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Abstract. While RNA is often created from linear splicing during tran-
scription, recent studies have found that non-canonical splicing some-
times occurs. Non-canonical splicing joins 3’ and 5’ and forms the so-
called circular RNA. It is now believed that circular RNA plays im-
portant biological roles such as affecting susceptibility in some diseases.
within these few years, several experimental methods have been devel-
oped to enrich circular RNA while degrade linear RNA. Although several
useful software tools for circRNA detection have been developed as well,
these tools may miss many circular RNA. Also, existing tools are slow for
large data because those tools often depend on reads mapping. In this
paper, we present a new computational approach, named CircMarker,
based on k-mers rather than reads mapping for circular RNA detection.
CircMarker takes advantage of transcriptome annotation files to create
k-mer table for circular RNA detection. Empirical results show that Circ-
Marker outperforms existing tools in circular RNA detection on accuracy
and efficiency in many simulated and real datasets. CircMarker can be
downloaded from https://github.com/lxwgcool/CircMarker.

Keywords: circular RNA, high-throughput sequencing, genomics, RNA-
Seq

1 Introduction

In most eukaryotic genes, coding regions (exons) are separated from noncoding
regions (introns). During the process of RNA splicing, introns are removed and
exons are joined to form a contiguous coding sequence called messenger ribonu-
cleic acid (mRNA). This “mature” mRNA is ready for translation, and those
contiguous coding sequences are called transcription [2]. Splicing often occurs in
a linear way, which generates the so-called linear RNA. Recent studies show that
sometimes circular RNA may be generated during transcription [14]. Circular
RNA (or circRNA) is a type of RNA which forms a covalently closed continu-
ous loop. That is, the 3’ and 5’ ends normally present in an RNA molecule are
joined together [1]. This feature leads to numerous properties of circular RNAs
[15]. However, since the amount of circular RNA is often much lower than linear
RNA, circular RNA has not been thoroughly studied until recently. During the
past several years, several papers report that circular RNA may be associated
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with diseases and traits. The increasing number of circular RNAs have been
identified recently [7, 6].

Since circular RNAs do not have 5’ or 3’ ends, they are resistant to exonuclease-
mediated degradation and are presumably more stable than most linear RNAs
in cells. Based on this feature, some benchmark experimental methods have been
developed to degrade the linear RNA while enrich the circular RNA. For exam-
ple, one method is treating samples with RNase R, an enzyme which degrades
linear RNAs but not circular RNAs. This treatment can enrich circular RNAs
[9]. Often circular RNA comes with the splicing signals of “AG” or “AC” as
starting while “GT” or “CT” as ending for direction “+” and “-” respectively
[8].

Computational tools for circular RNA detection have been developed. Cur-
rently, there are several existing tools for circular RNA detection, such as Find circ
[13], CIRCexplorer [16] and CIRI [3]. Find circ is one of the first tools for cir-
cular RNA detection. Since it is difficult to map the joint position of circular
splicing back to the reference genome, Find circ tries to collect all un-mapped
reads based on reads mapping results from Bowtie [11]. Then, all unmapped
reads are converted to new short reads by combining the head parts and the
tail parts of current reads together. Then Find circ maps the new short reads
back to the reference. CIRCexplorer performs reads mapping using Bowtie and
TopHat. The main idea is using the concept of fusion gene to detect circular
RNA. First, CIRCexplorer tries to find out the un-mapped reads. Then, those
un-mapped reads are mapped back to the reference using TopHat-Fusion [10] to
detect potential circular RNA candidates with the back-spliced junction reads.
CIRI uses BWA for reads mapping, trying to find circular RNA by analyzing
CIGAR signatures in the SAM file. Some of these tools such as CIRCexplorer
depend on transcriptome annotation, while others support de novo circular RNA
detection, such as Find circ.

