenzi, 2013).112

In metatranscriptomics the situation is more complicated because for each organism we can have a113

different scaling factor. So we have to extend the above sampling model to an N-organism mixture that114

includes a matrix S of organism-specific scaling factors s jk:115

E [Yi j] =
N

∑
k=1

λi jks jk (4)

where i, j,k are the feature, sample and organism indices, repectively. We omitted the condition dependency116

(c j) for convenience.117

In analogy to equation (2) for NDE features we have the following model for a feature row i of the118

count matrix:119

E
[
Y (NDE)

i•

]
= λ

T
i ST (5)

where the column vector λ i contains all organism-specific rates for feature i and λ
T
i indicates transposition120

of this vector.121

Application of the above single-organism scheme for estimation of scaling factors is only valid if the122

matrix of scaling factors has the following form:123

S = [α1s,α2s, . . . ,αKs] = sα
T (6)

where α is a column vector of organism-specific abundances and s contains the sample-specific scaling124

factors, now in a column vector, which is equal for all organisms. Then we can write125

3/27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/134650doi: bioRxiv preprint 

https://doi.org/10.1101/134650
http://creativecommons.org/licenses/by/4.0/


Sλ i = sα
T

λ i = λ̃is (7)

where λ̃i results from the dot product of the organism and the feature rates. This corresponds to equation126

(2) and allows to apply DESeq or other tools for single organism differential expression analysis to the127

metatranscriptomic count matrix. However, the underlying assumption that S has column rank 1, i.e. all128

column vectors are collinear, would be hard to justify in practice. Implicitly we would assume that the129

relative contributions of all organisms are constant accross all samples. In general, this assumption is not130

met, because for a real metatranscriptome, the organism composition of transcripts cannot be controlled131

and will be different for different samples. In our approach to normalization of metatranscriptomic132

counts we preprocess the data according to an organism-specific rescaling of seperated counts so that the133

recombined count data actually meet the former assumption.134

MATERIALS & METHODS135

Taxon-specific scaling and global scaling136

We propose a method to prepare metatranscriptomic data for differential expression analysis. The137

method is referred to as taxon-specific scaling. As an essential prerequisite our approach requires that138

the data is first partitioned according to the contributing organisms. Then the count data matrix from139

each partition is normalized separately. Here, established tools from transcriptomics can be used to140

estimate the corresponding scaling factors. Finally, the normalized count data matrices are summed141

up to provide normalized metatranscriptomic count data which can be analyzed in terms of differential142

expression (Fig. 1). Here all statistical models and tools for count-based differential expression analysis143

in transcriptomics can in principle be used to identify differentially expressed features.144

If we denote the original count matrix for organism k as Yk and the associated vector of estimated145

scaling factors as ŝk the normalized metatranscriptomic count matrix is computed by146

Ỹ = ∑
k

Yk diag−1(ŝk) (8)

Here, the diag−1 operator transforms the scaling vector to a diagonal matrix with inverse scaling factors147

on the diagonal and zeros everywhere else. We provide an R script where we use DESeq2 for scaling148

factor estimation and identification of significant differences (see Additional File 1).149

In principle, our method is computationally simple and the hard work has to be done beforehand in150

order to provide the partitioned data in terms of the organism-specific count matrices. This is the realm of151

binning methods and, in addition, may require sequence assembly tools to achieve a sufficient sequence152

length for reliable separation.153

At this point, the question may arise why to get back to metatranscriptomic data when differential154

expression analysis could be performed for separate organisms or specific taxa. There are several reasons155

why the analysis of the recombined metatranscriptome data can be useful: first of all, the statistical power156

of organism-specific tests may be low due to decreased counts. If several organisms show the same slight157

difference, this difference may only become statistically significant when accumulating their normalized158

counts. Or a feature may show differences for single organisms but these differences may cancel out159

when correctly summarized. In this case the corresponding feature is not indicative for the experimental160

condition with regard to the whole community. Therefore the analysis of separate organism transcriptomes161

and the analysis of the rectified metatranscriptome data should be combined to provide a complete picture162

of the community response.163

In our study and in the supplied R script we use DESeq2 to compute scaling factors and to identify164

significant differences on the basis of the normalized count matrics. We decided for DESeq2 for several165

reasons. It is an established tool in transcriptomics which has shown a good performance in compar-166

ative studies (Soneson and Delorenzi, 2013; Dillies et al., 2013) and which has already been used for167

metatranscriptome analysis (McNulty et al., 2013; Martinez et al., 2016; De Filippis et al., 2016). In168

particular, the estimation of scaling factors is robust and can be performed as a separate prior step apart169

from the computation of significant differences. The latter aspect is important for taxon-specific scaling170

which requires to apply the normalization independently. However, we would like to emphasize that our171
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arguments for the taxon-specific scaling approach do not depend on a particular statistical tool and in fact172

the main findings of our study can be reproduced with other tools, such as edgeR (Robinson et al., 2010),173

