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 18 

Abstract 19 

Under the influence of selection pressures imposed by natural environments, organisms 20 

maintain competitive fitness through underlying molecular evolution of individual genes across 21 

the genome. For molecular evolution, how multiple interdependent molecular constraints play a 22 

role in determination of fitness under different environmental conditions is largely unknown. 23 

Here, using Deep Mutational Scanning (DMS), we quantitated empirical fitness of ~2000 single 24 

site mutants of Gentamicin-resistant gene (GmR). This enabled a systematic investigation of 25 

effects of different physical and chemical environments on the fitness landscape of the gene. 26 

Molecular constraints of the fitness landscapes seem to bear differential strengths in an 27 

environment dependent manner. Among them, conformity of the identified directionalities of the 28 

environmental selection pressures with known effects of the environments on protein folding 29 

proves that along with substrate binding, protein stability is the common strong constraint of the 30 

fitness landscape. Our study thus provides mechanistic insights into the molecular constraints 31 

that allow accessibility of mutational fates in environment dependent manner. 32 

33 
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 34 

Author Summary 35 

Environmental conditions play a central role in both organismal adaptations and underlying 36 

molecular evolution. Understanding of environmental effects on evolution of genotype is still 37 

lacking a depth of mechanistic insights needed to assist much needed ability to forecast 38 

mutational fates. Here, we address this issue by culminating high throughput mutational 39 

scanning using deep sequencing. This approach allowed comprehensive mechanistic 40 

investigation of environmental effects on molecular evolution. We monitored effects of various 41 

physical and chemical environments onto single site mutants of model antibiotic resistant gene. 42 

Alongside, to get mechanistic understanding, we identified multiple molecular constraints which 43 

contribute to various degrees in determining the resulting survivabilities of mutants. Across all 44 

tested environments, we find that along with substrate binding, protein stability stands out as the 45 

common strong constraints. Remarkable direct dependence of the environmental fitness effects 46 

on the type of environmental alteration of protein folding further proves that protein stability is 47 

the major constraint of the gene. So, our findings reveal that under the influence of 48 

environmental conditions, mutational fates are channeled by various degrees of strengths of 49 

underlying molecular constraints. 50 

 51 

52 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/134569doi: bioRxiv preprint 

https://doi.org/10.1101/134569
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

 53 

Introduction 54 

Continuously fluctuating natural environments are known to a play central role in natural 55 

selection by constituting environment to phenotype interactions (E2P). Such interactions can 56 

predispose a particular genotype to alternative fates through diverted evolutionary trajectories 57 

(1–5). At lower scales, molecular evolution of cellular genes, underlie the emergent organismal 58 

adaptations. Cellular responses to the environmental conditions are well known to be often 59 

enabled by maintenance of normal proteostasis (6). Therefore, an investigation of whether and 60 

to how much extent protein folding and stability play a role in guiding mutational fates would be 61 

a key factor in the efforts to elucidate molecular level E2P interactions. 62 

Considering low rates of spontaneous mutations across variety of organisms (7), single site 63 

mutations provide a view of immediate next fates of a gene. DMS approach has enabled 64 

scanning of large scale of mutations in a high throughput manner (8,9); allowing comprehensive 65 

analysis of sequence-space of genes. Resultant Distributions of Fitness Effects (DFE) provide a 66 

continuous series of fitness effects ranging from strongly deleterious to beneficial which is a 67 

valuable resource for quantitative genetics (10). In recent years, exploration of environmental 68 

effects with a large-scale genotype to phenotype (G2P) data (11,12) has resulted in the 69 

identification of environment specific differential mutational sensitivity. However, qualitative and 70 

quantitative identification of determinants of fitness effects has been a challenging task (13). In 71 

addition to improve much needed mechanistic understanding (14) of E2P interactions, such 72 

information can potentially increase the robustness in current approaches of prediction of 73 

phenotypes from genotypic information(15,16). 74 

On a fitness landscape of a gene, levels of fitness of mutations may depend on number of 75 

molecular constraints which would shape the landscape. Here, to systematically investigate the 76 
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underlying mechanisms of E2P interactions, firstly, we monitored fitness landscapes of 77 

Gentamicin (Gm) resistant gene GmR (aminoglycoside 3-N-acetyltransferase (aacC1)) under 78 

different physical and chemical environmental conditions which can have differential fitness 79 

effects. Among physical environments, we studied effects of lower (300C) and elevated (420C) 80 

temperature than the normal growth temperature of E. coli i.e. 370C. Elevated temperature 81 

condition is known to limit foldability of temperature-sensitive mutants (17), hence its influence 82 

on the fitness landscape of GmR allows us to understand the implication of proteostasis on 83 

limiting the sequence space for this protein. Among chemical environments, we studied two 84 

model chemical chaperones - TMAO and glycerol which are known to assist cellular protein 85 

folding in vitro and in vivo, assist mutational buffering (18) and thermodynamically act on early 86 

refolding intermediate by non-identical mechanisms (19). 87 

In this study, we show that mutations may provide selective advantage or disadvantage 88 

depending on acting environmental conditions. Among multiple molecular constraints of fitness 89 

landscape of GmR, perturbation of stability is identified to be the universal strong constraint 90 

across all test environments. Except for the case of simultaneous action of multiple individual 91 

environments, the relative selection pressures conferred by physical and chemical environments 92 

are largely dependent on folding constraint and hence are predictable. For instance, elevated 93 

temperature imposes a negative selection pressure while chemical chaperones are found to 94 

exert mutational robustness (buffering effect). Collectively, through mutational scanning of an 95 

essential gene, this study uncovers the largely unclear role of environments in protein evolution 96 

and contributions of underlying molecular constraints in determining the mutational fates. 97 

98 
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 99 

Results 100 

Deep mutational scanning of GmR 101 

We implemented DMS method (8) to monitor survivabilities and empirical competitive fitness 102 

levels of individual mutants from a Single Site Mutation (SSM) library of GmR (18). For co-103 

culture bulk competitions, we used purifying selection i.e. Gm concentration of 12.5 μg/mL 104 

which is ~4 fold lower than the minimal inhibitory concentration (MIC) of E. coli (K-12) 105 

expressing wild type GmR while being higher than the MIC of the host system i.e. E. coli alone 106 

