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Abstract

Gene expression data, such as those generated by next generation sequencing technolo-
gies (RNA-seq), are of an inherently relative nature: the total number of sequenced
reads has no biological meaning. This issue is most often addressed with various nor-
malization techniques which all face the same problem: once information about the
total mRNA content of the origin cells is lost, it cannot be recovered by mere technical
means. Additional knowledge, in the form of an unchanged reference, is necessary;
however, this reference can usually only be estimated. Here we propose a novel method
where sample normalization is unnecessary, but important insights can be obtained
nevertheless. Instead of trying to recover absolute abundances, our method is entirely
based on ratios, so normalization factors cancel by default. Although the differential
expression of individual genes cannot be recovered this way, the ratios themselves can
be differentially expressed (even when their constituents are not). Yet, most current
analyses are blind to these cases, while our approach reveals them directly. Specifically,
we show how the differential expression of gene ratios can be formalized by decompos-
ing log-ratio variance (LRV) and deriving intuitive statistics from it. Although small
LRVs have been used to detect proportional genes in gene expression data before, we
focus here on the change in proportionality factors between groups of samples (e.g.
tissue-specific proportionality). For this, we propose a statistic that is equivalent to
the squared t-statistic of one-way ANOVA, but for gene ratios. In doing so, we show
how precision weights can be incorporated to account for the peculiarities of count
data, and, moreover, how a moderated statistic can be derived in the same way as
the one following from a hierarchical model for individual genes. We also discuss ap-
proaches to deal with zero counts, deriving an expression of our statistic that is able
to incorporate them. In providing a detailed analysis of the connections between the
differential expression of genes and the differential proportionality of pairs, we facilitate
a clear interpretation of new concepts. The proposed framework is applied to a data
set from GTEx consisting of 98 samples from the cerebellum and cortex, with selected
examples shown. An R package containing a computationally efficient implementation
of the approach is in preparation and will be released shortly as an addendum to the
propr package.

Key words: Differential gene expression, sample normalization, proportionality,
count ratios, moderated statistics, covariance regularization, count zeros.
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1 Introduction

Normalization techniques for transcriptome sequencing data continues to be of high interest to
the data analysis community (e.g. see (Dillies et al., 2013) for a review and (Lun, A. et al., 2016)
for a recent example in single-cell RNA-seq). For sample normalization between entirely different
conditions, however, ever more sophisticated techniques cannot close the knowledge gap that is
of a principal nature: the total mRNA content of the cells of origin is unknown and can only be
obtained with an appropriate ‘absolute’ technique.

It has been argued that normalizations can be avoided by performing a log-ratio transformation
of the data (Fernandes et al, 2013; Lovell et al., 2015). Such data transformations, however,
depend on the reference that is used. The danger here is that the resulting transformed data is
ultimately interpreted in a gene-wise fashion. Interpreting log-ratio transformed expression data
as referring to gene abundances (instead of ratios with respect to a given reference) runs into the
exact same problems as using normalizations (Erb and Notredame, 2016). It effectively means that
the log-ratio transformation is seen as a normalization (that has, as it were, an additional aura of
technical sophistication). The only way out of this dilemma seems to be to let go of the gene-wise
perspective entirely and instead consider ratios as the basic objects of interest. Although some
information will remain hidden this way (such as the true differential gene expression between
absolute abundances), the remaining signal will be inherently unbiased.

Here we propose a formal framework for understanding differential ratio expression, a change in the
ratio of abundances between experimental groups. In doing so, we show that techniques developed
for the analysis of the differential expression of genes (e.g. methods known from the limma/voom
approach (Smyth, 2004; Smyth, 2005; Law et al., 2014) apply to the analysis of differential ratios
as well. This seems intuitive when considering gene ratios as depicted in Figure 1D: an identical
picture could be obtained using read counts of a differentially expressed gene instead of gene ratios
as shown. However, the interpretation of differential ratios differs considerably.

