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Abstract

While the vast majority of genome size variation in plants is due to differences in
repetitive sequence, we know little about how selection acts on repeat content in natural
populations. Here we investigate parallel changes in intraspecific genome size and repeat
content of domesticated maize (Zea mays) landraces and their wild relative teosinte
across altitudinal gradients in Mesoamerica and South America. We combine
genotyping, low coverage whole-genome sequence data, and flow cytometry to test for
evidence of selection on genome size and individual repeat abundance. We find that
population structure alone cannot explain the observed variation, implying that clinal
patterns of genome size are maintained by natural selection. Our modeling additionally
provides evidence of selection on individual heterochromatic knob repeats, likely due to
their large individual contribution to genome size. To better understand the phenotypes
driving selection on genome size, we conducted a growth chamber experiment using a
population of highland teosinte exhibiting extensive variation in genome size. We find
weak support for a positive correlation between genome size and cell size, but stronger
support for a negative correlation between genome size and the rate of cell production.
Reanalyzing published data of cell counts in maize shoot apical meristems, we then
identify a negative correlation between cell production rate and flowering time.
Together, our data suggest a model in which variation in genome size is driven by
natural selection on flowering time across altitudinal clines, connecting intraspecific
variation in repetitive sequence to important differences in adaptive phenotypes.
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Author summary

Genome size in plants can vary by orders of magnitude, but this variation has long been
considered to be of little to no functional consequence. Studying three independent
adaptations to high altitude in Zea mays, we find that genome size experiences parallel
pressures from natural selection, causing a linear reduction in genome size with
increasing altitude. Though reductions in repetitive content are responsible for the
genome size change, we find that only those individual loci contributing most to the
variation in genome size are individually targeted by selection. To identify the
phenotype influenced by genome size, we study how variation in genome size within a
single teosinte population impacts leaf growth and cell division. We find that genome
size variation correlates negatively with the rate of cell division, suggesting that
individuals with larger genomes require longer to complete a mitotic cycle. Finally, we
reanalyze data from maize inbreds to show that faster cell division is correlated with
earlier flowering, connecting observed variation in genome size to an important adaptive
phenotype.

Introduction 1

Genome size varies many orders of magnitude across species, due to both changes in 2

ploidy as well as haploid DNA content [1, 2]. Early hypotheses for this variation 3

proposed that genome size was linked to organismal complexity, as more complex 4

organisms should require a larger number of genes. Empirical analyses, however, 5

revealed instead that most variation in genome size is due to noncoding repetitive 6

sequence and that genic content is relatively constant [3, 4]. While this discovery 7

resolved the lack of correlation between genome size and complexity, we still know 8

relatively little about the makeup of many eukaryote genomes, the impact of genome 9

size on phenotype, or the processes that govern variation in repetitive DNA and genome 10

size among taxa [5]. 11

A number of hypotheses have been offered to explain variation in genome size among 12

taxa. Across deep evolutionary time, genome size appears to correlate with estimates of 13

effective population size, leading to suggestions that drift and ineffective selection 14

permit maladaptive expansion [6] or contraction [7] of genomes across species. A recent 15

evaluation of genome size and the strength of purifying selection among isopods finds 16

evidence supporting this model on a smaller phylogenetic scale [8], but broad-scale 17

phylogenetic analyses fail to find evidence of a correlation between effective population 18

size and genome size, casting doubt on its generality [9, 10]. Other models consider 19

mutation rates, positing that genome sizes evolve to stable equilibria in which the loss 20

of DNA through frequent small deletions is equal to the rate of DNA gain through large 21

insertions. Evidence of the phylogenetic lability of genome size among plants in the 22

family Brassicaceae [11], however, appears inconsistent with this model. Variation in 23

reproductive systems may also explain differences in genome size, as the lower effective 24

population size expected in selfing or asexual species should lead to a reduced ability to 25

purge slightly deleterious novel insertions. Phylogenetic comparisons of repeat 26

abundance and genome size across reproductive systems in Oenothera, however, find 27

little support for this hypothesis [12]. In addition to these neutral models, many authors 28

have proposed adaptive explanations for genome size variation. Numerous correlations 29

between genome size and physiologically or ecologically relevant phenotypes have been 30

observed, including nucleus size [13], plant cell size [14], seed size [15], body size [16], 31

and growth rate [17]. Adaptive models of genome size evolution suggest that positive 32

selection drives genome size towards an optimum, due to selection on these or other 33

traits, and that stabilizing selection prevents expansions and contractions away from the 34
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optimum [18]. In most of these models, however, the mechanistic link between genome 35

size and phenotype remains unclear [19]. 36

Much of the discussion about genome size variation has focused on variation among 37

species, and intraspecific variation has often been downplayed as the result of 38

experimental artifact [20], or argued to be too small to have much evolutionary 39

relevance [21]. Nonetheless, intraspecific variation in genome size has been documented 40

in hundreds of plant species [21], including multiple examples of large-scale 41

variation [22–24]. Correlations between intraspecific variation in genome size and other 42

phenotypes or environmental factors have also been observed [22, 23,25], suggesting the 43

possibility that some of the observed variation may be adaptive. 44

Here we present an analysis of genome size variation in the model system maize (Zea 45

mays ssp. mays) and its wild relative highland teosinte (Zea mays ssp. mexicana). 46

Genome size varies as much as 70% between maize and teosinte and genome size within 47

subspecies correlates with both altitude and latitude [23,26]. Sequencing of the maize 48

reference inbred B73 revealed that the vast majority (85%) of the genome is comprised 49

of transposable elements (TEs) [27], and comparisons between maize and related taxa 50

suggest that variation between species may be explained largely by differences in TE 51

content [28–30]. Within maize, a number of different repeats contribute to variation in 52

genome size. BAC sequencing has identified substantial TE polymorphism among 53

individuals [31,32], but individuals also vary in the number of auxiliary B 54

chromosomes [33] and large heterochromatic knobs made up of tandem satellite 55

sequences can make up as much as 8% of the genome [34]. 56

We take advantage of parallel altitudinal clines in maize landraces from Mesoamerica 57

and South America to investigate the evolutionary processes and sequence differences 58

underlying genome size variation. Our comparison of flow cytometry data to genotyping 59

reveals evidence that selection has shaped patterns of genome size variation across 60

altitude, and similar analysis of repeat content from low coverage shotgun sequencing 61

identifies an important role for knob variants. We then perform growth chamber 62

experiments to measure the effect of genome size variation on the developmental traits 63

of cell production and leaf elongation in the related wild highland teosinte Z. mays ssp. 64

mexicana. These experiments find modest support for slower cell production in larger 65

genomes, but weaker support for a correlation between genome size and cell size. Based 66

on these results and reanalysis of published data, we propose a model in which variation 67

in genome size is driven by natural selection on flowering time across altitudinal clines, 68

connecting repetitive sequence variation to important differences in adaptive 69

phenotypes. 70

Materials and methods 71

Unless otherwise specified, raw data and code for all analyses are available on the 72

project Github at https://github.com/paulbilinski/GenomeSizeAnalysis and S1 73

Table shows the general relationship among samples and analyses; additional details are 74

included below. 75

Genome Size 76

We sampled one seed from each of 77 maize landrace accessions collected across a range 77

of altitudes in Mesoamerica and South America to quantify genome size (S2 Table; [36]). 78

For comparison to maize, we sampled two seeds from 6 and 10 previously collected 79

populations of the wild subspecies parviglumis and mexicana, respectively (S3 80

Table; [37]). For our growth chamber experiment, we sampled 201 total seeds from 51 81

maternal plants collected from 11 populations of mexicana (S4 Table and S5 Table). 82
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Finally, to assess the error associated with flow cytometry measures of genome size, we 83

used 2 technical replicates of each of 35 maize inbred lines (S6 Table). We germinated 84

seeds and grew plants in standard greenhouse conditions. We collected samples of leaf 85

tissue from each individual and sent material to Plant Cytometry Services (JG 86

Schijndel, NL) for genome size analysis. Vinca major was used as an internal standard 87

for flow cytometric measures. Replicated maize lines showed highly repeatable estimates 88

(corr = 0.92), with an average difference of 0.0346pg/1C between estimates. 89

Genotyping 90

We used genotyping-by-sequencing (GBS) [38] data from Takuno et al. [36] for maize 91

accessions along altitudinal clines in Mesoamerica and South America. For the 11 92

mexicana populations used in our linear model, we used GBS SNP data from O’Brien et 93

al. [39]. All samples were filtered with TASSEL (V5.2.37) [40] to remove sites with 94

>40% missing data and individuals with >90% missing data, resulting in 170 total 95

individuals with genotyping data for 223,657 sites. We elected to use this per-site cut 96

off as it did not qualitatively change the site frequency spectrum (S1 Fig). 97

Kinship and admixture 98

Kinship matrix calculation was performed using centered identity-by-state (IBS) as 99

implemented in the software TASSEL [41]. We elected to use random imputation in our 100

kinship calculations, as mean imputation biases the estimate of inbreeding within 101

individual [41]. However, we tested both mean and KNN [42] imputation, and our 102

results were robust to both methods. Inbreeding statistics for individual mexicana 103

plants were calculated from the diagonal of the randomly imputed kinship matrix. 104