(S1 Fig 1A). While survivability of the antibiotic resistance is dosage dependent (S1 Fig 1B), use 107 

of a weaker Gm selection level allows assessment of  mutants with moderate catalytic 108 

advantage which would otherwise be lost because of higher likelihood of 'quick fix' outcomes 109 

(20). Note that when not otherwise mentioned, for the bulk competitions, 12.5 μg/mL Gm is 110 

used. Co-culture bulk competitions of mutants were carried out in two sets. One in presence of 111 

Gm selection (selected pool) and other in absence of Gm selection (unselected pool). At the 112 

end of the bulk competitions, ultra-deep sequencing of the amplicons of GmR allowed 113 

quantitation of counts of mutants survived at the end of each competition (Fig 1A). To 114 

understand E2P effects of different environments, co-culture bulk competitions were carried out 115 

under different test environmental conditions (Materials and Methods). 370C being the optimal 116 

growth temperature of E. coli, we simply refer it as the reference environment. When not 117 

otherwise noted, test environments would be compared against the reference environment 118 

(370C, 12.5 μg/mL Gm). 119 

Strong correlations between counts of the mutants from independent biological replicates of 120 

bulk competitions (S1 Fig 2) indicate low level of biological noise associated with experiments. 121 

Preferential enrichments i.e. log fold changes of the counts of the mutants in selected pool with 122 
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respect to that in unselected pool serve as proxies for competitive fitness of mutants. Next, we 123 

implement a strategy adopted in previous study on similar mutational scanning of antibiotic 124 

resistant gene (21), to classify statistically neutral mutations by applying a cutoff of µ±2σ (µ: 125 

mean, σ: standard deviation) obtained from fitness of unselected pool (S1 Fig 3). Accordingly, 126 

mutants were classified as relatively enriched (Fi>µ+2σ) and depleted (Fi<µ-2σ). Fitness levels 127 

of synonymous mutations across different environments are found to strongly correlate 128 

(Pearson’s r > 0.88, S1 Fig 4) with that fitness of synonymous mutations under reference 129 

environment (370C, 12.5 μg/mL Gm); thus diminishing the influence of codon bias associated 130 

with G2P interactions of GmR. Therefore, unless specified, in the subsequent analysis of 131 

mutational data, we primarily utilize non-synonymous mutants. This way, from a co-culture bulk 132 

competition under reference conditions (370C, 12.5 μg/mL Gm), we obtained empirical fitness of 133 

2004 non-synonymous mutants (n) (S1 Fig 5, S2 Table). Among them, 609 mutants are 134 

enriched, 262 mutants are depleted and 1133 are classified as statistically neutral (S1 Table1). 135 

We compared pairs of DFEs obtained for various test environments by a metric defined as a 136 

difference in average fitness scores of mutants between test and reference condition (∆F) which 137 

indicates the relative increase or decrease in fitness of surviving mutants in test condition with 138 

respect to reference environment. Additionally, number of mutants having significantly higher or 139 

lower fitness in test environment are measured (npos and nneg respectively). Here, to account for 140 

the inherent experimental and biological noise, a cutoff is assigned for defining significant 141 

increase or decrease in the fitness over the inherent dispersion within replicates (Materials and 142 

Methods). 143 

DFE of GmR obtained at 25 μg/mL Gm (370C) reveals a depletion of fitness with a skew 144 

towards the deleterious fitness levels as compared to DFE obtained at 12.5 μg/mL Gm (Fig 1B). 145 

The lowered average fitness (∆F = -0.38) is accompanied by lowered survival of mutants in this 146 

condition (∆n = -246). Such dosage dependent deleterious fitness effects are expected from 147 
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increased stringency for in vivo catalytic functionality and survivability of mutants which is 148 

consistent with previous reports on mutational scannings of other antibiotic resistant genes (21–149 

23). In terms of distribution of enriched and depleted mutants per position, mutations at sites 150 

with low evolutionary rate, such as binding sites, show depleted levels of fitness while mutations 151 

at sites with high evolutionary rate, specifically at N-terminal region, exhibit high fitness levels 152 

(S1 Fig 6). Collectively, dosage dependence and consistent trends with conservation scores 153 

support that the observed empirical fitness values are representatives of the in vivo 154 

functionalities of GmR mutants. This further allows us to ascribe empirically quantified fitness 155 

values to the in vivo functionalities of the mutants. 156 
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 157 

Fig 1. Deep mutational scanning of GmR. (A) Experimental strategy to monitor survivabilities 158 

and competitive fitness of GmR mutants (Materials and Methods). SSM library of GmR was 159 

subjected to co-culture bulk competition in different environments in presence of Gm selection 160 

(selected pool). An independent co-culture bulk competition in the absence of Gm selection 161 

(unselected pool) acts as a reference condition. Preferential enrichments in counts of mutants - 162 

measured via deep sequencing - in selected with respect to that unselected pool provides a 163 
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measures of the survivabilities and proxies for competitive fitness levels of mutants. (B) DFE 164 

obtained at stringent concentration of Gm i.e. 25μg/mL (370C) is compared to DFE obtained at 165 

12.5 μg/mL (370C). (C) Similarly, DFEs obtained under physical and chemical test environments 166 

and combinations of environments are compared to reference environmental condition (370C). 167 

Here, all the bulk competitions were carried out at purifying selection of 12.5 μg/mL Gm. Fi 168 

denotes fitness score. Histograms of DFEs are fitted by kernel density estimation. Heights of the 169 

DFEs are in scale with the frequencies of mutants. Dashed lines represent quartile values of the 170 

fitness per distribution. Level of significance is measured by two sided Wilcoxon signed-rank 171 

test. Relative selection pressure imposed by a test environment is with respect to control 172 

condition is measured in terms of difference between average fitness scores (∆F) and number 173 

of mutants with higher (npos) or lower (nneg) survivability than control environment. 174 