First, we must consider what it means for a gene ratio to remain unchanged across all sample data.
The answer is that the two genes change in the same way (or otherwise remain both unchanged).
Figure 1A shows this case in a scatter plot of the read counts for two genes (a splicing factor
and a polymerase subunit). Note that although the gene ratio may remain the same, the genes
themselves could have joint differential expression. Such gene-wise differential expression is not
detected by the ratio approach: although the two genes appear differentially expressed between the
tissues, their approximately constant ratio, as shown in Figure 1B, does not reveal this. However,
without knowing absolute mRNA abundances, genes may appear differentially expressed only as
an artifact of their relative nature.

Second, we must consider what it means for a gene ratio to differ between experimental groups.
Figures 1C and 1D shows an example of tissue-specific gene ratios. Here, the two genes (the same
splicing factor as before and a kinase) are correlated in both tissues (with a similar strength of
correlation), but with different slopes. This means their proportionality factor is tissue-specific (i.e.
they have differential proportionality). In terms of biochemistry, this could indicate a change in
the stoichiometry of the protein products resulting from these mRNAs. Preliminary GO-category
enrichment analyses support this view, showing that differentially proportional pairs often contain
genes that form protein complexes like those involved in transcription or ribosomal activity.

Current standard methods are not tailored to infer differentially proportional pairs (c.f., Figure 3),
although a special class of them, involving receptor subunits in the human brain, has been found
by considering time-dependent correlations (Bar-Shira et al., 2015). One method, differential
correlation (Tesson et al., 2010), is concerned with differential correlation coefficients, but not
with the differential slopes of linear relationships. Importantly, current methods always include
a normalization step that–in the best case scenario–introduces extra noise, thus reducing efficacy
compared with a method that picks up such signals directly.
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Figure 1: Constant and changing ratios across 98 samples from two tissues: (A) Scatter plot of
two genes having an approximately constant read count ratio across all samples (i.e. proportional
genes). (B) Ratio plot of the same two genes as in panel A. Although panel A suggests their
differential expression, ratios are unable to reveal it. (C) Example of differentially proportional
genes. Their correlation appears to be about equally strong in both tissues, but the slope of their
linear relationship changes between the tissues. (D) Ratio plot of the same two genes as in panel
C. The tissue-specific proportionality factors can be detected clearly, and the picture suggests that
conventional methods of differential gene expression can be applied to ratios as well.
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2 Methods and Results

2.1 Simple statistics for differential proportionality

We start by introducing a short-hand notation which allows us to denote projections of the log-
ratios of two vectors x,y having n components (e.g. a gene or transcript pair) onto a subset of size
k:

Lx,y
1,...,k :=

(
log

x1

y1
, . . . , log

xk
yk

)
. (1)

Equivalently, the log-ratio mean (LRM) and variance (LRV) evaluated on this subset are denoted
by E(Lx,y

1,...,k) and var(Lx,y
1,...,k) respectively. Let us now assume we have a natural partition of our

n samples into two subsets (conditions, or tissues) of experimental replicates of sizes k and n− k.
To avoid clutter, we drop x,y from the notation in the following equation. It is well known that
variance evaluates to

var(L1,...,n) = E(L2
1,...,n)− E2(L1,...,n)

=
kE(L2

1,...,k) + (n− k)E(L2
k+1,...,n)

n
− (kE(L1,...,k) + (n− k)E(Lk+1,...,n))

2

n2

=
kE2(L1,...,k) + (n− k)E2(Lk+1,...,n)

n
+
kvar(L1,...,k) + (n− k)var(Lk+1,...,n)

n

− (kE(L1,...,k) + (n− k)E(Lk+1,...,n))
2

n2

=
k(n− k)

n2
(E(L1,...,k)− E(Lk+1,...,n))

2
+
kvar(L1,...,k) + (n− k)var(Lk+1,...,n)

n
. (2)