Admixture analyses were performed using Admixture v1.23 [43]. For admixture 105

analyses we also included additional GBS data from diverse maize inbred lines [44], 106

landraces and teosintes [45] (S2 Table and S4 Table), for a total of 611 individuals 107

before filtering. We filtered individuals and sites as above, but additionally removed one 108

individual (the sample with lowest sequencing depth) of each pair of with an IBS 109

distance closer than 0.07. A Hardy-Weinberg filter was then applied using only outbred 110

genotypes with a read depth between 9-300 using a chi-squared goodness of fit test, 111

p-value <0.05. We then thinned sites by linkage disequilibrium, removing lower 112

coverage sites within physical distance less than 1000bp and sites with r2 >0.8 and 113

significant at p-value <0.05. Only sites with at least 12 high depth genotypes were 114

tested. After filtering, 526 individuals and 18,716 sites remained. 115

Shotgun Sequencing 116

We used whole genome shotgun sequencing to estimate repeat abundance in the same 77 117

maize landrace accessions and 93 mexicana individuals for which we estimated genome 118

size, as well as an additional set of mexicana individuals used to validate the approach 119

cytologically (see below, data available on Figshare at DOI 120

10.6084/m9.figshare.5117827). DNA was isolated from leaf tissue using the DNeasy 121

plant extraction kit (Qiagen) according to the manufacturer’s instructions. Samples 122

were quantified using a Qubit (Life Technologies) and 1ug of DNA was fragmented 123

using a bioruptor (Diagenode) with cycles of 30 seconds on, 30 seconds off. DNA 124

fragments were then repaired with the End-Repair enzyme mix (New England Biolabs), 125

and a deoxyadenosine triphosphate was added at each 3’end with the Klenow fragment 126

(New England Biolabs). Illumina Truseq adapters (Affymetrix) were then added with 127

the Quick ligase kit (New England Biolabs). Between each enzymatic step, DNA was 128

washed with sera-mags speed beads (Fisher Scientific). Samples were multiplexed using 129
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Illumina compatible adapters with inline barcodes and sequenced in 3 lanes of a Miseq 130

(UC Davis Genome Center Sequencing Facility) for 150 paired-end base reads with an 131

insert size of approximately 350 bases. The first lane included all maize landraces used 132

for selection studies, the second had the mexicana populations used for FISH 133

correlations, and the third included all mexicana samples used for analysis of clinal 134

variation. 135

Estimating Repeat Abundance 136

We gathered reference sequences for 180bp knob, TR1 knob, B chromosome, and rDNA 137

repeats from NCBI. CentC repeats were taken from Bilinski et al. [46], and chloroplast 138

DNA and mitochondrial DNA were taken from the maize reference genome (v2, 139

www.maizesequence.org). B chromosomes repeats [47] were matched against the 140

maize genome (v2, www.maizesequence.org) using BLAST, and any regions within the 141

repeats that had alignments of greater than 30bp with 80% homology were masked. 142

The remaining unmasked regions with length greater than 70bp were used as a mapping 143

reference for B-repeat abundance. For the transposable element database, we began 144

with the TE database consensus sequences [27, 48]. We then matched sequences against 145

themselves using BLAST and masked any shared regions, retaining unique regions that 146

were at least 70bp in length in our mapping reference. This process was repeated to 147

eliminate regions of secondary homology as well as using knobs and CentC to remove 148

regions of homology to tandem repetitive sequences. We mapped sequence reads to our 149

repeat library using bwa-mem [49] with parameters -B 2 -k 11 -a to store all hit 150

locations with an identity threshold of approximately 80%. We used a minimum seed 151

length of 11 for all repeats as it produced the most reads mapping against the full 152

transposable element database, though our estimates of total repeat abundance 153

(63-71%) are lower than previous estimates [27]. To standardize comparisons of 154

repetitive content across individuals, we first filtered out plastid sequences, then 155

calculated Mb of sequence for each repeat class by multiplying its relative abundance in 156

our sequencing data by genome size converted to base pair values. The correlation 157

between the abundance of each repeat and genome size were as follows: TE = 0.95; 158

180bp knob = 0.81; TR1 = 0.86. Previous simulations suggest that this estimate has 159

good precision and accuracy in capturing relative differences across individuals [46]. 160

Repeat Abundance Validation via FISH 161

We selected two individuals each from 10 previously collected populations of 162

mexicana [50] for fluorescence in situ hybridization counts of knob content (FISH; S3 163

Table). FISH probe and procedures closely followed Albert et al. [51]. 164

Clinal Models of Genome Size and Repeat Abundance 165

We model genome size as a phenotype whose value is a linear function of altitude and 166

kinship (Equation 1). We assume genome size has a narrow sense heritability h2 = 1, as 167

it is simply the sum of the base pairs inherited from both parents. In our model P is our 168

vector of phenotypes, µ is a grand mean, A is a vector of altitudes included as a fixed 169

effect, g represents an additive genetic component modeled as a random effect with 170

covariance structure given by the kinship matrix (K), and ε captures an uncorrelated 171

error term. The coefficient βalt of altitude then represents selection along altitude, while 172

the additive genetic (VA) and error (Vε) variances are nuisance parameters. 173
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P = µ+ βalt ∗A+ g + ε

g ∼MVN (0, VAK)

ε ∼ N (0, Vε)

(1)

We implemented our linear model in EMMA [52] to test for selection on genome size. 174

In a second model, we then include genome size (GS) as a fixed effect in order to test 175

for correlations between specific repeat classes and altitude conditional on genome size 176

(Equation 2). Estimates of β parameters for each model are reported in S8 Table. 177

P = µ+ βalt ∗A+ βGS ∗GS + g + ε

g ∼MVN (0, VAK)

ε ∼ N (0, Vε)

(2)

Growth Chamber Experiment 178

We conducted a growth chamber experiment to investigate whether genome size 179

variation has an impact on cell production and leaf elongation. We sampled 202 seeds 180

from multiple maternal plants collected in a single high altitude (2408m) mexicana 181

population at Tenango Del Aire, chosen because it exhibited the most variation in 182

genome size in our altitudinal transect of mexicana. We soaked each fruit in water for 183

24 hours, then manually removed most of the fruitcase and placed the seed in a Petri 184

dishes inside a growth chamber (23◦C , 16h Light / 8h dark) with cotton balls and water 185

to prevent drying. 186

Germinated seedlings were transferred to soil pots and into a growth chamber (23◦C, 187

16h Light / 8h dark). Individually potted seedlings were randomly placed in trays, 188

given fertilized water via bottom watering, and monitored for third adult leaf emergence. 189

We measured leaf length daily for 3 days after the first visible emergence of the third 190

leaf. We clipped the first 8cm of leaf material from the tip of the measured leaf, then 191

extracted a 1cm section which was dipped in propidium iodide (.01mg/ul) for 192

fluorescent imaging (10x magnification, emission laser 600-650, excitation 635 at laser 193

power 6). A minimum of 5 non-overlapping images were taken per leaf sample, 194

horizontally across the leaf segment if possible. Cell length was measured for multiple 195

features, including stomatal aperture size and rows adjacent to stomata. Lengths across 196

different features were highly correlated, so stomatal aperture size was used as the 197

repeated measure of cell lengths in the growth model. 198

Modeling the Effect of Genome Size on Cell Production 199

We model leaf elongation rate (LER) as the product of cell size (CS) and the rate of cell 200

production (CP): 201

LER = CS ∗ CP. (3)

The multiplicative expression in Equation 3 is linearized by taking the natural 202

logarithm on both sides of the equation, and model-fitting is performed on the log scale. 203

We hypothesize that genome size affects LER only through its effects on CS and CP. 204

The strategy for estimation of genome-size effects is illustrated by path diagrams shown 205

in S2 Fig, where additional details are given. We adopt a computational Bayesian 206

approach for parameter estimation, incorporating seedling and maternal random effects 207

in models that make use of the hierarchical dataset structure (cells and days of growth 208

within seedlings, seedlings within maternal parents). The signs and magnitudes of our 209
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estimated effects, and therefore our conclusions, are sensitive to different specifications 210

of prior information. We identified previous averages for maize stomatal cell size and 211

daily leaf elongation rate (CS=0.003 cm, LER=4.0-4.8cm/day or 2mm/hr) [53–56], and 212

incorporated these into informative priors for the random effects. Because our model 213

shows prior sensitivity, we also identify prior means for which the sign of the 214

relationship between genome size, cell production rate (βGS), and cell size (γGS) 215

changes (S3 Fig). We generated posterior samples of model parameters using JAGS, a 216

general-purpose Gibbs sampler invoked from the R statistical language using the library 217

rjags [57]. We allowed for a burn in of 200,000 iterations and recorded 1,000 posterior 218

estimates by thinning 500,000 iterations at an interval of 500. 219

Analysis of Maize SAM Cell Number and Flowering Time 220

To evaluate evidence for a relationship between cell production rate and flowering time, 221

we used flowering time and meristem cell number data for 14 maize inbred lines from 222