 175 

Environmental conditions induce variable fitness effects 176 

Using our experimental system, to understand E2P interactions, we monitored effects of sets of 177 

physical and chemical environments. In our study, low (300C) and elevated (420C) temperature 178 

conditions comprising a set of physical environments, while treatments of chemical chaperones 179 

TMAO and glycerol constitute a set of chemical environments. Physical environments especially 180 

elevated temperatures are well known to have limiting influence on the mutational tolerance 181 

(17). On the other hand, in case of chemical environments, solvent accessible surface area is 182 

known to be one of the strong predictor of protein evolution rate (24–26), suggesting that 183 

solvent-protein interactions are critical for the understanding of molecular evolution. In our 184 

study, we monitor effects of TMAO and glycerol which are known to act as chemical chaperones 185 

in assisting folding of proteins by non-identical mechanisms (19) as well as assisting buffering of 186 

genetic mutations (18).  187 
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We utilize prior information gained from growth kinetics of the model system i.e. wild type GmR 188 

harboring E. coli under different test environments to establish the strengths of selection 189 

pressures relative to reference environment. As compared to normal growth temperature of E. 190 

coli (370C), both lower (300C) and elevated temperatures (420C) show non-optimal growth 191 

(shown in S1 Fig 7A). At elevated temperature, the amplitude of the growth kinetics decreases 192 

by ~40%, while at low temperature there is more than two fold increase in the lag phase of the 193 

growth kinetics. Both the chemical environments evidently show to suboptimal growth rates (S1 194 

Fig 7B), especially decrease in the amplitude in presence of glycerol suggests a stronger 195 

selection pressure. 196 

Through DMS, DFEs obtained for all test environments show significant disparities as compared 197 

to reference environment i.e. 370C (Fig 1C, S1 Table1). Position-wise distributions of fitness 198 

reveal differential enrichment and depletion along the length of the gene across all test 199 

environments (S1 Fig8). Notably, survival of mutants under elevated temperature condition and 200 

environments involving elevated temperature condition is greatly lowered (S1 Table1) indicating 201 

deleterious effects of elevated temperature condition. Among environment specific DFEs, 202 

compared to reference environment, at low temperature, survival of a subpopulation of mutants 203 

is compromised (∆n = -141) while average fitness (∆F = 0.33) of survived mutants in the 204 

condition is increased. The increased average fitness is majorly due to compromised survival of 205 

the fraction of depleted mutants. As the natural host of GmR gene i.e. S. marscens requires 206 

lower growth temperature for optimal growth (27), the gene may have been evolutionary 207 

optimized to prefer lower temperatures thus exhibiting partial mutational robustness (npos = 40, 208 

nneg = 9). Elevated temperature, imposes drastic deleterious effects on the survivabilities of 209 

mutants (∆n = -637) accompanied by increased average fitness of survived mutants (∆F = 0.19). 210 

Lowered survivabilities are arguably due to protein misfolding (28) while because of prominent 211 

elimination of low fitness temperature sensitive mutants the average fitness of mutants is 212 
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increased. The survival of high fitness mutants under elevated temperature condition may have 213 

resulted due to stabilization to a particular trait such as higher thermal stability.  214 

Among chemical environments, both the chemical chaperones are found to exert mutational 215 

robustness as evident from retained survivabilities of mutants. In terms of fitness change, fitness 216 

gain is stronger in case of glycerol (∆F = 0.42) than TMAO (∆F = 0.21) (Fig1C). The mutational 217 

robustness supports the known mutational buffering as reported earlier (18). Notably, different 218 

sets of mutations are buffered by the two chemical environments (S2 Table) supporting known 219 

mechanistic difference in aiding protein folding (18,19). Further, at stringent Gm selection (25 220 

μg/mL), compared to minimal Gm selection, TMAO treatment is found to exert mutational 221 

robustness (S1 Fig 9A). Remarkably, glycerol treatment exerts mutational robustness compared 222 

stringent (S1 Fig 9A) as well as minimal Gm selection (S1 Fig 9B). Collectively, among 223 

individual treatment of environments, low temperature and chemical chaperones induce 224 

mutational robustness while, elevated temperature exert deleterious fitness effects. 225 

Fitness effects of combinations of environments  226 

Phenotypic effects of simultaneous action of multiple environments have been historically 227 

illusive to decipher (29). Using our experimental system, we set out to elucidate the effects of 228 

combinations of different sets of environments having prominent but contrasting effects i.e. 229 

elevated temperature and chemical chaperones. From growth kinetics of the model system, 230 

under combination of environments, it is apparent that TMAO is able to counteract the effects of 231 

elevated temperature while in case of treatment of glycerol, compared to growth kinetics at 232 

elevated temperature, the kinetics drastically slows down (S1 Fig 7C). Co-culture bulk 233 

competitions under simultaneous action of environmental conditions i.e. 420C + TMAO and 420C 234 

+ glycerol reveal drastic decrease in survivability of mutants. Interestingly, average fitness of 235 

mutants is in case of 420C + TMAO condition is higher than that for 420C + glycerol condition. 236 
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Contrasting effects of the combinations of environments are consistent with the low 237 

predictabilities fitness effects associate with simultaneous action of multiple environments. 238 

In order to deduce relative influence of individual environments in the combinations, we 239 

quantitated their selection metrics against individual constituent environments. Compared 240 

against 420C alone (Fig 2A), both 420C + TMAO and 420C + glycerol conditions show weaker 241 

differences (Fig 2A) than when compared against chemical environments (Fig 2B and C). This 242 

suggests that the effects of combinations of environments closely resemble to treatment of 243 

elevated temperature which has a strong influence in the combination. If considered as simple 244 

additive effects, for both the cases of combination of environments, the resultant difference in 245 

fitness do not seem to be a simple addition (Fig 2D and E). While addition of changes in fitness 246 

scores for the constituents environments weakly correlate with the fitness changes of 247 

combination of environments, among the two constituent chemical environments, glycerol 248 

treatment produces lower predictability in terms of the additive model (r=0.54) than TMAO 249 