All of these methods mentioned above depend on reads mapping. These map-
ping based methods have some inherent issues. The first issue is computational
efficiency: the existing tools use BWA, Bowtie or TopHat for reads mapping.
Although BWA and Bowtie are widely used in sequence analysis, reads map-
ping is still time-consuming for circular RNA detection. This is because reads
mapping tries to map every read, even when the read is not relevant for circular
RNA detection. In addition, since some new short sequences may be created
in the middle by circRNA detection tools for the second round mapping, reads
mapping can become very slow when TopHat-fusion is used, due to the length
of sequences. Moreover, these tools may miss circular RNA in some cases due to
errors in reads mapping. For example, some reads related to circular RNA may
be un-mapped due to reads error.

In this paper, we develop a new computational method, called CircMarker,
for circular RNA detection. The objective of CircMarker is finding the presence
of circular RNA (in particular the join of two known exons). CircMarker doesn’t
reconstruct the complete sequence of circular RNA. The key idea of CircMarker
is that it doesn’t rely on reads mapping. Instead, CircMarker analyzes short se-
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quence segments, called k-mers, for circular RNA detection. The main advantage
of using k-mers is efficiency: finding k-mers from reads is much faster than reads
mapping. Another advantage is that k-mer tolerates more errors in reads and
carries useful information about the presence of circular RNA, which may be
missed by reads mapping. Empirical results show that CircMarker is more ac-
curate than (or as accurate as) existing methods on simulated and real datasets
in calling circular RNA. CircMaker runs much faster than existing methods.

2 Method

High-level approach. The overall approach of CircMarker is shown in Fig-
ure 1. CircMarker is based on analyzing k-mers in the sequence reads. That
is, CircMarker doesn’t perform reads mapping. CircMarker only considers the
circular RNA which comes from the exons identified by annotation file. We do
not consider de novo circular RNA cases. CircMarker uses three types of inputs,
including the reference genome, the transcription annotation file and sequence
reads. Note that all circular splicing that we consider here occurs at the bound-
ary of exons identified by the given annotation file. CircMarker first processes
the annotation file and the reference genome. It extracts and stores all k-mers
that are located near the exon boundaries. To speed up, CircMarker first per-
forms a fast check to find the reads that are likely to be relevant for circular
RNA detection. Then it processes each read and compares k-mers in the read
with the stored k-mers to identify circular RNA based on the signatures from
circular RNA. When two k-mers from a single read are out of order with regard
to the reference, CircMarker considers this as an evidence for the existence of
circular RNA. This is illustrated in Figure 1.

2.1 Processing the reference genome and annotations

CircMarker creates a table for storing the k-mers within the reference genome
that are near the exon boundaries as specified by the annotations. The k-mer
table is designed to be space-efficient. We only record the following five types of
information for each k-mer, including chromosome index, gene index, transcript
index, exon index and the part tag as shown in Figure 2. The “part tag” specifies
whether the k-mer comes from the head (i.e. beginning) part or the tail (i.e.
ending) part of the exon. Due to the relative small ranges of index, a record
on a k-mer only needs eight bytes. We call it the de novo position. One k-mer
may contain a group of de novo positions. 32 bits integer is used to store the
information of a k-mer, which means the maximum length of a k-mer should be
shorter than 16 bp, and all k-mers which contain invalid letters such as “N” are
discarded.

When extracting k-mers from annotated exons in the reference genome, we
only consider the exons with circular splicing signal in either head or tail part.
And we only consider the k-mers which come from the left and right boundaries
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Fig. 1. The procedure of the circular RNA detection. (A) A fast check for finding
circular RNA relevant reads by sampling. The blue arrow stands for reads and the
dots within it present the sparsely sampled k-mers. Gray dot: k-mer with no hit in the
k-mer table from annotation. Red dot: k-mer which finds a hit in k-mer table. Reads
inside green box: pass quick check. (B) Scanning k-mer sequentially from the beginning
to the end for each read. Yellow arrow: k-mer. (C) Calling circular RNA using various
criteria and filters. Green bar: exon along the reference. Two transcriptions are listed
here. The upper: with 3 exons, and the red arrow identified a potential circular RNA.
The lower: with 2 exons, and the gray arrow stands for linear RNA.

of the exon. The length of the boundary region LB is defined as below:

LB = LR ×Rc

Lem = 2× LB + 2×K − 1

Here K is the length of the k-mer. LR is the length of reads, and Rc represents
the percentage of reads that should be covered in each boundary. Since we expect
more than half reads to be considered, we set the default value of Rc as 30%
(2 ∗ 30% = 60% > 50%). If Le ≤ Lem , we use the whole exon to create k-mer
and set the part tag as “S” if it located in the first half part and “E” for the
second half. Otherwise, we use the head boundary and tail boundary of current
exon to extract k-mers and set the part tag to “S” or “E” respectively.