Leiboff et al. [58]. Because meristems were sampled at an identical growth stage and 223

time point, differences in cell number should reflect differences in the rate of cell 224

production. We fitted a mixed linear model to estimate the best linear unbiased 225

estimates (BLUEs) of the cell counts for each growth period separately: 226

Yij = µ+ αi + βj + ε

ε ∼ N (0, VE)
(4)

In this model, Yij is the cell count value of the ith genotype evaluated in the jth 227

replicate; µ, the overall mean; αi, the fixed effect of the ith genotype; βj , the random 228

effect of the jth block; and ε, the model residuals. 229

Each line’s genotype at trait-associated SNPs for the candidate genes BAK1 and 230

SDA1 [58] was considered as a fixed effect and replication as a random effect. We then 231

fitted mixed linear models to study the relationship of flowering time and cell counts by 232

controlling for population structure and known trait-associated SNPs: 233

Yi = µ+ αiGi + βBAK1 + βSDA1 + g + ε

g ∼MVN (0, VAK)

ε ∼ N (0, VE)

(5)

Here Yi is the flowering time (days to anthesis) of the ith genotype; µ, the overall 234

mean; αi, the fixed effect of the ith Genotype; βBAK1 and βSDA1 the fixed effects of the 235

BAK1 and SDA1 loci; g a random effect modeled with a covariance structure given by 236

the kinship matrix K; and ε an uncorrelated error. The additive genetic (VA) and 237

environmental (VE) variances are nuisance parameters. 238

Cell counts were included as fixed effects and the standardized genetic relatedness 239

matrix was fitted as a random effect to control for the population structure [59]. The 240

genetic relatedness matrix was calculated using GEMMA [60] from publicly available 241

GBS genotyping for these lines (AllZeaGBSv2.7 at www.panzea.org, [40]). In the 242

calculation, we used 349,167 biallelic SNPs after removing SNPs with minor allele 243

frequency <0.01 and missing rate >0.6 using PLINK [61]. 244

Results 245

We sampled 77 diverse maize landraces from across a range of altitudes in Meso- and 246

South America (S2 Table). Flow cytometry of these samples revealed a negative 247
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Fig 1. Genome size and repeat content by altitude in Zea taxa. (A-D) Maize landraces
from Mesoamerica (MA) or South America (SA). (E-H) Highland teosinte Z. mays ssp.
mexicana. Only teosinte populations above 2000m that do not show admixture (see
text) are included. (A,E) total genome size, (B,F) total transposable element content,
(C,G) 180bp knob repeat content, (D,H) TR1 knob repeat content. Dashed lines
represent the best fit linear regression.

correlation with altitude on both continents (Fig. 1A, r=-0.51 and -0.8, respectively, 248

p-value <0.001). We used low-coverage whole-genome sequencing mapped to reference 249

repeat libraries to estimate the abundance of repetitive sequences in each individual 250

with estimated genome size, and validated this approach by comparing sequence-based 251

estimates of heterochromatic knob abundance to fluorescence in situ hybridization 252

(FISH) data from mexicana populations (Fig. 2 and S4 Fig; see Methods for details). 253

Consistent with previous work [28,35,62], transposable elements and heterochromatic 254

knobs contributed most to variation in genome size across our maize samples (Fig. 1) 255

and we find only a weak positive correlation between B chromosome abundance and 256

altitude (p-value >0.05) (S6 Fig). We observed substantial variation among landraces in 257

the abundance of individual transposable element families (S5 Fig), and both 258

transposable elements as a whole and heterochromatic knobs showed clear decreases in 259

abundance with increasing altitude in both Meso- and South America (TE r=-0.57, 260

-0.72; 180bp knob r=-0.48, -0.83; TR1 knob r=-0.66, -0.81; p-value <0.001), mirroring 261

the pattern seen for overall genome size (Fig. 1). 262

We next sought to evaluate whether the observed clines in genome size and repeat 263

abundance simply reflected underlying genetic differences due to population structure, 264

or could be better explained by natural selection along an altitudinal cline. We adopted 265

an approach similar to Berg and Coop [63], modeling genome size as a quantitative trait 266

that is a linear function of relatedness and altitude (see Methods, Equation 1). Across 267

maize landraces, we rejected a neutral model in which genome size is unrelated to 268

altitude, estimating a decrease of 108Kb and 154Kb in mean genome size per meter gain 269

of altitude in Meso- and South America, respectively (S8 Table). We then evaluated 270

whether selection has acted on individual repeats, treating abundance of each repeat 271

class as a quantitative trait in a comparable model that includes genome size as a 272

covariate (Methods, Equation 2). In both Meso- and South America, TR1 knobs showed 273

evidence of selection, while 180bp knob also showed evidence of selection in South 274

American landrace germplasm (S8 Table). Finally, our models for total transposable 275

element content in both Mesoamerican and South American maize were just above the 276

0.05 significance threshold, and the number of individual TE families showing 277

significant correlations with altitude was no greater than expected by chance (46/1156, 278

binomial test p-value >0.05). 279

8/39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/134528doi: bioRxiv preprint 

https://doi.org/10.1101/134528
http://creativecommons.org/licenses/by/4.0/


Fig 2. Knob content in highland teosinte estimated using FISH and low-coverage
sequencing. (A) FISH from four Z. mays ssp. mexicana individuals, sampled from the
highest and lowest altitude populations. Counts of cytological 180bp (blue) and TR1
(white) knobs are shown to the right of each individual. Other stained repeats are
CentC and subtelomere 4-12-1 (green), 5S ribosomal gene (yellow), Cent4 (orange),
NOR (blue-green), and TAG microsatellite 1-26-2 and subtelomere 1.1 (red). For
further staining information, see [51]. (B) Plot of the population-level correlation
between 180bp knob counts and sequence abundance for 20 mexicana individuals.
180bp knob r = 0.88, TR1 knob r = 0.86

The wild ancestor of maize, Zea mays ssp. parviglumis (hereafter parviglumis), 280

grows on the lower slopes of the Sierra Madre in Mexico. A related wild teosinte, Zea 281

mays ssp. mexicana (herafter, mexicana), diverged from parviglumis ≈60,000 years 282

ago [64] and has adapted to the higher altitudes of the Mexican central plateau [65]. We 283

sampled leaves and measured genome size of two individuals each from previously 284

collected populations of both subspecies (6 parviglumis populations and 10 mexicana 285

populations) [37,50]. Though both subspecies exhibit considerable variation, mexicana 286

had a smaller average genome size than parviglumis (S7 Fig; one tailed t-test 287

p-value<0.05), consistent with our observations of decreasing genome size along 288

altitudinal clines in Mesoamerican and South American maize. 289

To evaluate clinal patterns across populations of highland teosinte in more detail, we 290

sampled multiple individuals from each of an additional 11 populations of mexicana 291

across its altitudinal range in Mexico (S4 Table). Genome size variation across these 292

populations revealed no clear relationship with altitude (S8 Fig), but genotyping 293

data [39] revealed consistent evidence of genetic separation (S9 Fig) and higher 294
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inbreeding coefficients (two-sided t-test p-value <0.001) in the three lowest altitude 295

populations (see Methods). These three populations are also phenotypically distinct and 296

relatively isolated from the rest of the distribution (A. O’Brien pers. communication). 297

We thus excluded these three populations, applying our linear model of altitude and 298

relatedness to 70 individuals from the remaining 8 populations. After doing so, we find 299

a negative relationship between genome size and altitude in mexicana (Fig. 1E, p-value 300

<0.001) of similar magnitude to that seen in maize (loss of 270Kb/m), suggesting 301

parallel patterns of selection across Zea. In agreement with our results in maize, TR1 302

knob repeats showed evidence of selection after controlling for their contribution to 303

genome size (S8 Table), though 180bp knob repeats did not. We found no evidence for 304

selection on TE abundance after controlling for genome size, and none of the sequence 305

from mexicana mapped to our B-repeat library. 306

When grown in a common environment, both highland maize and highland teosinte 307

flower earlier than their lowland counterparts [66,67], and previous work has shown that 308

selection for early flowering time in maize results in a concomitant reduction in genome 309

size [68]. Extrapolating from this observation, we reasoned that genome size might be 310

related to flowering time through its potential effect on the rate of cell production and 311

consequently development. To test this hypothesis, we performed a growth chamber 312

experiment to measure leaf elongation rate, cell size, and genome size using 201 313

mexicana individuals from 51 maternal families sampled from a single natural 314

population (see Methods). Individual plants varied by as much as 1.13Gb in 2C genome 315

size, with observed leaf elongation rate (LER) varying from 1 to 8 cm/day (mean 316

4.56cm/day; S9 Table). We designed a Bayesian model of leaf elongation as a function 317

of cell size, cell production rate, and genome size (see Methods). Our posterior 318

parameter estimates suggest a weak but positive relationship between genome size and 319

cell size (γGS ; Fig. 3A) and a negative relationship between genome size and cell 320

production rate (βGS ; Fig. 3B). We found that our inferences were sensitive to prior 321

specifications for leaf elongation rate and cell size (S3 Fig), but prior means ≥ 4cm/day 322

for leaf elongation rate combined with prior means ≤ 0.003cm for CS, returned reliably 323

negative relationships between genome size and cell production rate (see Methods). 324