(r=0.75). Collectively, while in terms of survivabilities of the mutants, elevated temperature has a 250 

strong influence, explaining the non-additive fitness effects would need mechanistic insights. 251 
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 252 

 253 

Fig 2. Selection strengths of combination of environments with respect to individual 254 

constituent environments. (A) In order to determine the relative selection strength of 255 

constituent elevated temperature condition in the combinations, DFEs of combination of 256 

environments i.e. 420C+TMAO and 420C+glycerol are compared against the DFE at 420C. 257 

Similarly, DFE obtained under 420C+TMAO condition is compared against TMAO condition (B) 258 

and DFE under 420C+ glycerol condition is compared against glycerol condition (C). Fi denotes 259 

fitness score. Histograms of DFEs are fitted by kernel density estimation. Heights of the DFEs 260 

are in scale with the frequencies of mutants. Dashed lines represent quartile values of the 261 

fitness per distribution. Level of significance is measured by two sided Wilcoxon signed-rank 262 

test. Relative selection pressure imposed by a test environment is with respect to control 263 

condition is measured in terms of difference between average fitness scores (∆F) and number 264 

of mutants with higher (npos) or lower (nneg) survivability than control environment. Correlations 265 

between change in fitness of mutants under combination of environments i.e. (D) 420C+TMAO 266 
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and (E) 420C+glycerol relative to reference environment with addition of fitness changes for 267 

constituent environments relative to reference environment. Dashed line denotes equal values 268 

of x and y variables. r is Pearson’s correlation coefficient. 269 

 270 

Molecular constraints of underlying E2P effects 271 

Fitness effects would also depend upon constraints of multiple aspects such as structural, 272 

folding and binding. Here, we used a set of molecular constraints describing multiple aspects of 273 

gene fitness (S3 Table). Apart from measure of perturbation of stability by mutations (∆∆G), we 274 

use residue depth as an additional feature representing folding component. Core residues are 275 

known to play central role in protein stability (30); so mutations at the core of protein would be 276 

less tolerated (lower fitness) than the ones at the surface of the protein. Other structural 277 

features such as distances from dimer interface, residue flexibilities (B-factor obtained by PDB 278 

structure) describe conformational constraints of the protein. Differences between physico-279 

chemical properties such as hydrophobicity (logP) and solvent accessibility of mutant and 280 

reference amino acids account for mutational perturbations of non-covalent interactions. 281 

Mutations near or at active site are more likely to have deleterious effects than mutations far 282 

from active site. Using this principle, mutational perturbations of ligand binding are accounted 283 

using a proxy of distance of residues of the protein from active site residue (D147) of the 284 

protein. Here, minimum distance between the atoms of the D147 and C-alpha atom of the 285 

residue is used to ensure maximum sensitivity. Conservation scores of the residues were 286 

included for accounting for culmination of structural, folding and binding constraints in the form 287 

of evolutionary rate per site. 288 

Correlations of fitness scores with multiple molecular features quantitated in terms of 289 

Spearman’s rank correlation coefficients (ρ) reveal distinct classification of molecular constraints 290 
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(Fig 3). Euclidian clustering along the axis of molecular features separates folding and binding 291 

constraints. Conservation scores, in particular, are best correlated with the fitness scores across 292 

different environments. Among negatively correlated molecular features, correlations with 293 

measures of protein stability estimates (ΔΔG) (31) and residue depth reveal that mutations with 294 

high stability perturbations or high residue depth show lower fitness and vice versa. 295 

Contrastingly, distances from sensitive active site and dimer interface of the protein are 296 

positively correlated with fitness scores. So mutations near active site or near dimer interface 297 

indeed show lower fitness. Other than top five molecular constraints, structural constraints such 298 

as residue flexibility, ∆(logP) per substitution and ∆(Solvent Accessible Surface Area) per 299 

substitution are mostly negatively but relatively weakly correlated to fitness scores across 300 

different environments. Overall, apart from conservation scores, folding and binding 301 

components stand out as the strongest structural predictors of the fitness effects across all 302 

environments; suggesting its major role in shaping the fitness landscape of GmR. 303 

  304 
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Fig 3. Differential strengths of molecular constraints underlying environmental fitness 305 

effects. Fitness scores obtained under different environmental conditions are correlated with a 306 

set of molecular features. Each locus in the heatmap indicates Spearman’s rank correlation 307 

coefficient between fitness scores of an environment (in columns) and a molecular feature (in 308 

rows). ρ is Spearman’s rank correlation coefficient and ∆n is difference between number of 309 

mutants survived in test environments with respect to reference environment (370C). Euclidean 310 

clustering along rows and columns is based on the Spearman’s rank correlation coefficients.  311 

 312 

Differential strengths of molecular determinants underlie environmental selection 313 

pressures  314 

Alongside the classification of molecular constraints, Euclidean clustering (Fig 3) along the axis 315 

of environments reveals a distinct classification which in turn aligns with their effects on 316 

survivabilities i.e. ∆n (Fig 3). Notably, correlation with conservation score is the highest in case 317 

of reference condition (370C) than other environments; implying that the mutational tolerances in 318 

this environment closely resemble to that existed in evolutionary history of the gene. This 319 

supports our primary assumption to regard 370C as a reference environment. Molecular features 320 

accounting for folding constraints i.e. ∆∆G and residue depth are best correlated in case of 321 

environments with conserved (least changed) survivabilities suggesting that the environments 322 

may induce allow survival of mutants with fitness changes that are aligned with the folding 323 

constraints of the protein. In other words, folding constraint is likely to be stronger in such 324 

environments than the environments with compromised survivabilities. Contrastingly, in terms of 325 

distance from active site and dimer interface, fitness scores of mutants from environments with 326 

lowered survivabilities are better correlated. This suggests that these factors particularly the 327 
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best correlated between the two i.e. distance from active site is potentially a major fitness 328 

constraint. 329 

Residue flexibility, interestingly, is negatively correlated with fitness scores of mutants from 330 