SAMseq(Li and Tibshirani, 2013) or limma(Ritchie et al., 2015). In some experiments we also used174

edgeR and total count (TC) normalization to study the impact of different transcriptomic scaling methods.175

In contrast to taxon-specific scaling, global scaling performs the normalization of metatranscriptomic176

data without prior separation, i.e. sample-specific scaling factors are estimated from the original metatran-177

scriptomic counts. In general, taxon-specific and global scaling will result in distinct normalized count178

matrices which in turn can lead to largely differing results in differential expression analysis. We tried to179

show this on simulated and real count data as described in the following.180

Synthetic data generation and analysis tools181

The tool compcodeR (Soneson, 2014) was used to generate all simulated data. The tool generates count182

data based on a negative binomial distribution model with parameters estimated from real transcriptome183

data (Pickrell et al., 2010; Cheung et al., 2010). If not explicitly specified, the compcodeR parameters in184

the R function “generate.org.mat” are used (see Additional File 1). All analyses were performed with R185

version 3.3.0 and DESeq2 version 1.8.2, edgeR version 3.10.5.186

Simulated metatranscriptome187

A metatranscriptome arises from a mixture of various organisms, each with individual features. As a188

result, a metatranscriptome can include features covered by all taxa as well as features occurring only189

in few or a single organism. Generally, the count contributions from different organisms are not equal190

and vary across samples. We refer to this as the variation of the library size. Therefore, compcodeR191

was used to generate multiple data sets with different total count numbers to simulate the variation of192

organism-specific library sizes. Thereby, each generated data set mimics the contribution of a single193

organism. The data sets were then combined to simulate a metatranscriptomic count matrix.194

As with all simulations, the data can only provide a coarse approximation of real metatranscriptomic195

counts which depends on particular parameters. Therefore, settings for the number of features and the196

number of total counts influence the results. Each organism is simulated with 100 differentially expressed197

features (DEF), 50 of them upregulated, and with 900 features that were non-differentially expressed198

(NDE).199

Each data set consists of two conditions, A and B, with six samples (replicates) per condition and200

five organisms (Org1 to Org5) per sample. In the first three simulations, the different organism profiles201

are stacked, to exclude any interference between features from different organisms in the combined data.202

Accordingly, the final count matrix has 12 columns and 5000 rows that correspond to samples and features,203

respectively. The data generation process provides the necessary information to calculate the number204

of true positives (TP) and false positives (FP). The label Li is DE or NDE according to feature i being205

differentially expressed or non-differentially expressed. The statistical test used to detect DEF, provides a206

p-value for each feature. The predicted label L̂i is DE if the adjusted p-value (Benjamini and Hochberg,207

1995) is below a threshold of 0.05 for feature i. The TP and FP counts are calculated for each organism k208

individually.209

TPk = |{i : L̂i = DE∧Li = DE}| (9)

FPk = |{i : L̂i = DE∧Li = NDE}| (10)

Simulation I: “Without library size variation”210

In the first experiment we simulate the case where the libray size (LS) for each of the five organisms does211

not vary accross different samples. Although this is an unrealistic case we performed this simulation212

to verify that both normalization approaches work equally well under ideal conditions. In addition, we213

wanted to investigate how different organism abundances affect the identification of DEF. Each organism214

was assigned a fixed total count number across all samples, without variation in library size. We simulated215

organism Org1 with a base count of 1e7 followed by organism Org2 with 5e6, 1e6 for organism Org3216

and organism Org4, Org5 with 5e5,1e5 respectively. Because data is generated without variation for the217

number of counts per sample, no normalization is required, i.e. the correct scaling factors for all samples218

and all organisms are the same (= 1).219
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Simulation II: “With library size variation”220

In the second experiment we simulated a more realistic situation, with varying LS for all included221

organisms.222

Organism base counts are identical to the first simulation but the LS is randomly increased or reduced223

according to a random factor between 0.5 and 2. Due to the different library sizes of the samples, a prior224

normalization is required.225

Simulation III: “Condition dependent variation”226

In the third simulation, we investigated to what extent a condition dependent variation of LS can affect227

the normalization results. Under condition A we increase LS of Org1 by a random factor between 1.5 and228

2 while under condition B we decrease the LS by a random factor between 0.5 and 0.667. For Org2 the229

direction of change is reversed, with a random decrease under condition A and an increase for condition230

B. For Org1 and Org2 the same base count as for Simulation I and II is used and for Org3-5 all parameters231

from Simulation II are used.232

Simulation IV: “Mixed feature effects”233

In the previous simulations I-III, the generated count matrices from different organisms are stacked in234

the combined count matrix. By stacking the organism profiles, the provided feature labels from the data235

generation process can be used to validate the predictions. Now we want to analyze which effects can236

be observed if each feature can accumulate counts from different organisms. This case is common for237

real metatranscriptomic counts which arise from a mixture of organisms. Of particular interest are two238

effects that we refer to as ”cancellation” and ”boosting”. To simplify the analysis of these effects we239

restricted our simulation to a mixture of two organisms, which had the same base counts as Org1 and240