Recent work exploring shoot apical meristem (SAM) phenotypes across 14 maize 325

inbred lines [58] allowed further exploration of our hypothesized connection between cell 326

production and flowering time. Because Leiboff et al. sampled SAM at equivalent 327

growth stages, we interpreted variation in cell number as representative of differences in 328

cell production rate among lines. We re-analyzed these data to investigate whether the 329

cell number reported in each SAM was correlated with flowering time (Fig. 3C). After 330

estimating genetic values for each inbred line used and correcting for population 331

structure and the effects of two candidate genes (see Methods), we find a negative 332

correlation between flowering time and cell production across all three developmental 333

stages sampled (slopes of -0.11, -0.08, and -0.08 and p-values <0.01,<0.001, and 0.170, 334

respectively). Such negative correlations suggest that a higher number of cells in the 335

seedling SAM — and thus a faster rate of cell production — may lead to earlier 336

flowering time. 337

Discussion 338

Genome size and repeat abundance 339

We report evidence of a negative correlation between genome size and altitude across 340

clines in Meso- and South America in both maize and its wild relative highland teosinte 341

(Fig. 1). Genetic evidence suggests that maize colonization of highland environments 342

was independent in Mesoamerica and South America [69], and while the populations 343
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Fig 3. (A,B) Posterior densities of effects of genome size on cell size and cell
production rate (γGS and βGS , respectively) from a model with prior mean stomatal
cell size of 30 microns and leaf elongation rate of 4cm/day. (C) Smoothed splines
showing the relationship between flowering time and SAM cell number in inbred maize
accessions. Measurements for cell number are shown for each of three growth phases
(G1, G2, G3). Data from Leiboff et al. [58].

share a number of adaptive phenotypes, they exhibit little evidence of convergent 344

evolution at individual loci [36]. The teosinte subspecies mexicana is also found in the 345

highlands of Mesoamerica [65], likely after its split from the lowland teosinte parviglumis 346

≈60,000 years ago, long before maize domestication [64]. Previous investigations of 347

genome size have also identified altitudinal clines in maize and teosinte [23, 26] (but see 348

Rayburn et al. [70] for a counterexample in the U.S. Southwest), suggesting that this 349

observation is general and not an artifact of our sampling. Although we find altitudinal 350

trends in genome size across all three clines, our initial evaluation of genome size in 351

highland teosinte found no significant correlation with altitude, due primarily to the 352

small genomes observed in the three lowest altitude populations (S8 Fig). We excluded 353

these three mexicana populations because they showed higher levels of inbreeding than 354

other mexicana populations as well as evidence of shared ancestry with parviglumis (S9 355

Fig). These populations are nonetheless interesting and worthy of future investigation, 356

as their genome size is smaller than either parviglumis or high altitude mexicana, but 357

their knob content does not differ from other mexicana populations, suggesting perhaps 358

that inbreeding or admixture may have affected transposable element or other repeat 359

abundance. 360

Our results suggest the best explanation for the observed clines in genome size is 361

natural selection. Several authors have identified ecological correlates of variation in 362

plant genome size and argued for adaptive explanations of such clines [23,26,71], but 363

did not correct for relatedness among individuals or populations. We employ a modeling 364

approach that considers genome size a quantiative trait and uses SNP data to generate 365

a null expectation of variation among populations, allowing us to rule out stochastic 366

processes and instead pointing to the action of selection in patterning clinal differences 367

in genome size. Alternative explanations for our observations, including mutational 368

biases and TE expansion, are unlikely. Plants grown at high altitudes are exposed to 369

increased UV radiation and UV-mediated DNA damage may lead to higher rates of 370

small deletions [72]. But because UV damage causes small DNA deletions, it is unlikely 371

to generate the gigabase-scale difference we see across altitudinal clines in the short 372

time since maize arrived in the highlands [73]. And while expansion or replication of TE 373

in lowland populations could lead to increased rates of insertion and larger genome size, 374

our analysis of reads mapping to individual TE families finds no evidence that this has 375

occurred in a widespread manner. Moreover, genome size estimates from the direct wild 376
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ancestor of domesticated maize (the lowland teosinte parviglumis) suggest that smaller 377

highland genomes are the derived state. 378

Having concluded that natural selection is the most plausible explanation for 379

decreasing genome size at higher altitudes, we then asked whether these observations 380

were the result of selection on genome size itself or merely a consequence of selection on 381

specific repeat classes. We find no evidence of selection on B repeats, consistent with 382

relatively mixed signals found in previous literature [62]. We also find little evidence of 383

selection on TEs after controlling for genome size. Because individual TEs are relatively 384

small, however, models of polygenic adaptation lead us to expect that such loci are 385

unlikely to show a strong signal [74]. Nonetheless, TEs show the strongest overall 386

correlation with genome size, suggesting that frequency of small deletions of individual 387

elements are likely a major contributor to genome size change across populations. In 388

contrast to TEs, in both maize and teosinte the 350bp TR1 knob repeat shows greater 389

differentiation in abundance across altitude than can be explained by population 390

structure alone, even after accounting for changes in total genome size. The 180bp knob 391

shows a similar strong decline in abundance in maize landraces, but is only statistically 392

significant in the analysis of landraces in South America. Selection on genome size 393

might be expected to act especially strongly on knobs because each locus contains many 394

megabases of repeats and thus represents a large contribution to variation in genome 395

size. In contrast, individual transposable elements are thousands of times smaller than 396

heterochromatic knobs, and selection on such small-effect variants is not expected to 397

show a signal much different from the overall phenotype. These results are surprising, 398

however, given the selfish nature of knobs and their ability to distort segregation ratios 399

in female meiosis in the presence of a driving element known as abnormal chromosome 400

10 (Ab10) [75]. While our genotyping data do not include markers diagnostic of Ab10, 401

previous analyses show that selection along altitudinal gradients has been sufficient to 402

decrease the frequency of at least one allele of the drive locus itself [76]. It is not 403

entirely clear why we see more evidence of selection on the TR1 knob variant, which 404

contributes nearly an order of magnitude fewer base pairs to the genome. The TR1 405

variant generally shows weaker drive, but has been shown to compete successfully 406

against the 180bp variant [77]. It is thus possible that the weaker drive of TR1 makes it 407

more susceptible to selection on overall genome size, and that the subsequent decrease 408

in TR1 abundance may increase drive of the 180bp knob variant, potentially 409

ameliorating the effects of selection against 180bp knobs at higher altitude. Finally, 410

while we see decreasing abundance of both knob variants with increasing altitude, we 411

note that knobs alone are not driving the overall signal: rerunning our model for 412

genome size after removing base pairs attributable to both knob repeats still finds 413

evidence of selection on genome size in all three clines (Mesoamerica p-value= 0.029; 414

South America p-value= 0.04 ; Mexicana p-value = 0.02). 415

Genome size and development rate 416

Several authors have hypothesized that genome size could be related to rates of cell 417

production and thus developmental timing [75,79]. We tested this hypothesis in a 418

growth chamber experiment in which we measured leaf elongation rates across 419

individuals from a single population of highland teosinte that exhibited wide variation in 420

genome size. Our approach to characterizing the effect of genome size on the rate of cell 421

production is consistent with scaling laws proposed in a recent study of the relationships 422

between genome size, cell size, and cell production rate [80] (see Methods). We found 423

only weak evidence for a positive correlation between genome size and cell size, a result 424

that contrasts with the findings of many authors who have reported more definitive 425

positive correlations between genome size and cell size across species [81,82]. One 426

potential explanation for this result may be found in recent work in Drosophila where 427
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larger repeat arrays were shown to lead to more compact heterochromatin despite the 428

physical presence of more DNA [83]. We speculate that such an effect may ameliorate 429

some of the physical increase in chromosome size due to the expansion of certain 430

repeats, especially tandem arrays such as those found in dense heterochromatic knobs. 431

In support of the hypothesis that smaller genomes may enable more rapid 432

development, our leaf elongation model indicates a negative correlation between genome 433

size and cell production rate in our highland teosinte population. Though these results 434

showed strong prior sensitivity, the sign of the relationship between genome size and cell 435

production rate did not change for prior mean values of leaf elongation rate within the 436

range of those published for maize (from 4.6 cm/day [56] to 12 cm/day [84]), all equal 437

to or larger than the rates observed in our experiment. Additional evidence comes from 438

a recent study by Tenaillon et al [85], who also find a negative correlation between the 439

rate of leaf elongation and genome size, albeit one that does not survive statistical 440

correction for population structure. 441

We hypothesize that selection on flowering time is the driving force behind our 442

observed differences in genome size. Larger genomes require more time to replicate [71], 443

and slower rates of cell production in turn may lead to slower overall development or 444

longer generation times [79]. Slower cell production is unlikely to be directly limiting to 445

the cells that eventually become the inflorescence, as only relatively few cell divisions 446

are required [86]. However, signals for flowering derive from plant leaves [87,88], and 447

slower cell production will result in a longer time until full maturity of all the organs 448

necessary for the plant to flower. Highland populations of both maize and teosinte 449

flower earlier than lowland populations [66, 89], and experimental work in maize reveals 450

a genetic correlation of ≈ 0.14 between flowering time and genome size (data from 451