This is the well-known decomposition into between-group variance (first term) and within-group
variance (second term) known from analysis of variance (ANOVA). Note that all variances through-
out the text are defined as the biased estimators (so the sum of squares are divided by k rather
than k−1, with k the number of summands). As will be seen from the discussion below, differential
proportionality can be studied relative to LRV and and there is no need for evaluation of the total
size of LRV (which is a problem when studying proportionality across all the samples). If we divide
(2) by var(L1,...,n), we obtain as summands the various proportions of (weighted) group variances
and of the between-group variance to the overall variance. For illustration, this is visualized as
a ternary diagram in Figure 2A. The proportion of within-group variance with respect to overall
variance is thus a function of the three LRVs:

ϑ(x,y) =
kvar Lx,y

1,...,k + (n− k)var Lx,y
k+1,...,n

nvar Lx,y
1,...,n

. (3)

Conveniently, ϑ is a number between zero and one. When approaching zero it indicates that
the total LRV is explained by the squared difference in group LRMs (Fig. 2B). A large enough
difference means that scatter plots of y vs. x will have different slopes depending on the condition
the samples come from. This case is thus characterized by tissue-specific proportionality factors
(or group LRMs). We call this type of differential proportionality disjointed proportionality here.

We can use ϑ for testing this property on our vector pairs and evaluate its significance using a
simple permutation test for an estimate of the false discovery rate (FDR). Alternatively, a classical
test-statistic known from one-way ANOVA with two groups is the squared t-statistic F . It is
related to ϑ by

F = (n− 2)
(1− ϑ)

ϑ
. (4)

This statistic can be used to do a classical F -test of the null hypothesis of equal group (population)
LRMs under standard ANOVA assumptions. Note that regardless of the statistic used, multiple
testing corrections are especially important in the ratio context due to the large number of gene
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Figure 2: Decomposition of log-ratio variance into (weighted) group variances and between-group
variance shown in ternary diagrams. Data from our example from GTEx (group 1 cerebellum,
group 2 cortex) are shown. For better visibility, a subset of 10,000 randomly sampled gene pairs
were selected. (A): The 10,000 dots corresponding to LRVs of each gene pair. (B): Gene pairs
fulfilling ϑ < 0.5 (disjointed proportionality). (C): Gene pairs fulfilling ϑe < 0.2 (emergent propor-
tionality). (D): Gene pairs fulfilling ϑe > 0.7. Such cut-offs from below induce a cut-off on ϑ and
an additional restriction on the difference between weighted group variances.
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pairs that get tested. These can be efficiently obtained by estimating the FDR, such as by using
the plug-in estimate from a permutation procedure (see e.g. Hastie et al. 2013).

We have seen that disjointed proportionality describes pairs where between-group variance consti-
tutes the major part of their LRV. Another type of differential proportionality can be defined for
those pairs where one of the group LRVs dominates the total LRV. A scatter of y vs. x will then
show proportionality for samples in one condition but no correlation for the other condition. We
will call this type of proportionality emergent to distinguish it from disjointed proportionality. In
complete analogy to the definition of ϑ, from (2) we get

ϑ1(x,y) =
nvar Lx,y

1,...,n − kvar Lx,y
1,...,k

nvar Lx,y
1,...,n

, (5)

as the proportion of the sum of between-group variance and the LRV of group 2 to the total LRV.
Small values of ϑ1 indicate that the LRV of group 1 constitutes the major part of the total LRV,
which is our defining feature of emergent proportionality in group 2. A convenient measure for
detecting emergent proportionality regardless of group can be defined as

ϑe(x,y) = 1−
max

(
kvar Lx,y

1,...,k, (n− k)var Lx,y
k+1,...,n

)
nvar Lx,y

1,...,n

, (6)

of which a cut-off from above will give us the a set of pairs that are proportional in just one of
the two conditions (Fig. 2C). Let us now look at the relationship between ϑe and ϑ. Note that we
have