environments with lowered survivabilities and positively correlated with majority of rest of the 331 

environments. This implies that for environments that confer strongly deleterious fitness effects, 332 

survived mutants with higher fitness scores are more likely to have lower residue flexibility at 333 

mutation sites and vice versa. Elevated temperature conditions are known to promote 334 

thermostability by reducing the conformational plasticity of the proteins (32,33); thus explaining 335 

why residue flexibility emerges as a relatively strong constraint. Physico-chemical features of 336 

the substitutions i.e. ∆(logP) per substitution and ∆(Solvent Accessible Surface Area) per 337 

substitution, on the other hand, emerge as relatively weaker constraints; suggesting that 338 

perturbations of non-covalent interactions have relatively minor role in guiding fitness of 339 

mutants. 340 

Although conservation score and molecular features describing folding and binding are seem to 341 

be relatively strong constraints of fitness effects, individually, they are weakly correlated (ρ<0.4) 342 

with the fitness scores. Assuming that the uncertainty in estimations of structural and predicted 343 

features is considerably low and considering low experimental noise in determination of fitness 344 

scores of GmR mutants, the weak correlations are consistent with known non-monotonic 345 

relationship between fitness scores with biophysical constraints (13). Additionally, the weak 346 

correlations can be a result of complex interplay among multiple factors such as well known 347 

couplings between folding and binding components (34,35) or with other interdependent factors 348 

(36). This exemplifies the underlying dependence of mutational tolerance on the inherent 349 

structural constraints of the protein. Considering the possible complex interplay of set of 350 

molecular constraints, we specifically focus on the strongest structural constraints i.e. folding 351 

and binding for further contextualizing the environmental effects. 352 
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Dependence on folding and binding constraints 353 

Protein folding and ligand binding are known to act as spandrels underlying fitness effects 354 

(34,35). Corroboratively, hereby, we demonstrated that the two factors potentially play central 355 

role in guiding the fitness of GmR mutants. Based on these molecular features, next, we made 356 

four subsets of mutants with distinct combinations of folding and binding states: proper folding 357 

and binding (FB), compromised folding and proper binding (cFB), proper folding and 358 

compromised binding (FcB) and compromised folding and binding (cFcB). Here, cF and cB 359 

indicates compromised folding (high ∆∆G) and compromised binding (low distance from active 360 

site) respectively; while F and B denote non-compromised folding (high ∆∆G) and non-361 

compromised binding (high distance from active site) respectively. Median values of ∆∆G and 362 

distance from active site is used as threshold to bin the mutants in 4 equal sized subsets. For 363 

instance, subset cFcB represents mutants with ∆∆G values more than the median ∆∆G and 364 

distance from active site less than the median distances from active sites for all residues. Here, 365 

because the classification is based on values of molecular features inferred from crystal 366 

structure of GmR (37), to reduce the influence of the uncertainties involved, we exclude the 367 

mutations with values of molecular features falling between middle 20 percentiles from the 368 

classification. Notably, known important predictor of protein stability (30), residue depth is 369 

positively correlated with stability perturbation i.e. ∆∆G (ρ=0.44, S1 Fig 10). So mutants with 370 

high stability perturbation (cF) are highly likely to reside in the core regions of the protein while 371 

the ones low stability perturbation (F) are highly likely to lie on the surface of the protein. 372 

Next, we calculated subset wise metrics of selection i.e. ∆n and ∆F with respect to reference 373 

environment (370C, 12.5 µg/mL Gm). Firstly, in terms of survivability i.e. ∆n, except for 374 

treatments of chemical chaperones at 12.5 µg/mL Gm and treatment of glycerol at 25 µg/mL 375 

Gm, for rest all the environments, survivability of the mutants is drastically decreased (Fig 4A). 376 

Notably, for environments with decrease in levels of survivabilities, across subsets, ∆n seem to 377 
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show a pattern which is closely dependent on the binding and folding constraints. Survivability 378 

of the mutants seem to decrease in a following order FB > cFB > FcB > cFcB. The greater 379 

decrease in survivabilities with the compromise in folding and binding supports our primary 380 

basis for classification of mutants and indicates that fitness scores of mutants are closely 381 

dependent on folding and binding constraints. 382 

In terms of change in average fitness (∆F), with a clear exception of 370C Gm 25µg/mL, for 383 

majority of environments average fitness of surviving mutants is greater than reference 384 

environment (Fig 4B). Stringent Gm selection in addition to decreasing survivabilities of 385 

mutants, seem to lower the fitness levels of mutants. Among subsets, surviving mutants from 386 

subset FcB in particular have substantially lowered fitness scores potentially due increased 387 

dependence on substrate binding and catalytic activity because of increased level of purifying 388 

selection. Combination of environments too show lowered average fitness across subsets; 389 

effect of which is particularly exemplified in FcB subset. For other environments, the average 390 

fitness of surviving mutants seem to be increasing in the order FB < cFB < FcB < cFcB. This 391 

suggests that the compromise of folding and binding allow exclusive survival of mutants with 392 

fitness advantage.  While mutants at the core of the protein and near to active site (cFcB) have 393 

lowered survival, the survived mutants tend to possess relatively increased fitness advantage. 394 

Elevated temperature conditions is an interesting example wherein the survivability of mutants is 395 

drastically decreased (Fig 4A) and the environmental section only allowed survival of mutants 396 

with fitness advantage (Fig 4B).  Overall, FB subset is least affected while contrastingly cFcB is 397 

the most affected subset by across all environments. Mutational robustness by TMAO and 398 

glycerol is apparent by the retention survivability of mutants (Fig 4A) and increased fitness of 399 

the mutants (Fig 4B). In combination with elevated temperature, both survivability and average 400 

fitness of mutants is decreased. At stringent concentration of Gm, unlike TMAO treatment, 401 

glycerol treatment confers mutational robustness. Collectively, distinct effects based on 402 
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underlying influence of folding and binding states 403 

relative changes in average fitness404 

405 

Fig 4: Survivability and fitness406 

and binding. Subset-wise relative selections imposed by test environments with respect to 407 

reference environment i.e. 370C at 12.5µg/mL Gm408 

number of survived mutants (∆n) 409 

respect to that of reference environment410 

condition. Among subsets of mutants (FB, cFB, FcB and cFcB), F and B represent411 

low ∆∆G and high distance from active site respectively412 

with high ∆∆G and low distance from active site respectively.413 

 414 

Unique reshaping of environment specific fitness landscape415 

In order to better contextualize the contributions of 416 

visualized the fitness landscape of GmR by lining it with 417 

which evidently act as central constraints of 418 

folding and binding states reveal a unique pattern in survivabilities and 

relative changes in average fitness. 