Rayburn et al. [68] assuming heritabilities of h2 = 0.8 for flowering time and h2 = 1 for 452

genome size). Consistent with this hypothesis, maize plants with more cells in their 453

SAM at a given developmental stage (and thus faster rates of cell production) appear to 454

also exhibit earlier flowering [58]. Future efforts to experimentally connect genome size 455

to both cell production and flowering time within a single panel will be important to 456

definitively establish a mechanistic connection between genome size and flowering time. 457

In addition to flowering time, the metabolic requirements of nucleotide synthesis could 458

play a selective role in determining plant genome size variation. Nucleotide synthesis 459

requires substantial nitrogen and phosphorous, and it has been argued that selection for 460

rapid growth in nutrient-poor environments may act to reduce genome size [90]. Indeed, 461

phylogenetic comparisons find a significant correlation between nitrogen content (but 462

not phosphorous) and genome size among Primulina growing in nutrient-limited karst 463

soils [25]. We are unaware, however, of any meaningful correlations between nitrogen or 464

phosphorus concentration and altitude across either our Mesoamerican or South 465

American clines, suggesting that soil nutrients are unlikely to completely explain the 466

patterns we observe. 467

Conclusion 468

The causes of genome size variation have been debated for decades, but these 469

discussions have often disregarded adaptive explanations and ignored intraspecific 470

variation. Our results suggest that differences in optimal flowering times across 471

altitudes are likely indirectly effecting clines in genome size due to a mechanistic 472

relationship between genome size and cell production and developmental rate. We also 473

show that selection on genome size has driven changes in repeat abundance across the 474

genome, including significant reductions in individual repeats such as knobs that 475

contribute substantially to variation in genome size. We speculate that our observations 476

on genome size and cell production may apply broadly across plant taxa. Intraspecific 477
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variation in genome size appears a common feature of many plant species, as is the need 478

to adapt to a range of abiotic environments. Cell production is a fundamental process 479

that retains similar characteristics across plants, and genome size is likely to impact cell 480

production due to the limitations in replication kinetics that result from having a larger 481

genome. Together, these considerations suggest that genome size itself may be a more 482

important adaptive trait than has been previously believed, and that the phenotypic 483

effects of genome size may have consequences for the evolution of individual repeats. 484
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Supporting information 485

S1 Fig. Plot of reads mapping to B chromosome specific repeats in maize 486

landraces. Key indicates percent of site coverage, ranging from unfiltered (0.0) to a 487

requirement of full data presence across individuals (1.0). The spectrum begins to shift 488

after a 60% site coverage requirement. 489

490

S2 Fig. Path models for estimation of genome size effects. Arrows indicate 491

predictor-outcome relationships and are annotated with model coefficients (slopes) from 492

equations 9-11. (A) Genome Size (GS) predicts Leaf Elongation Rate (LER) through 493

the mediators Cell Size (CS) and Cell Production rate (CP). CP, shown in grey, is not 494

directly observed. The unit coefficients connecting log LER with log CP and log CS 495

reflect the assumption LER = CS * CP (equation 3). (B) Marginal model for the effect 496

of GS on LER (equation 10). 497

498
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S3 Fig. Effect of LER and Stomatal Cell Size Priors on Posterior Density 499

of the Cell Production Coefficient βGS. 500

501
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S4 Fig. Knob content in highland teosinte estimated using FISH and 502

low-coverage sequencing, showing all sampled individuals referenced in Fig. 503

2. Counts of cytological 180bp knobs (blue) and TR1 knobs (white) are shown to the 504

right of each individual. Other stained repeats are CentC and subtelomere 4-12-1 505

(green), 5S ribosomal gene (yellow), Cent4 (orange), NOR (blue-green), and TAG 506

microsatellite 1-26-2 and subtelomere 1.1 (red). For further staining information, 507

see [51]. 508

509
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S5 Fig. Variation in (A) RNA and (B) DNA transposable element 510

abundance in maize landraces. The y-axis indicates the average abundance in Mb 511

of a given TE subfamily. The fifteen highest abundance subfamilies are shown. The 512

x-axis are maize landraces accessions ordered by genome size, with the largest genome 513

size accessions on the left. Values plotted are bp measures scaled from 0 (blue) to 1 514

(yellow) per row. 515

516

S6 Fig. Plot of reads mapping to B chromosome specific repeats in maize 517

landraces. 518

519
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S7 Fig. Genome size for two individuals per teosinte population sampled 520

in [37,50]. Points indicating individual genome size estimates are jittered around the 521

center. 522

523

S8 Fig. Genome size by altitude of mexicana. All samples, including low 524

altitude populations, are shown. 525

526
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S9 Fig. Population structure of maize and mexicana populations. (A) 527

Admixture plots for K=6, with altitude of accessions shown above. Mexicana 528

populations and maize landraces are those used in this study. We include 529

parviglumis [45] and maize inbreds [44]. (B) and (C) Multi-dimensional scaling analyses 530

showing clustering of whole genome SNPs and those used to generate the admixture 531

plot. Points are color coded based on the label underneath the admixture plot. (D) 532

5-fold cross validated error as estimated by Admixture, indicating the best estimate of 533

number of populations, K. 534

535
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S1 Appendix. Path Model 536

As shown below, a path model enables the relationship between cell production rate 537

and genome size to be inferred by fitting regressions for log CS on log GS, and log LER 538

on log GS. The general approach is described as a model with two “mediators” in 539

Mackinnon [91]. We took a computational Bayesian approach to fitting the path model 540

after early experiments with likelihood-based methods indicated numerical instabilities. 541

In detail, the first of the regression models is, for cell c of seedling s: 542

log(CS)s,c = MCS,s + ZCS,s + γGS ∗ log(GSs) + ECS,s,c (6)

where MCS,s is a random intercept for the maternal parent of seedling s, ZCS,s is a 543

random intercept for seedling s, and ECS,s,c is a cell-level error term. Inclusion of an 544

overall mean, µ, in the regression equation along with the random intercepts led to 545

numerical instabilities apparently related to poor model identification. In effect, the 546

random intercepts– when properly parameterized– take the place of an overall mean. 547

We found that informative priors for MCS,s and ZCS,s were necessary: for the final 548

model we used Gaussian priors with mean log(0.003) and standard deviations σMCS
and 549

σZCS
, respectively. This prior mean is the natural logarithm of a typical stomatal cell 550

size, 0.003cm. We expect one of the two random intercepts to assume a greater role in 551

capturing the overall mean. Centering both priors at log(0.003) reflects our indifference 552

to the outcome of this contest. The prior for ECS,s,c is Gaussian with mean zero and 553

standard deviation σECS
. The coefficient γGS has a Gaussian prior with mean zero and 554

standard deviation 5.0. We used half-Cauchy priors for the standard deviations σECS
, 555

σMCS
and σZCS

. 556

The second of two regression models– for log LER on log GS– is derived from a 557

model reflecting primary observations of leaf length (LL) on successive days of seedling 558

growth. The observation-level model for seedling s at time t is: 559

log(LL)s,t = MLL,s+ZLL,s+ τGS ∗ log(GSs) + (MLER,s+ZLER,s)∗ log t+ELL,s,t (7)

where MLL,s and ZLL,s are respectively maternal and seedling random intercepts, 560

MLER,s and ZLER,s are maternal and seedling random slopes and ELL,s,t is an error 561

term. The random slopes MLER,s and ZLER,s allow for idiosyncratic growth rates. 562

Natural logarithms on the right- and left-hand sides imply power-law relationships 563

between leaf length, time and genome size in their original units of measurement. As in 564

model 6, informative priors were necessary for model identification. The final model has 565

Gaussian priors with mean log(4.8) and standard deviations σMLL
and σZLL

for MLL,s 566

and ZLL,s, respectively. This prior mean is the natural logarithm of a typical leaf 567

elongation rate, 4.8cm– the increment of leaf length that could be expected after a day’s 568

growth (t = 1). The priors for MLER,s and ZLER,s are Gamma with shape and rate 569

both equal to 1.0 (i.e. with mean 1.0, reflecting linear growth). As for model 6, the 570

prior for ELL,s,t is Gaussian with mean zero and standard deviation σELL
, the 571

coefficient τGS has a Gaussian prior with mean zero and standard deviation 5.0, and 572

σMLL
, σZLL

and σELL
have half-Cauchy priors. 573

The model for leaf elongation rate is subsequently obtained by differentiation of
LLs,t with respect to time:

log(LER)s,t = log(
d

dt
LLs,t) = MLL,s + ZLL,s + τGS ∗ log(GSs)

+ (MLER,s + ZLER,s − 1) ∗ log t+ log(MLER,s + ZLER,s) + ELL,s,t. (8)