ϑe = 1− ϑ+
min (kvar L1,...,k, (n− k)var Lk+1,...,n)

nvar L1,...,n
. (7)

It follows that
1− ϑ ≤ ϑe ≤ 1− ϑ/2, (8)

with the equality 1 − ϑ = ϑe holding if one of the group LRVs vanishes and ϑe = 1 − ϑ/2 in the
case of equality of weighted group LRVs kvar L1,...,k = (n− k)var Lk+1,...,n. It transpires that ϑe

can be used to study both types of differential proportionality since large values of it enforce small
ϑ. For this, a second cut-off on ϑe, this time from below, needs to be determined. However, note
that a cut-off ϑe > C would enforce a somewhat stricter definition on disjointed proportionality,
where the induced cut-off ϑ < 2(1−C) can only be attained for equality of weighted group LRVs,
a condition that is relaxed when going further down with ϑ. In fact, cut-offs from below on ϑe

cut the upper corner of the ternary diagram with two lines that yield a diamond shape as opposed
to the triangle that results from a cut-off on ϑ (Fig. 2D). Thus ϑe allows for better control of the
correlation within the groups. This can be useful when filtering out those differentially proportional
pairs that consist of genes having differential expression but which are not proportional within the
groups. This case will be discussed in section 2.4.

2.2 Introducing precision weights

RNA-seq data show a pronounced mean-variance relationship that leads to biases when linear
models are fit to them. However, log-ratios do not show the mean-variance relationship of the
counts directly. The problem here is rather that we should have less confidence in ratios when
they involve low counts, as their precision will be lower due to the mean-variance relationship. It
has been suggested that an incorporation of the mean-variance relationship via precision weights
makes count data accessible for linear modelling (Law et al., 2014) and weighting in general leads
to better benchmark performance (Liu et al., 2015). Here we need weights for log-ratios rather
than log counts. We can combine the weights ω(xi) for read counts of gene x in condition i into a
ratio weight by simply multiplying the weights of both genes involved. Let us denote these weights
by

ωx,y
i = ω(xi)ω(yi). (9)
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The overall weight of a given ratio for the set of samples 1, . . . , k1 from condition 1 is then

Ωx,y
1 =

k1∑
i=1

ωx,y
i . (10)

Let us now drop the upper indices for the gene pair. The weighted log-ratio means and variances
for a given gene pair in condition 1 will then be

Eω(L1,...,k1) =
1

Ω1

k1∑
i=1

ωilog
xi
yi
, (11)

varω(L1,...,k1) =
1

Ω1

k1∑
i=1

ωi

(
log

xi
yi
− Eω(L1,...,k1)

)2

. (12)

The decomposition of weighted log-ratio variance goes through as before, and a weighted statistic

ϑω =
Ω1varω L1,...,k + Ω2varω Lk1+1,...,k1+k2

(Ω1 + Ω2)varω L1,...,k1+k2

(13)

can be defined in analogy to (3). Here we were just interested in the sums, not the actual variances.
Note that we can define a unbiased weighted variance estimator specifically for reliability weights.
For this, the prefactor in (12) changes from 1/Ω1 to 1/(Ω1 −

∑
ω2
i /Ω1).

2.3 A moderated statistic for ratios

It has been shown that similarities in expression between the genes can be exploited by assuming an
underlying prior distributions of within-group variances and log-fold changes in a gene-expression
matrix (Lönnstedt and Speed, 2001; Smyth, 2004). The resulting hierarchical model can be used to
derive a moderated t-statistic whose parameters can be estimated from the data in empirical-Bayes
fashion. The moderated statistic has been shown to be much more powerful than the classical t-
statistic in simulation-based benchmarks, see (McCarthy and Smyth, 2009). The moderation
effectively adds a small amount to the within-group variance of a gene and could thus be understood
as the regularization of a covariance matrix, see e.g. (Witten and Tibshirani, 2009). Here we show
how a moderated statistic can be derived for ratios starting from the hierarchical model of their
constituent genes.