2.2 Processing sequence reads

Once k-mer table of the annotated exons is created, we now process each sequence
read. Here we examine k-mers contained in a read and search for a match in
the k-mer table. This way, we obtain the “hitting status”, which means which
transcription can be hit by current reads. “hit exon” means the exon that is hit
by the k-mer in the reads in k-mer table. Each reads may related to more than
one hitting status, each hitting status contains at least one hit exon, and each
hit exon should be supported by at least one k-mer. We scan all reads to check
their hitting statuses. In order to skip irrelevant reads, we perform basic check
initially by sampling eight k-mers from 10% to 80% position of the current read.
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Fig. 2. Collecting k-mers from annotated exons in reference genome. These k-mers are
stored in a table that will be used to compare with the reads. (A) Annotations from
one chromosome. Blue bars stand for valid exons while gray bars stand for the invalid
ones which do not contain any circular splicing signal. (B) Extracting K-mer. Yellow
arrows stand for the k-mers from the boundary (red frame) of each exon. All of k-mers
from short exon will be considered (the second case). “S” or “E” is the value of part
tag. (C) Showing all de novo positions of the k-mer with purple box in B). Green box:
all types of information in one de novo position.

The read passes the sampling check only if at least two k-mers can find a hit in
the k-mer table. If so, we examine all of k-mers from start to end, collecting all
hitting statuses in this order. Since each hitting status is contributed by multiple
k-mers, the “best hitting case” is defined as:{

Nh − PreBestHitNum > 5 or

|Nh − PreBestHitNum| ≤ 5 and
∑

Lhe
< PreBestHitLen

Nh specifies the number of k-mers which supports all of hit exons in one hitting
status. The PreBestHitNum means the Nh of previous best hitting status, Lhe

means the length of one hit exon in current hitting status, and PreBestHitLen
means the summary length of the hit exons in previous best hitting status. If
Nh is larger than PreBestHitNum + 5, the current hitting status will be set
as the previous best hitting case, which means we prefer the hitting status with
conditional larger number of k-mers supporters. Otherwise, the hitting status
with the shorter summary length of the hit exon will be chosen. We set the
previous best hitting status as the final best hitting case when all of hitting
status been processed. Finally, the Nh of best hitting case should be at least 5.
Otherwise it is discarded.

2.3 Filtering

The previous step identifies best hitting cases. Due to the inherent noise in the
data (e.g. read errors and duplications), we perform the following filtering step
to improve the accuracy. There are two main filtering procedures.
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Filtering procedure one. The first filter procedure is checking the hitting number.
The minimum hitting number Nhm

is defined as below:

Nhm =

{∑
Le −K + 5, if

∑
Lhe
≤ Lem

LB × 1.2, if
∑

Lhe
> Lem

The key is that short exons should be fully covered by the reads more than one
time. Otherwise, we need to ensure the reads to be within both boundaries of
the hit exons. Any best hitting case is discarded if the Nh is smaller than Nhm .

Filtering procedure two. Based on the number of hit exons in best hitting case,
we divide all cases into two types: the case of self-circular if the number of hit
exons is equal to 1, and the regular-circular case otherwise.

For self-circular case, only the exon containing circular splicing signal in both
sides will be considered. Then, the best hitting case will be considered as the
self-circular RNA candidate if Le ≤ Lem . Otherwise, we collect the part tags
from begin to end, and condense the tags which belong to the same exon based
on the number of hitting. For example, we define S(n) as n continuous tag “S”
in one exon (similar for E(n)). If we have S(1) and E(10) in one exon, then
we condense them to E(10). This may help us to filter some random hits. We
consider a candidate a valid self-circular RNA only if the number of tags after
condensation is equal to 2 and the tags are arranged from E to S sequentially
(i.e. going backward at the circular RNA join junction).