Equations 6 and 8 are placed in context by use of the path diagrams in S2 Fig.
Equation 6 is the sub-model connecting log CS to log GS in the left-hand diagram,
while equation 8 is a marginal model connecting log LER to log GS, illustrated by the
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right-hand diagram. The two path diagrams imply two expressions for the same
quantity, log LER, which can be equated to produce an estimate of βGS . The derivation
is simplified by taking expected values of the random effects in 6 and 8, and fixing the
time horizon at a single day, though the numerical estimates we report come from 6 and
8 in full detail, as displayed above. Subsequently we define

E[MCS,s + ZCS,s + ECS,s,c] = γ0,

E[MLL,s + ZLL,s + log(MLER,s + ZLER,s) + ELL,s,t] = τ0,

and set t = 1 in equation 8. Equations 6 and 8 then simplify as 574

log(CS) = γ0 + γGS ∗ log(GS) (9)
575

log(LER) = τ0 + τGS ∗ log(GS) (10)

respectively. These are joined by a similar equation for the unobserved variable: 576

log(CP ) = β0 + βGS ∗ log(GS). (11)

Working from the relationship LER = CS ∗ CP , or alternatively from log LER
backward to its precedents in the left-hand path diagram, we find:

log(LER) = log(CS) + log(CP ) (12)

= γ0 + γGS ∗ log(GS) + β0 + βGS ∗ log(GS), (13)

substituting right-hand sides of 9 and 11. Equating expressions 13 and 10 and collecting 577

terms, the coefficient βGS is recovered as βGS = τGS − γGS . 578
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S1 Table. Description of data sets used in each analysis. 579

Data
Group

Genome
Size

WGS se-
quencing
Individ-
ual

Genotyping
Individ-
ual

FISH per-
formed?

Used in

77 Lan-
draces

Per Individ-
ual

Same indi-
vidual as
GS

Different
individual
than GS
but within
accession

No Selection
study

93 Mex-
icana
individuals
from 11
Popula-
tions

Per Individ-
ual

Same indi-
vidual as
GS

Same indi-
vidual as
GS

No Selection
study

6 Parviglu-
mis Popula-
tions

2 Individu-
als per pop-
ulation

NA NA No Teosinte pi-
lot study

10 Mex-
icana
popula-
tions

2 Individu-
als per pop-
ulation

9-12 Indi-
viduals per
population

NA Yes, dif-
ferent
individuals
than GS

Teosinte pi-
lot study

580

581

S2 Table. Geographic information for maize landrace accessions. 582

Accession ID Region Altitude
(m)

Latitude Longitude

RIMMA0388.1 SAL 1500 6.85 -75.28333333
RIMMA0389.1 SAL 7 10.38333333 -74.88333333
RIMMA0390.1 SAL 353 4.516666667 -75.63333333
RIMMA0392.1 SAL 555 1.75 -75.58333333
RIMMA0393.1 SAL 100 8.316666667 -75.15
RIMMA0394.2 SAL 1000 4.783333333 -74.68333333
RIMMA0395.2 SAL 30 8.5 -77.26666667
RIMMA0396.1 SAL 1100 2.583333333 -75.3
RIMMA0397.1 SAL 50 11.55 -72.91666667
RIMMA0398.1 SAL 27 9.433333333 -75.7
RIMMA0399.1 SAL 250 10.18333333 -74.05
RIMMA0403.2 SAL 1000 1.25 -77.51666667
RIMMA0404.1 SAL 1500 7.3 -72.51666667
RIMMA0406.1 SAL 450 4.966666667 -74.9
RIMMA0409.1 ML 107 15.43333333 -92.9
RIMMA0416.1 MH 2140 29.35 -107.75
RIMMA0417.1 MH 2040 28.55 -107.4833333
RIMMA0418.1 MH 2040 28.56666667 -107.4833333
RIMMA0421.1 MH 2250 19.85 -97.98333333
RIMMA0422.1 MH 2200 19.1 -98.3
RIMMA0423.1 MH 2095 29.21666667 -108.1333333
RIMMA0424.1 MH 2400 27.98333333 -107.5833333
RIMMA0425.1 MH 2130 26.81666667 -107.0666667
RIMMA0426.1 SAH 2500 -9.066666667 -77.81666667
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RIMMA0428.1 SAL 700 -9.3 -76
RIMMA0430.1 SAH 2585 -9.166666667 -77.73333333
RIMMA0431.1 SAH 2900 -8.65 -77.08333333
RIMMA0433.1 ML 457 14.71666667 -89.5
RIMMA0436.1 SAH 2200 -6.15 -77.91666667
RIMMA0437.1 SAH 2688 -9.266666667 -77.63333333
RIMMA0438.1 SAH 2820 -8.7 -77.38333333
RIMMA0441.1 ML 1320 19.16666667 -96.96666667
RIMMA0462.1 SAL 1700 1.6 -77.15
RIMMA0464.1 SAH 1800 -12.33333333 -74.7
RIMMA0465.1 SAH 2300 -5.566666667 -79.53333333
RIMMA0466.1 SAH 3600 -14.31666667 -72.91666667
RIMMA0467.1 SAH 2800 -13.58333333 -72.91666667
RIMMA0468.1 SAH 3150 -9.383333333 -77.16666667
RIMMA0473.1 SAH 3104 1.083333333 -77.61666667
RIMMA0614.1 MH 2060 19.95 -103.7666667
RIMMA0615.1 ML 152 20.13333333 -97.2
RIMMA0616.1 MH 1800 20.81666667 -102.7666667
RIMMA0619.1 ML 747 18.35 -99.53333333
RIMMA0620.1 MH 1799 20.21666667 -100.8833333
RIMMA0621.1 MH 1870 21.11666667 -101.6833333
RIMMA0623.1 MH 2520 20.03333333 -103.6833333
RIMMA0625.1 MH 2600 19 -97.38333333
RIMMA0628.1 ML 300 23.31666667 -99.01666667
RIMMA0630.1 MH 2220 19.8 -97.25
RIMMA0657.1 SAH 2201 -17.5 -65.66666667
RIMMA0658.1 SAH 1948 -21.83333333 -64.13333333
RIMMA0661.1 SAH 2195 -2.85 -78.66666667
RIMMA0662.1 SAH 2195 0 -78
RIMMA0663.1 SAH 2067 0.433333333 -78.2
RIMMA0667.1 SAH 2201 -21.83333333 -64.13333333
RIMMA0671.1 MH 2477 14.76666667 -91.25
RIMMA0674.1 MH 2652 19.28333333 -99.66666667
RIMMA0680.1 MH 1890 20.36666667 -102.1666667
RIMMA0690.1 SAL 250 8.316666667 -73.63333333
RIMMA0691.1 SAL 1098 6.55 -73.13333333
RIMMA0696.1 ML 30 16.51666667 -90.16666667
RIMMA0700.1 ML 579 16.75 -93.16666667
RIMMA0701.1 ML 686 16.6 -92.71666667
RIMMA0702.1 ML 1052 14.46666667 -90.75
RIMMA0703.1 ML 30 20.83333333 -88.51666667
RIMMA0708.1 SAL 1098 -3.5 -78.6
RIMMA0709.1 ML 747 16.5 -92.5
RIMMA0710.1 ML 91 15.33333333 -92.63333333
RIMMA0712.1 ML 1220 15.28333333 -90.25
RIMMA0716.1 ML 91 15.31666667 -92.66666667
RIMMA0720.1 ML 39 15.46666667 -88.85
RIMMA0721.1 ML 915 14.61666667 -90.08333333
RIMMA0727.1 ML 1151 14.4 -90.46666667
RIMMA0729.1 ML 122 15.4 -89.66666667
RIMMA0730.1 ML 1067 14.48333333 -90.8
RIMMA0731.1 ML 1520 16.78333333 -96.66666667
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RIMMA0733.1 ML 107 16.56666667 -94.61666667

S3 Table. Measures of genome size from two individuals from each of the 583

10 populations used in FISH to sequence correlation (Fig. 2). 584

Accession Subspecies Ind1 Ind2 Altitude(m)
RIMME0021 mexicana 6.12 6.01 2094
RIMME0026 mexicana 6.21 6.11 2214
RIMME0028 mexicana 5.65 5.53 1916
RIMME0029 mexicana 5.46 5.58 1547
RIMME0030 mexicana 5.98 5.8 2458
RIMME0031 mexicana 6.26 6.39 2609
RIMME0032 mexicana 5.63 5.73 2016
RIMME0033 mexicana 5.43 5.44 1657
RIMME0034 mexicana 5.56 5.38 2173
RIMME0035 mexicana 6.18 6.46 2237
RIMPA0071 parviglumis 6.1 6.1 985
RIMPA0086 parviglumis 6.01 5.9 982
RIMPA0087 parviglumis 5.59 5.63 590
RIMPA0096 parviglumis 6.12 6.03 1528
RIMPA0135 parviglumis 6.25 6.34 880
RIMPA0142 parviglumis 6.33 6.13 1103