Org2 in Simulation I. The cancellation effect is observed when DEF that are significant in one or both241

organism datasets loose significance in the mixture. In contrast, the boosting effect is observed for DEF242

which are only significant in the combined dataset. We generated data for three samples per condition, to243

limit the variability of the superimposed count data. The first 100 features of the organism profiles were244

DE while the remaining 900 were NDE. The simulation is divided into part A, where we superimposed245

features with the same DE direction and part B, where the corresponding DE features of Org1 and Org2246

had opposite directions.247

Note that the aim of Simulation IV was not to compare the different normalization approaches but248

instead to demonstrate the possible effects that may result from mixed organism count data. However,249

the simulation cannot be used to draw conclusions about the frequencies of the effects for real data. In250

particular, we expect the boosting effect to be much stronger for real data where organisms with a similar251

response may provide correlated features that can emphasize trends or differences between conditions252

when superimposing their counts.253

Part A For this part of the simulation, we superimposed equally directed features of the two organisms.254

With 100 features selected as DE, the first 50 are “upregulated” followed by 50 “downregulated” features255

and 900 NDE features. This simulation was expected to show the boosting effect as well as the cancellation256

effect.257

Part B In part B we tried to further increase the frequency of the cancellation effect. An important258

aspect of identifying DEF is the difference between the mean count values of the two conditions. To259

bring the mean count values of the mixture for the two conditions closer together, we added the sorted260

”upregulated” features of Org1 and the sorted “downregulated” features of Org2 and vice versa. The true261

mean values available from the data generation process are the basis for the sorting. For the generated262

DEF the sorting ensures that high count values in condition A from one organism are balanced with high263

count values in condition B from the other organism.264

Simulation V: “False positive control”265

In the final simulation, the aim was to investigate the effect of an LS shift within mixed count data266

without any DE features. Here we particularly wanted to measure the impact of the normalization on the267

false positive rate. This kind of analysis has also been proposed for transcriptomics to validate the false268

discovery control in differential expression analysis tools (Soneson and Delorenzi, 2013).269

We used the parameters from Simulation III, but instead of six samples per condition, compcodeR270

generated 12 samples per condition where we only used the samples for the first condition. For Org3-5271
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we use the LS variation as used in Simulation III. For Org1 and Org2 the LS shift between different272

conditions in Simulation III is now applied between samples 1-6 (condition A) and 7-12 (condition B).273

The LS ranges were identical to those in Simulation III. The results of the differential expression analysis274

for global and taxon-specific scaling on the superimposed data were compared.275

Error calculation of the scaling factor276

The scaling error Ek was estimated from the difference between the sample-specific scaling factors ŝ jk
and the actual ”true” scaling factors s jk for each organism k as provided by the simulation parameters. In
both cases the factors are scaled to provide a unit mean across samples. To obtain a scaling error between
0 and 1, we compute the error by:

Ek =
∑ j |ŝ jk− s jk|

2n
(11)

where n is the number of samples. In addition, we used the logarithmic measure log2 ŝ jk/s jk to represent277

the directed error.278

Metatranscriptome data279

For a real data study, we chose a metatranscriptome dataset from mice gut(McNulty et al., 2013). The280

experiment includes 12 different species (see Additional File 2 : Tab. 1) representing an artificial human281

gut microbial community which was inserted into germ free mice. In the original study the diet for282

the mice was changed at different time points. Metatranscriptomic data is available for 6 time points283

which provide the conditions for our analysis. The available processed count data was obtained from the284

European Bioinformatics Institute [http://www.ebi.ac.uk/, ArrayExpress, E-GEOD-48993] and contains285

gene names and the associated numbers.286

Because the gene to Pfam (Finn et al., 2014) mapping is available for most organisms, we selected287

Pfam protein domains as features for the differential expression analysis. Each Pfam domain family is a288

feature in the resulting vector, including only Pfams observed at least once. We transformed the available289

RPKM values for the genes back to raw counts. For genes with multiple Pfam annotations, we add the290

raw count values of the gene to all associated Pfam features. From the available data, we constructed291

a count matrix for each condition and organism (Additional File 3). Here, each column constitutes a292

different sample and each row represents a particular feature. Because the count data from Bacteroides293

cellulosilyticus WH2 did not map to gene names, all related counts are excluded from the analysis.294