itness of mutants show dependence on perturbation of 

wise relative selections imposed by test environments with respect to 

C at 12.5µg/mL Gm is measured in terms of (A) d

∆n) and (B) difference in average fitness of mutants (

environment. ‘All’ denotes all mutations in a given the

condition. Among subsets of mutants (FB, cFB, FcB and cFcB), F and B represent

∆∆G and high distance from active site respectively, whereas cF and cB represent mutants 

distance from active site respectively. 

Unique reshaping of environment specific fitness landscape 

In order to better contextualize the contributions of coupling between folding and binding

fitness landscape of GmR by lining it with the folding and binding components 

which evidently act as central constraints of mutational fitness (Fig 5A). So, r

21 

pattern in survivabilities and 

 

perturbation of folding 

wise relative selections imposed by test environments with respect to 

is measured in terms of (A) difference in 

verage fitness of mutants (∆F) with 

all mutations in a given the environmental 

condition. Among subsets of mutants (FB, cFB, FcB and cFcB), F and B represent mutants with 

hereas cF and cB represent mutants 

coupling between folding and binding, we 

folding and binding components 

So, regimes at the 
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corners of the fitness landscape represent the subsets of mutants with different states of folding 419 

and binding i.e. FB, cFB, FcB and cFcB.  420 

For reference environment, as expected from corresponding folding and binding states, we find 421 

that majority of high fitness mutations occupy FB regime whereas cFcB regime is majorly 422 

occupied by the deleterious mutants (Fig 5A). Notably, this pattern is conserved across all the 423 

test environments (Fig 5B-J). For reference environment, folding constraint produces a 424 

pronounced fitness cliff whereby mutants with above a threshold of ∆∆G (~2 kcal/mol) are highly 425 

likely to show deleterious fitness. In case of selection at stringent Gm concentration, 426 

corroborating with dosage dependent effects, mutations close to the active site show a 427 

prominent decrease in fitness (Fig 5B). Here, the imposed higher load of Gm, seem to generate 428 

additional pronounced fitness cliff along the binding axis. The substantial change in the fitness 429 

landscape as a function of selection levels is consistent with known central role of purifying 430 

selection in molecular evolution (21).  431 

Among physical environments, fitness landscape corresponding to low temperature condition 432 

show no peculiar regime wise distinction from that of reference environment (Fig 5C); capturing 433 

earlier noted weaker selection pressure (Fig 1C). Elevated temperature conditions - in 434 

accordance with imposed negative selection pressure - show selective survival of only mutants 435 

with enriched fitness associated with lowered survival of mutants from cFB and cFcB subsets 436 

(Fig 5D). Among chemical environments, mutational robustness imposed by TMAO and glycerol 437 

is evident in the form of close similarity with the fitness landscape of reference environment (Fig 438 

5E,G). At stringent Gm concentration, chemical chaperone seem to increase the fitness of 439 

survived mutants lying at cFcB regime (Fig 5F,H) which are otherwise highly depleted (Fig 5B). 440 

For combinations of environments, in alignment with in previous analyses, fitness landscapes 441 

(Fig 5I,J) show substantially decreased survivabilities and contrasting average fitness levels i.e. 442 

particularly at cFcB regime glycerol treatment depletes the fitness of mutants more intensely 443 
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than TMAO treatment. Overall, the distinct reshapings of the fitness landscapes under different 444 

environments reveal divergent fates and preferences for mutations of gene guided by differential 445 

strengths of key molecular constraints. 446 

 447 

Fig 5. Unique reshapings of environment specific fitness landscapes. Environment specific 448 

fitness effects are visualized in a form of a fitness landscapes (A-J) lined by folding (ΔΔG) and 449 

binding (distance from active site) components with Z-component of the plot scaled by fitness 450 
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levels (Fi). Contour surfaces are generated by nearest neighbor interpolation. Regimes at the 451 

corners of the fitness landscapes thus represent subsets of mutants based on folding and 452 

binding components i.e. FB, cFB, FcB and cFcB. Colors of all contour plots are scaled 453 

according to the colorbar associated with panel A.454 
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 455 

Discussion 456 

Large-scale elucidation of G2P interactions enabled by high throughput mutational scanning 457 

(38) has opened up new possibilities to comprehensively assess fundamental questions in 458 

molecular evolution. Here we investigate molecular level E2P interactions and their underlying 459 

mechanistic insights. Upon monitoring empirical fitness of a library of single site mutants of 460 

GmR, we characterized relative selection pressures imposed by sets of physical and chemical 461 

environments (Fig 1C). Central role of maintenance of cellular proteostasis is exemplified by the 462 

directionalities of the selection pressures which show a close dependence on the potential 463 

alterations of protein folding. This also supports the identification of stability perturbation and 464 

other protein folding related constraints as the one of the strongest constraints of fitness of GmR 465 

mutants.  466 

Through our data, as in case of mutational scanning’s of other antibiotic resistant genes 467 