585

S4 Table. Geographic information for teosinte populations used in 586

selection studies. 587

Population Latitude Longitutde Altitude (M) Locality
TZ 18.975744992 -99.069713429 1665.116699 Tepoztlán
FP 19.211739153 -99.126956714 2506.984619 S Francisco Pedregal
MT 19.211638905 -98.808725439 2352.93457 S Mateo Tezoquipan
DA 19.145727055 -98.862849986 2408.450439 Tenango del Aire
MC 19.076366471 -98.84329861 2501.216797 S Mat́ıas Cuijingo
M 18.953779545 -99.501451766 1882.853516 Malinalco
TC 19.260426778 -99.722122969 2776.151855 Toluca
TX 19.504571417 -98.922480522 2252.718018 Texcoco de Mora
CL 19.151357012 -99.616249725 2697.564941 Calimaya Lower
CU 19.160612 -99.632908 2792 Calimaya Upper
AM 18.97155 0-99.036917 1591 Amatlán

588

S5 Table. Genome size estimates and altitudinal information for mexicana 589

populations 590

Population Accession DNA
(pg/2C)

Altitude
(m)

Tz 13 5.59 1665
Tz 2 5.46 1665
Tz 3 5.33 1665
Tz 4 5.71 1665
Tz 19 5.71 1665
Tz 23 5.54 1665
Tz 9 5.59 1665
Tz 10 5.54 1665
Tz 12 5.71 1665
Fp 1 6.51 2507
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Fp 2 6.26 2507
Fp 3 6.3 2507
Fp 4 6.43 2507
Fp 5 6.3 2507
Fp E 6.05 2507
Fp 8 6.68 2507
Fp 9 6.13 2507
Fp 12 6.55 2507
Mt 1 6.47 2353
Mt 4 6.34 2353
Mt 5 6.51 2353
Mt 7 6.26 2353
Mt 8 6.38 2353
Mt 9 6.43 2353
Mt 10 6.51 2353
Mt 11 6.43 2353
Mt 12 6.43 2353
Da 1 6.72 2408
Da 2 6.64 2408
Da 3 6.38 2408
Da 5 6.51 2408
Da 6 6.47 2408
Da 8 6.17 2408
Da 9 6.55 2408
Da 10 6.34 2408
Da 11 6.38 2408
Mc 1 6.34 2491.5
Mc 2 6.05 2491.5
Mc 3 6.26 2491.5
Mc 5 6.26 2491.5
Mc 6 6.38 2491.5
Mc 9 6.17 2491.5
Mc 10 6.17 2491.5
Mc 11 6.26 2491.5
Mc 12 6.64 2491.5
M 2 6.26 1881
M 4 5.96 1881
M 5 6.05 1881
M 6 6.13 1881
M 7 6.17 1881
M 8 6.09 1881
M 9 6.17 1881
M 10 6.51 1881
M 11 6.3 1881
Tc 1 6.09 2776
Tc 2 6.13 2776
Tc 3 6.22 2776
Tc 4 5.92 2776
Tc 5 6.34 2776
Tc E/1 5.92 2776
Tc 7 6.13 2776
Tc 8 6.26 2776
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Tc 12 6.3 2776
Tx 2 6.64 2253
Tx 3 6.47 2253
Tx 4 6.38 2253
Tx 7 6.38 2253
Tx 8 6.38 2253
Tx 9 6.3 2253
Tx 10 6.3 2253
Tx 11 6.72 2253
Tx 12 6.72 2253
Cl 1 5.96 2698
Cl 2 6.13 2698
Cl 4 6.05 2698
Cl 5 6.05 2698
Cl 7 6.09 2698
Cl 8 6.05 2698
Cl 9 6.05 2698
Cl 11 6.26 2698
Cl 12 5.92 2698
Cu 1 6.38 2792
Cu 2 6.55 2792
Cu 4 6.3 2792
Cu 5 6.3 2792
Cu 7 6.38 2792
Cu 9 6.51 2792
Cu 10 6.09 2792
Cu 11 6.09 2792
Cu 12 6.09 2792
Am A 5.42 1591
Am B 5.46 1591
Am C 5.5 1591
Am D 5.33 1591
Am E 5.63 1591

S6 Table. Repeated measures of genome size from maize inbreds lines 591
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SampleID Measure1 Measure2
Ki3 5.96 6.01

Ky21 5.50 5.63
NC358 5.92 5.88

B73 5.42 5.46
CML247 6.05 6.05
CML52 6.22 6.13

P39 5.50 5.50
H95 5.84 5.80
A188 5.71 5.63
K55 5.80 5.84
K64 5.71 5.80

NC33 5.75 5.80
Pa762 5.88 5.80

K4 5.54 5.50
M14 5.84 5.80
B64 5.92 5.71
T8 5.59 5.59
B84 5.63 5.50

IDS28 5.46 5.50
CH9 5.67 5.71

CML5 6.13 6.13
CML10 5.96 6.05
CML220 6.13 6.30
CML331 6.05 6.05
CML332 6.05 6.09
NC310 5.67 5.80
NC318 5.84 5.88
NC336 6.26 6.13
NC344 5.67 5.67
SA24 5.84 5.71
SA55 6.05 5.96
Mo46 5.96 5.88

CML264 6.01 5.96
DE1 5.80 5.63

RIMMA0806 5.71 5.67

592

S7 Table. Mexicana Population IDs and number of individuals used for 593

FISH analyses 594

Population ID Number of individuals
RIMME0021 12
RIMME0026 12
RIMME0028 12
RIMME0029 12
RIMME0030 12
RIMME0031 12
RIMME0032 12
RIMME0033 12
RIMME0034 9
RIMME0035 12

595

S8 Table. Altitudinal coefficients from selection models using maize 596
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landraces and highland teosinte. Calculated altitudinal coefficients (β) from the 597

models testing for altitudinal selection. β values are given in units of megabases per 598

meter. *=p-value<0.05; **=p-value<0.005 599

β Maize in MA Maize in SA Mexicana
Genome size -0.1082932 -0.1543104 -0.2698874

Knob180 -0.004977329 -0.04344294 -0.009973119
TR1 -0.005650659 -0.00783801 -0.009217123
TE -16797840 20189310 0.07281335

p-value Maize in MA Maize in SA Mexicana
Genome size 0.002860943 0.00001214581 0.000153224

Knob180 0.6955793 0.02764277 0.9040046
TR1 0.02032799 0.01453535 0.005528401
TE 0.05931269 0.06856391 0.1843363

600

S9 Table. Measured growth rate for Tenango del Aire population in the 601

growth chamber experiment. In plant ID’s, the first digit indicates the mother, 602

while the second is a unique identifier for each individual. 603

ID Genome
Size
(pg/2C)

Initial 24hr
(cm)

48hr
(cm)

72hr
(cm)