First note that the information contained in all pairwise ratios is highly redundant, and only the
ratios with respect to a given reference (in form of one specific gene or the geometric mean of all
the genes) are necessary to recover all the variation in the data set (Aitchison, 2003). If we denote
this reference by z, the following equation shows how an arbitrary log-ratio variance can be written
in terms of the covariance matrix of ratios with respect to this reference:

var Lx,y
1,...,n = var Lx,z

1,...,n + var Ly,z
1,...,n − 2cov(Lx,z

1,...,n,L
y,z
1,...,n). (14)

Retaining the subset of ratios with respect to a reference is known as log-ratio transformation (of
the alr type in case z is a gene, of the clr type in case z is the geometric mean of the genes). If
our reference is unchanged across samples, the transformation results in a normalization of the
gene expressions, and the resulting ratios are proportional to absolute expressions. For these kind
of data the hierarchical model was derived in (Lönnstedt and Speed, 2001; Smyth, 2004). Note,
however, that here we do not require any particular properties of the reference. Let us denote the
pooled within-group variance of the log-ratios with reference z by

s2
x,z =

kvar Lx,z
1,...,k + (n− k)var Lx,z

k+1,...,n

n
. (15)
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Given the hierarchical model, it was shown that the posterior mean of the inverse population
variance σ−2

x,z, given the sample variance (15), has the form

s̃−2
x,z =

dz + n

dzs2
z + ns2

x,z

, (16)

where dz and s2
z are the parameters of the Gamma distribution serving as a prior for the variance

(15). We will not go into more detail of the underlying Bayesian model here but just mention
that a moderated t-statistic can be obtained by replacing s2

x,z in the original t-statistic by s̃2
x,z. In

the following we use (16) as a justification for moderating (adding a small amount to) the within-
group variances. This can also be seen as a kind of regularization of the covariance matrix of the
log-ratios that have z as a reference. From (16) we can now derive moderated versions of F and ϑ
for all the gene ratios.

Let us denote by F ′ the ratio of between-group over within-group LRV for a given gene pair. F ′

is the same as F in Equation (4) without the factor (n− 2). We have

F ′(x,y) =
k(n− k)

n2

(
E(Lx,y

1,...,k)− E(Lx,y
k+1,...,n)

)2

s2
x,y

. (17)

Applying the relationship (14) on both groups of samples separately, the pooled within-group
variance can be written as

s2
x,y =

k

n

(
var Lx,z

1,...,k + var Ly,z
1,...,k − 2cov(Lx,z

1,...,k,L
y,z
1,...,k)

)
+

n− k
n

(
var Lx,z

k+1,...,n + var Ly,z
k+1,...,n − 2cov(Lx,z

k+1,...,n,L
y,z
k+1,...,n)

)
= s2

x,z + s2
y,z − 2czx,y, (18)

where the within-group covariance czx,y, with respect to the reference z, is defined by

czx,y =
k

n
cov(Lx,z

1,...,k,L
y,z
1,...,k) +

n− k
n

cov(Lx,z
k+1,...,n,L

y,z
k+1,...,n). (19)

Returning to (17), we thus have

F ′(x,y) = K

(
E(Lx,y

1,...,k)− E(Lx,y
k+1,...,n)

)2

s2
x,z + s2

y,z − 2czx,y
, (20)

where we also used the short-hand expression

K =
k(n− k)

n2
. (21)

The idea is now to replace the terms s2
x,z + s2

y,z by their moderated versions derived from (16).
We find

s̃2
x,z + s̃2

y,z =
2dzs

2
z + n(s2

x,z + s2
y,z)

dz + n
. (22)

Inserting this into (20) yields a moderated F ′:

F̃ ′z(x,y) =
K
(
E(Lx,y

1,...,k)− E(Lx,y
k+1,...,n)