(21,22,39), we find that the changes in fitness landscapes of GmR are dependent on purifying 468 

selection level i.e. the dosage of antibiotic (Fig 1B). Corroborating with earlier studies (11,12), 469 

we demonstrate that mutational landscapes monitored under different environmental alterations 470 

of proteostasis are significantly different than that monitored under reference environmental 471 

conditions (Fig 1C). Among such environments, elevated temperature (420C) exerts negative 472 

selection pressure underscoring known protein misfolding effects (28) and temperature 473 

sensitivity (17). Low temperature (300C) conditions impose weak mutational robustness 474 

conforming to known non-deleterious effects on protein folding (40). Chemical chaperones, too, 475 

conforming with their known favorable effects on protein folding (18,19), exert mutational 476 

robustness. This shows that fitness effects in each environment on fitness landscape for GmR is 477 

dependent on kind of environmental alteration of cellular protein folding. 478 
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Remarkably, simultaneous action of environments, specifically environments with oppositely 479 

directed selection pressures i.e. elevated temperature and chemical chaperones are found to 480 

lead to lower predictable outcomes which underscore similar observation reported previously 481 

(11). In our study, estimation of selection pressures against constituent individual environments 482 

revealed that strongest among the constituent environments guide the overall selection 483 

pressure in the combination (Fig 2A). However in terms of average fitness, they have 484 

contrasting (Fig 1C) and non-additive effects (Fig 2D and E). The contrasting effects of chemical 485 

chaperones exemplified at the elevated temperature conditions may be a result of inherent 486 

mechanistic differences in thermodynamic assistance to the folding of proteins i.e. entropic 487 

assistance by TMAO and enthalpic assistance by glycerol (19). Additionally, effects of chemical 488 

chaperones seem to be a function of growth temperature i.e. at 370C, supplementation of 489 

chemical chaperones lead to increase in average fitness of mutants while that at elevated 490 

temperature supplementation of chemical chaperones lead to decrease in average fitness of 491 

mutants. Such effects could be due to simultaneous selection for multiple traits which 492 

complicates the resultant selection pressure both qualitatively and quantitatively (29). 493 

Next, in order to gain mechanistic insights into of the evident E2P interactions, we 494 

contextualized them in terms of molecular constraints of the fitness landscapes. Correlations of 495 

fitness scores with molecular constraints reveal their differential strengths for each environment 496 

(Fig 3). Conservation score - accounting for evolutionary rate per site - is best correlated with 497 

the fitness scores across all the test environments; thus substantiating the biological 498 

significance of the obtained empirical fitness values. Next to conservation score, stability 499 

perturbation (∆∆G), and perturbation in binding (distance from active site) are best correlated 500 

with the fitness scores. Notably, however the strength of correlations are relatively weaker 501 

(ρ<0.4); suggesting possibility of non-monotonic relationships (13) and a complex interplay of 502 

interdependent constraints.  503 
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In our study, coupled factors, folding and binding constraints distinctly emerge as strong 504 

determinants of fitness effects; and through their spandrel like property (34). To understand the 505 

trade-off between the two, we visualized fitness of GmR mutants in a form of fitness landscape 506 

lined by folding (ΔΔG) and binding axes (distance from active site) (Fig 5A). Across all 507 

environments, corroborating with known trade-off in case of antibiotic resistant genes between 508 

folding and binding (35), combinations of folding and binding states seem to underlie resulting 509 

fitness effects. For instance, combination of weaker folding and binding constraints (FB) is 510 

associated with largely enriched fitness levels  while stringent folding and binding constraints 511 

(cFcB) are associated with deleterious fitness levels of mutants (Fig 5A). In case of reference 512 

environment, folding constraint introduces a prominent limiting fitness cliff (at ∆∆G=~2 kcal/mol). 513 

Whereas for test environments, although at variable degrees, common existence of limiting 514 

fitness cliffs along folding axis (Fig 5) underscores central role of protein folding and stability in 515 

molecular evolution (41). The universal dependence on folding component especially at minimal 516 

purifying selection also explains the conformity of evident fitness effects with known effects of 517 

environments on protein folding and proteostasis. Alongside, this study therefore reveals a 518 

unique possibility of controlling mutational fates based on environmental alteration of major 519 

constraints of fitness landscape. Notably, binding constraint imposes a limiting fitness cliff which 520 

is more pronounced at stringent concentration of Gm (25 µg/mL) (shown in Fig 5B) and from our 521 

data, it seems to be a feature dependent on level of purifying selection levels.  522 

Collectively, from a simple experimental system consisting of a conditionally essential gene with 523 

evidently weaker constraints imposed by events prior to protein expression, we identify 524 

environment dependent differential fitness of mutations which are dependent on relative 525 

strengths of underlying molecular constraints. Major implication of this information lies in the 526 

improvement of our understanding of influence of environmental conditions on G2P interactions 527 

at molecular level. Further, environmentally induced variability can potentially contribute a 528 
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requisite nuance in predictive models used for challenging task of inferring phenotypic outcomes 529 

from genomic variants(15,16); making them more robust. In future, such study of 530 

comprehensive environment specific fitness landscapes can be potentially extended to multiple 531 

mutations to monitor combined effects of epistasis - arguably the major predictive factor in 532 

molecular evolution (42), - more variety of environments as well as assessing fitness 533 

landscapes of multiple proteins in gene regulatory networks.534 
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Materials and Methods 535 

Minimal inhibitory concentration (MIC) assays 536 

Primary culture was prepared by inoculating (1% v/v) E. coli (K-12) in culture media (Luria-537 

Bertani (LB) broth (HiMedia) containing 100 g/mL, ampicilin (Sigma) and 0.1% Arabinose 538 

(Sigma)) and incubating at 370C for 18 hrs. The primary culture was inoculated at OD600 of 539 

0.025 in culture media containing a range of Gm (Sigma) concentrations from 6.25 to 400 g/mL 540 

with 2 fold increase at each increment (in 96-well storage plates). The assay plates were 541 

incubated at 370C for 18 hrs before measuring growth (OD600) in Tecan microwell plate reader. 542 

Growth assays 543 

E. coli (K-12) harboring pBAD-GmR is grown in culture media (LB media containing 100 g/mL 544 

and ampicilin 0.1% Arabinose) for ~18 hr. Primary culture was used as an inoculum (~0.01 OD) 545 

for the growth assays. Growth assays in different environments were carried out using 546 