1-1 6.11 1.7 6.6 11.3 17.6
1-11 5.98 1 3.7 7.6 12.7
1-12 5.94 3 6.8 11.1 16.2
1-14 5.86 7 11.3 16.3 20.5
1-4 6.29 5.3 9.6 18 NA
1-5 5.92 9.4 10.8 12 12.5
1-6 5.72 3.5 7 11.5 NA
1-7 5.91 5.8 8 10.2 11.9
1-8 6.14 4.9 7.7 11.3 14.6
11-2 5.92 7.6 9 12.6 17.9
11-3 5.8 2.5 6.9 11.6 16.8
11-4 5.8 6.4 11.3 17 21.2
11-6 5.84 2.9 6.1 9.6 13.5
3-2 6.26 7.7 9.4 14.8 17
3-4 6.05 7.4 12.7 16.9 20.9
3-6 6.09 2.9 3.9 12.5 17
3-7 6.22 8.9 14.8 21 26
4-1 5.75 4.5 10 15.6 22.5
4-2 5.92 7.5 11.3 13.4 18.6
4-4 6.34 4.5 8.6 13.5 18.3
4-6 6.13 5.7 8.9 10 14.6
4-7 5.96 6 11.3 17.6 24.3
8-1 5.96 6.1 9.1 13.1 16.5
8-10 6.01 4.1 7.5 11.5 12.7
8-11 5.92 3.5 7.3 13 19.4
8-12 5.84 3.5 6.8 11.2 16.4
8-13 6.05 8 13.1 17.3 21.8
8-14 5.75 3.5 7.3 10.9 15.5
8-15 6.09 2.1 6 11.3 16.6
8-16 6.13 5.1 10.3 16.5 23
8-2 6.17 6 9.5 14 17.5
8-3 6.55 4.7 9.2 12.5 18.2
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8-4 6.34 4.2 7 10.6 16
8-5 6.43 3 5.1 7.9 11.2
8-7 6.01 8.6 13.6 18.9 NA
8-8a 6.51 6.3 8 NA 10.7
8-8b 6.09 2.5 4.1 7.8 12.2
8-9 6.22 8.1 12 16.8 22.1
a-1 5.92 2 5.9 9.9 14.7
a-10 6.01 3.5 4.8 7.2 10.5
a-12 5.84 3.2 6.5 10 13.2
a-2 5.71 7.5 12.9 18.5 23
a-3 5.96 14.1 16.2 19 20.1
a-4 6.09 13 18 22.6 26
a-5 5.96 5.5 9.2 14.5 19.3
a-6 5.92 5.3 7.7 12.2 16
a-7 5.8 5.4 7.2 10.5 15
a-8 6.22 4.2 8.6 14 18.9
a-9 6.05 8 11.4 15 18.1
b-1 6.01 3.3 5.5 9.5 15
b-2 6.55 2 5.6 9.6 13.9
b-3 5.8 6.2 11.3 16.8 19.2
b-4 6.3 8.3 12.5 14 17.5
b-6 5.96 9.4 12.9 18.3 24.6
b-7 5.92 2.4 5.2 12 17.4
bulk-1 6.01 8.6 12.1 15.9 20.5
bulk-10 6.43 2 5.5 10.5 16
bulk-11 6.17 5.5 9.2 14.8 18.5
bulk-12 5.71 8.4 13.3 16.2 22.1
bulk-13 5.96 5.1 8.9 12 17
bulk-14 6.13 5.3 8.1 12.7 17.3
bulk-16 5.96 1.6 4.5 8.2 14
bulk-17 6.05 2.7 6.5 11.4 15.2
bulk-18 5.92 1.2 4.5 7.5 12.5
bulk-19 6.07 4 6 10 14.6
bulk-20 6.1 3.7 6.3 11.1 14.7
bulk-21 5.98 1.8 4.8 6.9 13.7
bulk-22 6.01 6.1 9 12.8 18.1
bulk-23 5.96 0.9 6 8 13.6
bulk-24 5.98 3 4.4 8 13.6
bulk-25 5.88 8.6 13.9 16.6 22
bulk-26 5.85 3 6.9 10.9 15.1
bulk-28 5.85 2 6 10.5 15.9
bulk-29 5.85 7.7 11.8 16.2 20.5
bulk-30 6.11 5.6 8.3 13 18
bulk-31 6.01 2.5 5.5 7.9 12
bulk-32 5.92 3.5 8.4 13.7 19.2
bulk-35 6.01 6 11.4 18 23.6
bulk-36 5.96 3.9 10.1 16.6 24.2
bulk-37 6.01 2.6 5.5 9.2 16.8
bulk-38 5.9 0.5 4.6 10 16.8
bulk-4 6.05 6.4 9.7 16 19
bulk-40 6.1 6.7 12.2 19.1 25
bulk-42 6.13 5.5 10.1 15.2 20.4
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bulk-5 5.96 1.6 4.8 9.8 14.5
bulk-6 6.13 6 9 13.5 16.6
bulk-7 6.17 3.5 6.8 13 16.7
bulk-8 6.43 5.2 8.4 12.6 17
bulk-9 6.05 5.4 8.4 13.1 17.6
c-1 5.71 6.4 8.7 14.3 20
c-10 5.88 1.9 6.6 12 18.6
c-11 5.84 2.8 6.1 11.1 15.7
c-2 5.59 4.4 7.3 12 17.5
c-3 5.67 5 11 17.1 24.3
c-4 5.63 3.5 5 9 12.8
c-5 5.71 5.5 8.8 13.5 17.6
c-6 5.84 5.5 10.3 16.5 22.3
c-7 5.71 NA 22.8 28.8 34.3
c-8 5.84 11.5 18 24.1 30.5
c-9 5.63 6 10.6 16.1 22.1
d-1 5.96 6.2 11.5 16.6 22
d-10 6.09 1.9 6.4 11.8 18
d-12 6.05 2.1 6 11.6 17.8
d-13 6.13 1.6 6 11 17.4
d-14 6.13 3.2 7.2 13.1 20.3
d-15 5.84 2.6 7.8 13 NA
d-16 6.01 4.6 9.8 15.6 22
d-17 5.75 2.1 6 10.5 14.6
d-18 5.84 8 13.4 19.5 26.5
d-2 5.84 NA 20.5 27.8 34.5
d-20 6.05 3.6 9.7 16.6 24
d-3 5.88 7 12.1 18 23.5
d-4 5.84 1.7 5.3 12.3 14.2
d-6 5.75 3.5 9.4 13.2 19.3
d-7 5.84 9.5 15 18.2 22
d-8 5.75 3.1 6.8 10.1 14.7
d-9 6.09 7.5 10.1 14.8 18
e-1 5.84 1.7 2 8.5 13.4
e-10 6.26 3.5 7.8 13.1 19
e-11 5.88 3.5 8.6 15.5 22.3
e-12 5.92 4.3 9.5 16.6 24.1
e-13 5.63 5 10.5 18 25
e-14 5.96 2.7 7.3 13.5 19.9
e-15 5.8 2.3 7 11.6 17.2
e-16 6.3 5.6 10 15.8 21.6
e-17 6.01 9.1 14.3 19.2 23.5
e-18 5.84 1.5 4.5 8.4 12.5
e-19 5.92 5.4 9.5 14.5 18.6
e-3 5.96 5 11.9 12.2 15.6
e-4 5.92 1.5 4.3 8.8 14.7
e-6 6.05 3.3 6.4 11.5 14.1
e-8 6.01 4.5 8 13.2 21.2
e-9 5.92 2.5 6 13.8 21.5
f-1 5.88 7.5 11 16.2 22.2
f-2 5.42 6.2 8.3 12.2 16.5
f-3 5.8 3.3 6.8 11.2 16.2
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f-4 5.59 1.1 4 8.2 12.8
f-6 5.88 2.6 4.1 9.1 11.5
f-7 5.63 1.2 5.1 10 16
f-8 5.84 0.3 2.6 6.8 12.2
g-1 5.54 8.5 13.5 19.6 25.2
g-10 5.75 3.6 7.3 12.6 18.6
g-2 5.71 8.5 13.4 18.5 22.6
g-3 5.75 5.3 8.8 13.4 17.4
g-4 5.84 8 11.6 15.2 21
g-5 5.67 3.2 6.2 9.6 15.5
g-6 5.71 3.5 7.3 12.7 18.6
g-7 6.01 4.6 8 11.4 16
g-8 6.05 3.5 6.9 11.5 17
g-9 5.84 10.1 15.3 21.3 30.5
h-10 5.96 4.6 8 13.1 17
h-13 6.09 3.5 8.5 13.4 18.3
h-2 5.96 4 8 12.3 16
h-4 6.01 3 5.6 8.6 12.5
h-5 5.84 2.4 5.3 10 15.5
h-6 6.13 3 7 11.5 16.2
h-7 6.09 7 11.5 16 20.3
h-8 6.43 8.4 13.5 21 27.1
h-9 5.92 1.8 5.3 10.8 17.1
i-1 5.88 4.5 7.2 12.2 17
i-10 5.96 5 8.4 12.6 18.3
i-12 5.75 3.1 6.4 9.6 12.2
i-13 5.88 3.6 7.3 11.6 16.6
i-2 6.01 6 10.5 15.5 20.6
i-3 5.84 7.5 10.1 14.5 19.5
i-4 5.88 5.2 14.5 20.3 26
i-7 5.8 3.5 6.9 12.1 14.5
i-9 5.71 4.3 8.9 13.1 17.6
j-1 6.09 2.1 3.8 9.4 12
j-10 6.13 3.5 8.5 13.5 19.4
j-11 5.88 0.9 5 11 NA
j-2 6.38 7.4 10.5 14.8 18.3
j-3 6.3 2 6 10.5 14.6
j-4 5.88 3.5 8.2 11.7 16.7
j-5 5.96 4.7 8.4 12.6 17.3
j-7 5.92 1.5 5.5 9 11.7
j-8 6.34 2.4 5.6 10.5 15.6
j-9 6.09 3.5 7.8 13 18.5
k-10 5.74 1.5 6 11.5 18.2
k-11 5.5 2.5 6.5 11.8 17.9
k-14 5.94 2.1 5.6 9.8 14.1
k-15 5.77 1 4.5 9 13.6
k-16 5.82 1.1 4 8.1 12.5
k-17 5.93 5.6 10.4 15.9 21.5
k-3 5.88 1.4 3 8.7 13.5
k-5 5.74 4.8 10.5 18 30.1
k-6 5.9 2.1 6.1 11.6 18.1
k-7 5.66 7.7 13.3 19.5 25.1
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k-8 6.01 4.2 9.6 16.6 23.6
k-9 5.77 3.4 6 9.8 11.5
l-10 5.75 7.4 11 16 21.5
l-11 5.8 10.6 15.7 21.2 25.5
l-12 5.71 4.6 9 14 19.5
l-13 6.05 7.4 7.9 16.9 22.4
l-15 6.22 0.3 4.5 9.9 15.5
l-16 5.92 13.2 18.5 23.6 27.2
l-3 5.88 4.5 8.9 14.1 18.6
l-6 5.96 6.9 11.5 16.5 21.1
l-7 6.01 8 14.3 22.9 29
l-8 6.17 3.4 6.7 11.6 14.5
l-9 5.96 4.2 8.9 15 21

Acknowledgments 604
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