)2

2dzs2z+n(s2x,z+s2y,z)

dz+n − 2czx,y

. (23)

The parameters dz and s2
z can be determined, e.g. using the limma package (Smyth, 2005). Whether

the dependence on the choice of z is of any practical importance needs to be investigated empirically.
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From F̃ ′ we get immediately the corresponding expressions for F̃ and ϑ̃ by applying (4):

F̃ = F̃ ′(n− 2), (24)

ϑ̃ =
1

1 + F̃ ′
. (25)

Although we did not use the weighted variances here for clarity and to ease the notational burden,
it is straightforward to derive weighted versions of the moderated statistics applying the precision
weights described in the previous section.

2.4 Relation to differential expression

If we assume that we know the identity of an unchanged reference z, it provides us with an ideal
normalization (as mentioned in the previous section). The statistic ϑ(x, z) could then be used as
a measure for the amount of differential expression of gene x, whose log-fold change would be

bx = E(Lx,z
1,...,k)− E(Lx,z

k+1,...,n). (26)

We will now show that if we have two sufficiently strong differentially expressed genes whose log-
fold changes have opposite signs, then they will form a differentially proportional pair. Hence,
no within-group correlations of the genes are required in this case for their ϑ to be small1. More
formally, we assume

ϑ(x, z) ≤ c, (27)

ϑ(y, z) ≤ c, (28)

bxby < 0. (29)

The log-ratio change of the gene pair x,y is

E(Lx,y
1,...,k)− E(Lx,y

k+1,...,n)

= E(Lx,z
1,...,k)− E(Ly,z

1,...,k)− E(Lx,z
k+1,...,n) + E(Ly,z

k+1,...,n) = bx − by. (30)

Using this and (20), we obtain

F ′(x,y) =
K (bx − by)

2

s2
x,z + s2

y,z − 2czx,y
. (31)

Since correlation coefficients have absolute values below one and the arithmetic mean bounds the
geometric mean, we have

s2
x,z + s2

y,z − 2czx,y ≤ 2
(
s2
x,z + s2

y,z

)
. (32)

Now (17) implies that

s2
x,z =

Kb2x
F ′(x, z)

=
Kb2xϑ(x, z)

1− ϑ(x, z)
≤ Kb2xc

1− c
, (33)

with the bound following from our condition (27), and for s2
y,z from (28). We can now return to

(31) to bound

F ′(x,y) ≥ K (bx − by)
2

2K c
1−c

(
b2x + b2y

) =
b2x + b2y − 2bxby

2 c
1−c

(
b2x + b2y

) ≥ 1− c
2c

, (34)

with the last bound following from (29). We thus find that (27)-(29) imply differential proportion-
ality in the sense that

ϑ(x,y) ≤ 2

1 + 1/c
. (35)

1This means there are at least two kinds of pairs with small ϑ: the ones where genes are proportional within
the two groups of samples, and those where both genes are unrelated but differentially expressed individually. The
latter have a larger within-group LRV and thus need to compensate with a larger overall LRV.
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Figure 3: Differential expression of individual genes is not necessary for the pair to be differentially
proportional: (A) Read counts plotted against the sample index for the gene PSMD7 (a proteasome
subunit). Read counts do not indicate any apparent differences between tissues. (B) A similar
situation as in panel A, but for a nuclear receptor binding protein. (C) The ratio plot of the genes
from panels A and B. There is a clear difference in the gene ratios, although the individual read
counts show no apparent differential expression.
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In a similar fashion, more complicated relationships could be derived where the conditions (28)
and (29) get relaxed. Instead, we will now look at the reversed question: What can we know about
differential expression of the individual genes when the pair is differentially proportional? The
only assumption we make is

ϑ(x,y) ≤ C. (36)

Starting from (31), we have

1− C
C

≤ F ′(x,y) =
K (bx − by)