Bioscreen C kinetic growth reader. The growth parameters were obtained by fitting absorbance 547 

data to five parameter Logistic equation. 548 

Co-culture bulk competition assay 549 

SSM library of GmR was constructed by PCR based site directed mutagenesis using primers 550 

with degenerate codons (NNK). For detailed information regarding the mutagenesis, please 551 

refer to Supporting methods described in Bandyopadhyay et al. (18). For co-culture bulk 552 

competition assays, the mutation library cloned in pBAD vector was transformed into E. coli (K-553 

12). Primary culture was prepared by inoculating pool of SSM library (1% v/v) in culture media 554 

(LB media containing 100 g/mL ampicilin and 0.1% Arabinose) at 370C for 18 hrs. A competition 555 

was carried out at the secondary culture where primary culture in inoculated at OD600 of 0.025 556 

and incubated for 18 hrs. Physical environmental conditions were created by carrying out the 557 
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bulk competitions at 300C (low temperature) or 420C (elevated temperature). Chemical 558 

environmental conditions were created by supplementing either TMAO (250mM) or glycerol 559 

(250mM) in the culture media of competition assay. Biological replicates were made by carrying 560 

out independent co-culture bulk competitions of the mutant libraries. For measuring fitness of 561 

mutants in a particular environmental condition, bulk competition under Gm selection (selected 562 

pool) (as shown in Fig 1A) was carried out. An independent bulk competition was carried out at 563 

370C in the absence of Gm (unselected pool) which serves as a reference for calculating 564 

preferential enrichments.  565 

Deep sequencing 566 

At the end of bulk competition assays, cells are pelleted and plasmid is purified. Amplicons were 567 

generated by a short PCR (initial denaturation: 95ºC for 3 min, denaturation: 95ºC for 1 min, 568 

annealing: 60ºC for 15 sec, extension: 72ºC for 1 min, final extension:  72ºC for 10 min) using 569 

high fidelity KAPA HiFi DNA polymerase (cat. no. KK2601). High template concentration (1 570 

ng/μl) and 20 cycles were used to reduce potential PCR bias. Multiplexing was carried out using 571 

flanking barcoded primers (4 forward, 4 reverse, sequences in S1 Table 2). Amplicons of 572 

barcoded samples were grouped in equimolar concentration and gel purified. A dual index 573 

library for each such set was prepared using Truseq PCR-free DNA HT kit (Illumina Inc. Cat no. 574 

F-121-3003) and sequenced using paired end (300 X 2) chemistry on Illumina Miseq platform. 575 

Raw sequencing data is available upon request. 576 

Estimation of fitness scores from deep sequencing data 577 

Analysis of sequencing data was carried out by using dms2dfe (43) - a comprehensive analysis 578 

pipeline exclusively designed for analysis of deep mutational scanning data. Through dms2dfe 579 

workflow, output files from the sequencer (.fastq) were demultiplexed using ana0_fastq2dplx 580 

module of dms2dfe. Average read depth of each demultiplexed sample was ~1X105. Next, 581 
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though dms2dfe's modules namely ana0_fastq2sbam, sequence alignment was carried out 582 

using Bowtie2 (44) followed by variant calling through ana1_sam2mutmat module which utilizes 583 

pysam libraries (45). A variant is called only if average Q-score of the read and that of the 584 

mutated codon is more than 30. Additionally a cut off of 3 reads per variants is used to filter out 585 

anomalous low counts. As a result a codon level mutation matrix of counts of mutations is 586 

generated. Codon level mutation matrix is then translated to amino acid level (based on the 587 

codon usage bias of the E. coli). For each experimental condition, counts of ~2000 individual 588 

mutants were quantified (S2 Table). Raw sequencing data is available at Sequence Read 589 

Archive (SRA) as a BioProject: PRJNA384918. 590 

Through ana2_mutmat2fit module of dms2dfe, counts of mutants are first normalized by the 591 

depth of sequencing at each position of the gene. Then preferential enrichments which are log 592 

(base 2) fold change of counts of the mutants in pool selected in presence of Gm against 593 

unselected (0 µg/mL Gm) reference pool are estimated. Here, preferential enrichment of a 594 

mutant serves as a proxy for its relative fitness and hence we simply refer it as ‘fitness’. 595 

Alongside significance levels of the preferential enrichments are obtained by Wald test through 596 

DeSeq2 workflow (46) (S2 Table). 597 

Classification of mutants based on comparison of DFEs 598 

In order to assess the difference in fitness scores in a given comparison of DFEs of two 599 

environments, we assigned a statistical threshold to reduce the influence of experimental and 600 

biological noise. The mutants with higher fitness scores in test environments than control 601 

environment are classified as ‘positive’ and while mutants with lower fitness scores in test 602 

environments than control environment are classified as ‘negative’. We use replicates of test 603 

and control environments to get thresholds of difference in fitness scores such that the 604 

differences in fitness scores between the environments (‘signal’) is greater than the differences 605 
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within the replicates (‘noise’). From difference between fitness scores of replicates, two 606 

distributions corresponding to replicates of test and control environment are obtained. µtest and 607 

µcontrol are means and σtest and σcontrol are standard deviations of such distributions for test and 608 

control environments respectively. So, the thresholds to segment the mutations into ‘positive’ or 609 

’negative’ is determined to be equal to  
��������������

�
± 2 ∗ �

�����
� ���������

�

�
 . Number of mutants 610 

undergoing positive effects is denoted as npos, while number of mutants with negative effects is 611 

denoted as nneg. 612 

Molecular features of GmR 613 

Mutant stability perturbations (∆∆G) are predicted by PoPMusic (31) server. Conservation score 614 

is acquired from ConSurf (7) server. MSMS libraries (47) were used for calculations of residue 615 

depth from surface of protein. Distances between atoms of GmR are measured using various 616 

modules of Biopython package (48). Physico-chemical properties of the amino acids such as 617 

logP and pI were retrieved from PubChem (49) and ChemAxon (http://www.chemaxon.com). 618 

Molecular features of mutations used in the study are included in S3 Table. 619 

620 
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