A differential expression analysis for all pairwise combinations of distinguished conditions was295

performed to compare the results of global and taxon-specific scaling. We calculated the number of DEF296

predicted a) with both methods with the same fold change direction, b) with both methods but with an297

opposite fold change direction and c) with only one scaling method. In addition, we investigated the298

overlap between the single organism transcriptome analyses and the differential expression analysis for299

the mixture. We applied a significance threshold on the adjusted p-value of 0.05 for the prediction of DEF.300

RESULTS & DISCUSSION301

In the first part of our evaluation we examined the performance of taxon-specific and global scaling302

methods on simulated data. Because simulations I to III had been designed to provide a clear ground truth303

we were able to distinguish true positive predictions of DEF from falsely classified features. In the second304

part we show results on real metatranscriptomic count data. Here the ground truth is not known and305

therefore we restrict the analysis on the comparison of the results from the two normalization approaches.306

Because it is impossible to verify the correctness of predictions we focus on analyzing the agreement or307

disagreement on DEF detection in this case.308

Simulation I309

In this experiment, we measured the ability to detect DEF in a metatranscriptome without variation of310

organism-specific libray sizes accross different samples. This situation, in principle, does not require any311

normalization and therefore we expected taxon-specific (”tax”) and global (”glo”) scaling to yield similar312

results. This is confirmed by the resulting true positive (TP) predictions of DEF for the included organisms313

(Fig. 2). For both approaches the number of true positives is higher for more abundant organisms due to314
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an increased statistical power of the corresponding tests. The final profile includes 100 DE and 900 NDE315

features for each organism, resulting in 5000 features in total.316

We repeated the analysis with edgeR and TC normalizations to estimate the scaling factors (see317

Additional File 2 : Fig. 1). For edgeR, the number of correctly identified DEF is lower for all organisms318

(see Additional File 2 : Fig. 1). For this particular data set, the library size (LS) was correctly adjusted by319

DESeq2 with scaling factors close to 1 for all samples. Again both normalization approaches performed320

equally well. A similar picture can be expected for a varying total LS of the metatranscriptome samples321

as long as the relative LS of the organisms does not vary across different samples.322

Simulation II323

When introducing organism-specific LS variation across samples the picture changes. For the global324

scaling approach the results show a decrease in the average TP rate for all organisms (see Fig. 3). This325

trend is also visible when edgeR and TC normalization are used for differential expression analysis (see326

Additional File 2 : Fig 2). On the other hand, with taxon-specific scaling the results are very similar to327

results from Simulation I (see Fig. 2). With this method more DEF are correctly identified than with328

global scaling. The difference in the number of correctly identified DEF for global scaling is dependent329

on the parameter settings for the LS variation. For a lower amplitude of the LS variation, the TP rate for330

global scaling increases (Additional File 2 : Fig. 3). The range of TP for the most abundant organisms331

Org1 and Org2 is broader with global scaling (see Fig. 3) which also shows a higher scaling error (SE) for332

organisms with a lower sequencing depth (see Additional File 2 : Fig. 4).333

The receiver operating characteristics (ROC) shows a higher area under curve (AUC) value for taxon-334

specific scaling (0.8776) than for global scaling (0.8282). The curve for global scaling also shows a higher335

degree of variation across different simulation runs (Fig. 4 dotted lines).336

Simulation III337

With the inclusion of a condition dependent variation of the LS this simulation experiment can be viewed338

as a worst case study. For global scaling, the observed number of true positives is higher for all data sets339

compared to Simulation II (see Fig. 5).However, the number of false positive predictions explodes and340

even exceeds the total number of DEF (500) resulting in average TP and FP numbers of 228 (± 11) and341

1523 (± 78), i.e. ∼35 % of all features are predicted to be DEF.342

In particular, the biggest portion of FP accumulates in features from Org1 and Org2 (see Fig. 5).343

Inspecting the log2 fold changes (see Fig. 6) a shift from the correct center of 0 upwards and downwards344

can be observed for Org1 and Org2, respectively. As a result, many DEF are identified with a wrong345

(opposite) direction and most of the false positive detections just reflect the direction of this shift. This346

situation implies a total loss of control over the false discovery rate. The results with edgeR and TC347

normalization show a similarly high FP rate (see Additional File 2 : Fig. 5).348

As a consequence, the ROC curve collapses for global scaling (see Fig. 7) with an AUC of 0.6396.349

In contrast, taxon-specific scaling does not suffer from condition-dependent LS variation and the results350

compare well with those of Simulation I & II showing a similar shape of the ROC curve (AUC: 0.8785).351

With taxon-specific scaling, the average TP across all species is 237 which corresponds to a sensitivity of352

∼47 %. For global scaling the total number of predicted DEF (TP + FP) is dependent on the amplitude of353

the condition dependent LS shift and increases for bigger shifts.354

Simulation IV355

With this simulation we wanted to analyze the effects that result from the superposition of counts from356

different species. In this case we do not compare the two normalization approaches. DEF that can not be357

detected for each organism separately may be identified as DE in the mixture (boosting effect) and DEF358

that can be detected for single organisms may disappear in the mixture (cancellation effect). Here we359

analyzed the frequencies of the different effects for the features that were labeled DE according to the360

data generation process. The presented numbers result from averaging over 100 iterations and for the361

observed effects these numbers sum up to the total number of DE-labeled features (100).362