For the regular-circular case, the best hitting case will be considered only
if it contains two exons. First, an exon will be skipped if its hitting time is at
most 3 in order to remove some random hits. Then, we try to condense the tags.
Here the method described in the self-circular case will be applied at first. After
that, for the first exon we condense SE to E while condensing SE to S for the
second exon. This condensation logic may solve the problem that some of exons
are fully covered by current reads. The best hitting case will be kept only if the
number of condensed tag in both exons is equal with 1 and the tags arranged
from E to S sequentially.

2.4 Calling circular RNA

There are two cases for calling circular RNA: the self-circular case and the
regular-circular case.

Self-Circular RNA. First, a self-circular RNA candidate will be discarded if the
length of current exon is shorter than the read length while the Nh is smaller
than Le−K+1. Otherwise, the best hitting case will be considered to be a valid
self-circular RNA candidate if it contains circular splicing signals in both sides.

Regular-Circular RNA. For the direction “+”, the candidate will be dropped
if the exon index increases monotonically. Otherwise, we try to identify the
breakpoint at the position of the first deceasing and set it to be the joint junction
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of circular RNA. We call the exon with large index as the head exon while another
one as the tail exon. Based on this definition, the head exon is located in the
later part of the reference, while tail exon is located in the earlier part, and the
circle should connect the head exon back to the tail exon. The candidate will be
viewed as a valid regular-circular RNA candidate only if the head exon and tail
exon have the tail and head circular splicing signal respectively. We set the end
position of head exon and the start position of tail exon as the position of this
called regular-circular RNA.

For the direction “-”, the procedures is mostly the same as the direction
“+”. The only difference is how to choose the joint junction. In this case, the
candidate will be dropped if the exon index decreases monotonically. Otherwise
we try to identify the breakpoint at the the first increasing and set it to be the
joint junction of circular RNA. The exon with small index is viewed as the head
exon while the big index exon is set as tail exon.

Refining circular RNA candidates. We count how many reads support each
circular RNA candidate. Only the candidate with support number smaller than
the predefined threshold will be viewed as the correct one. Since the maximum
coverage of circular RNA is unknown in most cases, we set the default value to
be 999 to allow all of valid circular RNA candidates.

3 Results

Since the study of circular RNA is still at an early stage, there is no widely
accepted benchmark data for evaluating the circular RNA calling at present.
Recently, there are some public circular RNA databases which collect different
types of circular RNA from published papers. Some databases come with the
recommended circular RNA detection tool, such as CircBase [5]. Others focus
on collecting the relationship between circular RNA and diseases or traits, such
as Circ2Traits [4].

In this paper, we use both simulated and real data to compare CircMarker
with three existing tools, including CIRI, Find circ, and CIRCexplorer in terms
of the number of called circular RNA, accuracy, consensus-based sensitivity, bias
and running time. When comparing the genomic positions of circular joint junc-
tion, we allow up to five bp tolerance. Since CircMarker is based on k-mers and
each chromosome has its own k-mer table, the running time can be reduced
significantly by parallelization (i.e. running analysis on each chromosome in par-
allel).We compare the performance of these tools on the first three chromosomes
individually. Because some existing tools do not support parallelization, we use
a single core to run each program for circular RNA detection, and use 10 to 12
cores to run the reads mapping programs such as BWA, Bowtie and TopHat.