2

s2
x,y

=

(√
s2
x,z

1−ϑ(x,z)
ϑ(x,z) −

√
s2
y,z

1−ϑ(y,z)
ϑ(y,z)

)2

s2
x,y

, (37)

where the last equality was obtained rewriting the second equality in (33). The ϑ(x, z) for which
we get the smallest value of F ′ permitted by C (i.e. where the equality holds) is obtained by solving
the quadratic equation. We get√

1− ϑ(x, z)

ϑ(x, z)
=

√
s2
y,z

s2
x,z

(1− ϑ(y, z))

ϑ(y, z)
±

√
s2
x,y

s2
x,z

(1− C)

C
(38)

Values of the left-hand side leading to bigger F ′ are obtained below the “−” and above the “+”

solution. We are in the latter regime if s2
x,z

1−ϑ(x,z)
ϑ(x,z) ≥ s2

y,z
1−ϑ(y,z)
ϑ(y,z) . We can assume this to be

fulfilled (because x and y indices can just be swapped in case it is not). Thus choosing the more
convenient of the two ϑ, we obtain

1− ϑ(x, z)

ϑ(x, z)
≥

(√
s2
y,z

1−ϑ(y,z)
ϑ(y,z) +

√
s2
x,y

1−C
C

)2

s2
x,z

≥
s2
x,y

s2
x,z

(1− C)

C
. (39)

We have thus found the following bound for one of the genes in the gene pair:

ϑ(x, z) ≤ 1

1 +
s2x,y

s2x,z

(1−C)
C .

(40)

Intuitively this makes sense: when the genes are correlated within the groups, the within-group
LRV of the pair s2

x,y can be small compared to s2
x,z, and then C may not be sufficiently small for

differential expression of x (see Figure 3 for an example). For differential expression we thus require
a minimum within-group LRV of the differentially proportional pair. Note, however, that although
we can control for both s2

x,y and C, the within-group variance of the gene s2
x,z remains inaccessible

to us from a strict ratio point of view because it would require our knowledge of the reference
z leading to the correct normalization. Although for this reason we cannot precisely quantify
how small C needs to be, the obtained bound on ϑ(x, z) shows qualitatively that differentially
proportional pairs with sufficiently high within-group variance will contain at least one differentially
expressed gene.

2.5 Handling zeros

As reviewed in (Mart́ın-Fernández et al., 2011), zeros resulting from undersampling (known as
count zeros, and a major source of zeros in RNA-seq data) can best be dealt with assuming a
Dirichlet prior leading to posterior counts where pseudocounts are added to the original counts.
Along the same lines, one can also choose a resampling strategy, where repeated drawings from
the posterior distribution lead to a kind of pseudo-replicates that do not contain zeros, which
will represent variation expected from the original counts (Fernandes et al., 2013; Tarazona et al.,
2015). Since an additive modification does not preserve ratios, a kind of multiplicative modification
of a given count

x̃k,i =

{
c if xk,i = 0,

(1− c · |{j : xk,j = 0}|) · xk,i otherwise,
(41)
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was suggested (Mart́ın-Fernández et al., 2011). Here the column indices i go over the genes in the
given condition k, and the x̃k,i are the counts modified by the pseudocount c (which, for simplicity,
we assume to be independent of the samples here). The fact that ratios are not preserved when
simply adding the pseudocount, however, is felt strongest in the case of low counts, where ratios
should not be trusted anyway. To alleviate the problem, it thus seems essential to use the precision
weights of section 2.2 when calculating the relevant statistics.