Part A First, we just added the data matrices of the two simulated organisms, i.e. the upregulated and363

downregulated feature counts are summed up. In the results, boosting as well as cancellation effects can364

be observed. The chance to observe the boosting effect is low because the features of the two organisms365

and conditions are not correlated. Furthermore, when counts with different orders of magnitude are added,366
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only slight changes in the mean counts can be observed. As a result, the boosting and cancellation effects367

only show median frequencies of 5 and 9, respectively (see Fig. 8). The main portion of features identified368

as DE in the mixture is also identified as DE for at least one of the organisms, followed by the fraction of369

features that are insignificant in all cases (see Fig. 8). Increasing the number of samples per condition370

from 3 to 6 further reduces the median number of boosted features (3) while also increasing the overall371

ability to correctly identify DE features (see Additional File 2 : Fig. 6).372

Part B In the second part of the simulation, we changed the order of the features to intensify the373

cancellation effect. This was achieved by adding sorted upregulated features of one organism to sorted374

downregulated features of the other organism. The median number of features identified as DE for both375

cases, mixture and single organism analysis, is reduced to 7 and the boosting effect almost completely376

disappears (see Fig. 8). Due to our simulation setup, features identified as DE in one of the organisms but377

not identified in the mixture were the second most frequent (see Fig. 8) while features predicted as NDE378

for both organisms and for the mixture were most frequent.379

Increasing the number of samples per condition from three to six resulted in a stronger cancellation380

effect and a higher number of features identified as DE for one of the organisms and in the mixture (see381

Additional File 2 : Fig. 6). Again, the increased number of samples improves the overall detection of382

DEF.383

Simulation V384

In the final simulation, we wanted to investigate the effect of the scaling on the false discovery rate385

for mixed organism count data. Therefore the data matrices (12 samples and 1000 features) for this386

experiment were generated without any DEF.387

For taxon-specific scaling, the number of significant features is negligible with an average number of388

1.6, which is well within the range of the estimated false discovery rate (FDR). In contrast, for global389

scaling the average number of predicted DEF is 628± 22. While with taxon-specific scaling there is390

little if any significant difference, global scaling predicted ∼ 63 % of all features to be DE. Only a small391

number of predicted DEF results from analysis of the organism transcriptomes with a mean of 1.2, again392

well within the FDR range for an adjusted p-value threshold of 0.05. The results from Simulation IV393

show that the prevalent effect of the superposition of uncorrelated data is the cancellation effect and the394

boosting effect could only be observed in a few cases. However, in Simulation IV we focused on DEF395

that were marked as differentially expressed by the data generation process. Therefore we can exclude396

that the high number of DEF predicted by global scaling, results from the boosting effect.397

Real metatranscriptome data398

While the objective of the simulation studies was to evaluate and compare the two normalization ap-399

proaches in terms of correctly identified DEF, we do not have a ground truth for the analysis of the real400

data. Therefore we focused on an analysis of the (dis-)agreement in results between both approaches401

without assessing the actual detection performance. The analyzed data comprises Pfam counts from 11402

organisms, 6 conditions according to different time points and 4 replicates per condition. An overview on403

predicted DEF in all pairwise condition comparisons is shown in Fig. 9.404

For both approaches, the number of DEF peaked at “day 13” vs. “day 27” with 512 and 756 significant405

features for taxon-specific and global scaling. The number of DEF was low when conditions close together406

on the time line were compared (“day 15” vs. “day 16” or “day 29” vs. “day 30”).407

For global scaling, the number of predicted DEF was generally higher than for taxon-specific scaling.408

For some of the comparisons, the number of extra predictions under global scaling was even higher409

than the number of shared predictions (see Fig. 9). The high number of extra predictions observed with410

global scaling is especially prevalent for the comparisons “day 15” vs “day 16” with 16 times more extra411

predictions than predictions shared with taxon-specific scaling and “day 13” vs “day 16” with 3 times412

more extra predictions than shared predictions.413

We also compared the results of the mixture analysis for global scaling and taxon-specific scaling414

to the transcriptome analyses of the individual organisms. For 10 of the 15 comparisons, the majority415

of features predicted as DE with global scaling were not predicted as DE in any transcriptome (see416

Additional File 2 : Fig. 7). In contrast, with taxon-specific scaling only the comparisons “day 29” vs “day417

30” and “day 15” vs “day 16” show a higher fraction of significant features not predicted as DE in the418

transcriptomes. These two comparisons are also the ones with the smallest total number of predicted DEF.419
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When taking into account the direction of the differential expression, the number of DEF predicted by420

both methods but with contrary regulation direction is low. Here comparison “day 16” vs “day 30” shows421

the highest number of significant features with an opposite direction (5).422

Analysis of “day 13” vs “day 27”423

As described in the original study, “day 13” and “day 27” each correspond to the final day of a particular424

diet. Because the number of predicted DEF for both scaling methods (global and taxon-specific) was the425

highest here, we analyze the results for this comparison in more detail.426

We mapped the Pfam-annotated features which were predicted as DE for global scaling and taxon-427

specitic scaling to Gene Ontology (GO) terms and compared the results. With taxon-specific scaling 250428

GO terms with at least one DEF mapping were identified, while global scaling resulted in 311 GO terms.429

GO terms associated to biological processes with a high agreement between the two methods were for430

example cellular amino acid metabolic process where both methods identified 7 of the 9 associated Pfams431

as DE and carbohydrate metabolic process with 11 DEF shared between taxon-specific scaling and global432

scaling. In this category, taxon-specific scaling and global scaling predicted 5 additional DEF uniquely.433

GO terms with predicted DEF from taxon-specific scaling alone included magnesium ion binding434

and fucose metabolic process with 3 predicted DEF each. For global scaling alone, we found DNA435

modification, molybdopterin cofactor biosynthetic process, and RNA modification with 3, 2 and 2436

predicted DEF respectively (see Additional File 4 for a complete list).437

Extra predictions In the condition comparison “day 13” vs “day 27”, both normalization approaches438

shared 376 features predicted as DE. With taxon-specific scaling, 136 extra predictions were observable439

while global scaling resulted in 380 extra predictions. When comparing the results of both scaling methods440

to the single organism transcriptome analyses, global scaling and taxon-specific scaling resulted in 252441

and 69 predictions that were insignificant in all single analyses (see Fig. 9). Both methods shared an442

overlap of 53 DEF that were not detected in any of the transcriptome analyses. Thus, global scaling would443

suggest a boosting effect for∼13 % of the features that were insignificant in all transcriptome analyses. In444

contrast, with taxon-specific scaling, a putative boosting effect for only ∼4% of the transcriptomic NDE445

features can be observed. In the single organism transcriptomes, a total of 1302 features were predicted to446

be DEF at least once. Both methods lead to a similar cancellation rate of ∼66% for taxon-specific scaling447

and ∼61% for global scaling.448

The fraction of shared DEF predictions between the two scaling methods is lower if the DEF are449

supported by a smaller number of transcriptome analyses. For features supported by one transcriptome the450

agreement was ∼48%, increasing to ∼56% for two transcriptomes. In the range of three to six supporting451

transcriptomes, the agreement increases to∼59%,∼80%, 100% and 100% respectively. While the relative452

agreement between taxon-specific and global scaling increases, the total number of features supported by453

multiple transcriptomes decreases (Additional File 2 : Fig. 7).454

Scaling error In the simulations, the differences in the estimated scaling factors for the single organism455

profiles in comparison to the actual scaling factors were low with a scaling error of ∼0.01. In Simulation456

II we found the scaling error to be high in general with global scaling (Additional File 2 : Fig. 3) and457

in Simulation III we showed the drastic increase of features falsely identified as DE with global scaling458

when two organisms with condition-dependent abundance shifts were combined.459

To further investigate the increased number of DEF predicted by global scaling, we compared the460

scaling factors estimated for the single organism profiles with the estimated scaling factors for the global461

normalization in the comparison “day 13” vs “day 27”. For several organisms, a pattern emerged which462

showed a condition specific scaling error (Fig. 10). While the scaling factors for one condition are463

too small, the scaling factors in the other condition are too high. As a result, global scaling leads to464

condition-dependent errors which may cause extra predictions of DEF because an artificial shift between465

the two conditions is introduced.466

Incorrect scaling is especially problematic for features, which mainly comprise counts from one467

organism or when counts from mixed organisms with the same scaling shift are analyzed. For a quantifi-468

cation we determined the number of features, for which counts from a single organism (or the mixture of469

organisms with the same scaling error direction) exceed 80% of the normalized counts for that feature.470

For extra predictions obtained only with global scaling without evidence from the transcriptome analyses,471

the counts from a single organism are the main contribution for 82 of 199 features. Additional 43 features472

are predicted from the summed counts from organisms with the same scaling shift.473
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Single feature analysis For the comparison “day 13” vs “day 27” we now show several examples for474

features that reflect particular mixed organism effects or the different behavior of the scaling methods.475

With regard to the scaling error discussed above, several features actually collect counts from mainly476

one organism (see Fig. 11, 12 and Additional File 2 : Fig. 8). In addition, we found several features477

that show an observable boosting effect with global as well as taxon-specific scaling (e.g. Fig. 13 or478