While pseudocounts need an associated distributional theory to estimate them, a well-founded
heuristic that has been used widely in data analysis are power transformations of the Box-Cox
type. In the limiting case of a power tending to zero, these return the logarithm:

log(x) = lim
α→0

xα − 1

α
. (42)

It has been shown by (Greenacre, 2009) that this transformation establishes a connection between
Correspondence Analysis (CA) of the transformed data and log-ratio analysis, which is obtained
as a limiting case of CA when letting α tend toward zero. This is interesting because CA handles
zeros naturally. We will briefly describe this replacement strategy here. As shown in (Greenacre,
2011), from re-writing LRV in the form

var(Lx,y
1,...,n) =

1

n

n∑
i=1

(
log

xi

(
∏n
j=1 xj)

1
n

− log
yi

(
∏n
j=1 yj)

1
n

)
, (43)

a similarity with the (squared) χ2 distance used in CA becomes evident. Here we show this distance
for data raised to the power of α and with rows summing to one:

dα(x,y) =
1

n

n∑
i=1

(
xαi

1
n

∑n
j=1 x

α
j

− yαi
1
n

∑n
j=1 y

α
j

)2

. (44)

We can obtain (44) directly from (43) by applying (42) for nonzero α and replacing geometric by
arithmetic means (which is justified in the limit α→ 0).

A precision-weighted ϑ like in (13) that can also handle zeros can thus be defined by

ϑαω(x,y) =

k1∑
i=1

ωi

(
xαi

1
Ω1

∑k1
j=1 ωjx

α
j

− yαi
1

Ω1

∑k1
j=1 ωjy

α
j

)2

+

k1+k2∑
i=k1+1

ωi

(
xαi

1
Ω2

∑k1+k2
j=k1+1 ωjx

α
j

− yαi
1

Ω2

∑k1+k2
j=k1+1 ωjy

α
j

)2

n∑
i=1

ωi

(
xαi

1
Ω1+Ω2

∑k1+k2
j=1 ωjxαj

− yαi
1

Ω1+Ω2

∑k1+k2
j=1 ωjyαj

)2 .

(45)

Note that the weighting scheme differs from the one used in CA where weights are determined
from row and column sums and low counts get upweighted. The choice of α needs to trade off
closeness to the original LRV values (for gene pairs not containing zero counts small α are more
accurate) with the amount by which zeros should get punished (pairs containing zeros can have
lower ϑ if α is larger ).

2.6 GTEx data

For the practical examples shown here, we used data from the Genotype Tissue Expression (GTEx)
project (Lonsdale et al., 2013). Reads were mapped using TopHat2 (Kim et al., 2013) and gene
counts were obtained from the Flux Capacitor (Montgomery, 2010). 10,842 genes with nonzero
counts throughout 7867 samples from 40 tissues were used, then samples were additionally filtered
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for low ischemic times. Finally, only samples from two approximately balanced brain tissues (54
cerebellum and 44 cortex samples) were retained to match the use case discussed in this article.
At an FDR of 5% (estimated by permutation tests) we find a cut-off ϑ < 0.94 covering 26.6 million
gene pairs (45% of all pairs). At ϑ < 0.69 (4.56 million pairs) no false positives were detectable
anymore. For high confidence disjointedly proportional pairs with clear within-tissue correlations,
we settled for a much stricter cut-off of ϑ ≤ 0.2 (chosen subjectively by visual inspection of scatter
plots) comprising 13,000 pairs. Conventional differential expression analysis using edgeR (Robinson
et al., 2010) and DeSeq2 (Love et al., 2014) find about half of all considered genes differentially
expressed at an FDR of 5%.

3 Outlook

While here we have presented how differential expression of ratios can be formalized, a practical
proof of concept needs more in-depth analysis of relevant biological data sets. Preliminary results
show that the approach holds great promise since the phenomenon of stoichiometry switches ap-
pears to be wide-spread both between tissues and between developmental stages when using data
from BrainSpan (http://developinghumanbrain.org). These results will be reported elsewhere. The
principle is not limited to providing a list of interesting gene pairs. Differential proportionality
induces a distance measure between genes (e.g. in the form of ϑ) that can be used in a network
analysis that is independent of normalization. Our R implementation, available soon as an adden-
dum to the propr package (Quinn et al., 2017), will provide an entry point to relevant graph-based
analyses.
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