Additional File 2 : Fig. 9). For these features, significant differences were only observed in the combined479

metatranscriptome. Some of the extra predictions obtained with taxon-specific scaling are results of480

a putative boosting effect (see Additional File 2 : Fig. 10 and Fig. 11). In contrast, some of the extra481

predictions resulting in a putative boosting effect were observable only with global scaling (see Fig. 11482

and Additional File 2 : Fig 8). In both cases, the incorrect scaling factors resulted in the detection of DE483

for mainly one organism. For other features, the combination of multiple incorrect scaling factors also484

predicted DE when global scaling was used (see Additional File 2 : Fig. 12).485

The prevalent effect for both normalization methods was cancellation. Often, the DEF from multiple486

transcriptomes cancel each other out (see Fig. 14 and Additional File 2 : Fig. 13) and in some cases an487

organism switch could be observed (see Additional File 2 : Fig. 14 and 15).488

An example for a contradicting expression direction is shown in Fig 15. For this feature, the incorrect489

scaling factors obtained by global scaling for Org2 and Org4 suggest a higher expression of this feature in490

“day 13”, while taxon-specific scaling predicted the expression to be higher in the “day 27” condition.491

CONCLUSIONS492

Differential expression analysis in metatranscriptomics is challenging. Metatranscriptomic count data493

from RNA-Seq experiments show two main modes of biological variation. The functional composition494

of transcripts reflects the activity of organisms and systematic changes might indicate a metabolic495

response to experimental conditions. The taxonomic composition of transcripts can change as well and a496

change may not necessarily be explainable in terms of controlled experimental conditions. In contrast to497

metagenomics, in metatranscriptomics the questions ”who is there?” and ”what are they doing” are not498

necessarily connected and need to be answered separately. If the two questions are not separated, there is499

a considerable risk, to interpret variations in the taxonomic composition as functional changes. This may500

even happen if the functional profiles of all organisms stay the same under different conditions.501

Normalization of metatranscriptomic data must have the goal to eliminate the influence of taxonomic502

variations from functional analysis. We argue that for a correct normalization the metatranscriptome needs503

to be decomposed to normalize the organism profiles independently. Then the metatranscriptomic count504

data may be recombined from the normalized profiles to look for any global trends in the superimposed505

count data. If differential expression tools are directly applied to the metatranscriptomic count matrix a506

high risk of erroneous results is encountered. Our simulations indicate that the main risk is not to miss507

some of the true differences but the real danger is to detect a large number of false functional differences508

which arise from taxonomic abundance variations across samples. In particular, if these variations are509

condition dependent the false positive rate can explode, circumventing all statistical control mechanisms510

for bounding the false discovery rate.511

We would like to point out that our findings do not affect metatransciptome studies that just aim512

to analyze the functional repertoire from RNA-Seq data. The question which functions or genes are513

expressed is much easier to answer than the question what is the functional response to a change of514

experimental conditions. However, it is important to note that our results do not only apply to the classic515

two conditions setup that we used throughout our study. Also for multiple conditions and time series a516

correct normalization is essential to separate functional from taxonomic trends in the metatranscriptomic517

composition variations.518
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Figure 1. Workflow for taxon-specific normalization. a) Sequence samples from conditions A (white)
and B (light gray). Assign each sequence read to taxonomic and feature categories. b) Compute feature
profiles from the assignment counts. c) Obtain count matrix from taxon-specific feature profiles. d)
Normalize feature profiles of each taxon-specific count matrix separately. e) Recombine normalized
feature profiles of all taxa into a metatranscriptomic profile. f) Perform differential expression analysis on
metatranscriptomic count matrix.
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Figure 2. Simulation I. Number of true positive (TP) and false positive (FP) features identified with
DESeq2 for global (glo) and taxon-specific (tax) scaling: Boxplots represent variation over 100 runs of
the simulation.
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Figure 3. Simulation II. Number of true positive (TP) and false positive (FP) features identified with
DESeq2 for global (glo) and taxon-specific (tax) scaling. FP boxplots appear compressed due to outliers.
Organism order for FP is the same as for TP boxplots.
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FPR

Figure 4. ROC curves for Simulation II. Average curve for taxon-specific scaling (blue) vs. average
curve for global scaling (red) with false positive rate (FPR) on x-axis and true positive rate (TPR) on
y-axis. Dotted lines above and below indicate the standard deviation for each method. The average area
under curve (AUC) is 0.8776 for taxon-specific scaling and 0.8282 for global scaling.
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Figure 5. Simulation III. Number of true positive (TP) and false positive (FP) features identified with
DESeq2 for global (glo) and taxon-specific (tax) scaling. Boxplots represent variation over 100 runs of
the simulation.
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Figure 6. Simulation III: Log2 fold changes. Log2 fold changes of features for global normalization on
one example data set. Along x-axis, features (dots) are ordered according to five stacked organism
profiles, each with 1000 features of which the first 50 features are “upregulated”, and the next 50 features
are “downregulated”. Gray dots correspond to correctly detected NDE features, light green dots to
downregulated features which are missed and dark green dots to correctly identified downregulated DEF.
Light blue dots correspond to missed upregulated DEF and dark blue dots to correctly identified
upregulated DEF. Red dots mark DEF where global scaling leads to an incorrect direction. Purple dots
correspond to NDE features which are incorrectly identified as significant features.

18/27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/134650doi: bioRxiv preprint 

https://doi.org/10.1101/134650
http://creativecommons.org/licenses/by/4.0/


FPR

Figure 7. ROC curves for Simulation III. Average curve for taxon-specific scaling (blue) vs. average
curve for global scaling (red) with false positive rate (FPR) on x-axis and true positive rate (TPR) on
y-axis. Dotted lines above and below indicate the standard deviation for each method. The average area
under curve (AUC) is 0.8785 for taxon-specific scaling and 0.6369 for global scaling.
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Figure 8. Simulation IV. Number of DEF that show a particular mixed organism effect. Effects are
distinguished according to a) features not detected as DE in a single transcriptome but predicted as DE in
the mixture (boosting), b) features detected as DE in at least one transcriptome but predicted as NDE in
the mixture (cancellation), c) features identified as DE in at least one transcriptome and also predicted as
DE in the mixture and d) features not detected as DE for both, transcriptomes and mixture. Boxplots
represent variation over 100 runs of the simulation.
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Figure 9. Predicted DEF for real data. Number of significant features from taxon-specific scaling (“tax”,
right bar) and global scaling (“glo”, left bar) for different condition comparisons. Colors indicate shared
significant features with same direction of difference (grey), shared significant features with opposite
direction (red) and mutually exclusive features (purple) that are only found to be significant for one
scaling method. Smaller figure: histogram for predicted DEF according to the number of single organism
analyses that show a significant difference (x-axis). Upper part shows results for taxon-specific scaling
and lower part for global scaling. For example, a high bar at “0” means that many features are found to be
significant for the metatranscriptome which are not significant for any of the single transcriptome analyses
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Figure 10. Global scaling condition bias. Direction of global scaling “error”” in terms of the log2-ratio
of scaling factors from transcriptomic and global scaling. Results for different organisms in the
comparison of “day 13” vs. “day 27”. For symmetry of the color range the negative log2-ratio was
capped at -1.25, with error scores below that threshold showing the same color (blue). Samples 1-4 are
from condition A and samples 5-8 from condition B. For the species name abbreviations see Additional
File 2 : Tab. 1. D. longicatena DSM 13814 was not observed in that particular condition comparison.
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Figure 11. Single feature analysis (PF07554). Stacked bars in three parts (x-axis) show
organism-specific counts before scaling (left), after taxon-specific scaling (middle) and after
Taxon-specific and global scaling result in adjusted p-values 0.98 and 7.23−56, respectively.
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global scaling (right). Extra prediction of DEF by (mis)scaling of one organism with global scaling.
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Figure 12. Single feature analysis (PF07881). Stacked bars in three parts (x-axis) show
organism-specific counts before scaling (left), after taxon-specific scaling (middle) and after global
scaling (right). Loss of significance due to (mis)scaling of profiles from mainly one organism. Feature is
significant for organisms Org2, Org5 and Org11 in transcriptome analysis. Taxon-specific and global
scaling result in adjusted p-values 1.79e−3 and 0.66, respectively.
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Figure 13. Single feature analysis (PF00204). Stacked bars in three parts (x-axis) show
organism-specific counts before scaling (left), after taxon-specific scaling (middle) and after global
scaling (right). With boosting effect observable for both methods, i.e. feature is insignificant in
transcriptome analyses and significant for metatranscriptomic counts. For Org1 and Org6 the adjusted
p-values are close to 0.05 for single analysis, with taxon-specific scaling an adjusted p-value p = 0.005 is
achieved.
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Figure 14. Single feature analysis (PF01979). Stacked bars in three parts (x-axis) show
organism-specific counts before scaling (left), after taxon-specific scaling (middle) and after global
scaling (right). Feature is significant for transcriptome analysis but becomes insignificant for
metatranscriptomic counts (cancellation effect), i.e. the adjusted p-value with both scaling methods is
above 0.05.
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Figure 15. Single feature analysis (PF12667). Stacked bars in three parts (x-axis) show
organism-specific counts before scaling (left), after taxon-specific scaling (middle) and after global
scaling (right). Significant feature with opposite direction for the two scaling methods. Taxon-specific
and global scaling result in adjusted p-values 6.91e−5 and 1.33e−5, respectively. The log2 fold change for
condition A in comparison to condition B is 0.70 for taxon-specific scaling and -0.82 for global scaling.
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