3.1 Simulated data

We first use simulated data for evaluation. To generate simulated data, we use
the simulation script (called “CIRIsimulator.pl”) released by CIRI. The reference
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Fig. 3. (A) The number of circular RNA called by each tool in case 1 (10X and 100X,
the left cluster) and case 2 (50X&50X, the right cluster). Yellow bars: the number of
un-hit (i.e. incorrectly called) circular RNA. Blue bars: the number of hit (i.e. correctly
called) circular RNA. (B) The accuracy of each tool in cases 1 and 2. (C) The running
time (in minutes) of each tool in both cases.

genome is the chromosome 1 in human genome (GRCh37). The annotation file
is the version 18 (Ensembl 73). Two different cases are simulated as follows: (1)
pair-end reads with 13,856,032 sequences, which roughly lead to 10X coverage for
circular RNA and 100X coverage for linear RNA, and (2) pair-end reads contains
with 9,400,036 sequences, which lead to us 50X coverage for both circular and
linear RNA. The goal of the case 1 simulation is simulating the regular RNA-seq,
while the case 2 focuses on the situation when the coverage of circular RNA is
higher. The reads length is 101 bp and the insert size is 252 bp in both cases.
The total number of simulated circular RNA in benchmark is 8,033 and 8,071
for those two cases respectively. Note that the true circular RNA is known in
simulated data, which can be used in comparison. Since the coverage of circular
RNA is known in simulated data, we set the “maximum support reads” equal
with 10 and 50 in CircMarker respectively. We use the following three statistics
for comparison: (1) hit number Nh: the number of called circular RNA that are
true, (2) accuracy:Nh

N where N is the total number of called circular RNAs by a
method, (3) running time.

The results of the four tools being compared are shown in Figure 3. Our re-
sults show that CircMarker outperforms the existing tools in terms of hit number,
accuracy and running time. This is especially evident in case 1 (the left part in
Figure 3), where CircMarker has fewer false positives and also calls more correct
circular RNA than other tools. For case 2, the accuracy of CircMarker decreased
to 32.04% from 70.90% in case 1. This is likely due to the week performance of
the option “coverage filter”, for the similar coverage in both linear and circular
RNA. Still, CircMarker is slightly more accurate than existing tools in this case.
Moreover, CircMarker runs much faster than existing tools.
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3.2 Real data

We use two types of real data to evaluate the performance of the four tools.

Real RNase R treated sequence reads with public database informa-
tion. As described before, some public databases contain circular RNA called
by published papers. In those papers, the authors usually only validate parts of
the computationally detected circular RNA using biological experiments. The
final result will be released only when the accuracy of those randomly chosen
candidates meets certain standard. Therefore, we consider those released circular
RNAs in these databases are reliable in this paper.

Data Collection We choose CircBase as the standard circular RNA database of
homo sapiens. We use the circular RNAs recorded in this database as “bench-
mark”. The reference genome and annotation file come from homo sapiens GRCm37
version 75. The RNA-Seq reads are from SRR901967. These RNA-Seq reads are
used to examine circular RNAs from RNase R treated poly(A)-/ribo- RNAs in
human embryonic stem cells. There are total 41,342,095 single-end reads in this
data.

We use the first three human chromosomes for comparison and use four
statistics for comparison. (1) Hit number Nhdb

: the number of circular RNA
which has a matched circular RNA in the database. These matched circular
RNA are called reliable circular RNA. (2) Intersection: the intersection of reliable
circular RNA between CircMarker and other tools. This value could be used to
evaluate the bias. (3) Reliability ratio:

Nhdb

N . This measures the fraction of the
number of matched circular RNA with regard to the total called ones N . (4)
Running time. The best tool is expected to have large intersection with other
tools (low bias), large number of reliable circular RNA with high reliability ratio.

The number of circular RNAs in CircBase from chromosome 1 to chromosome
3 is 9,142, 7,530 and 5,320 respectively. The results show that CircMarker finds
more “benchmarked” circular RNAs and runs much faster than others (Figure 4
A, C). For the reliability ratio, there is a trade off with hit number. CIRI obtains
the highest reliable ratio, but has the smallest hit number. The reliability ratio
of CircMarker is similar to those of Find circ and CIRCexplorer (Figure 4 A).
CircMarker has the largest hit number. In addition, CircMarker has the large
intersection with the results from other tools in all three chromosomes, which
means it has low bias (Figure 4 B). As a result, CircMarker outperform the other
tools in this data.

Real RNase R Treated/Untreated Data RNase R is an experimental tech-
nology that can break down linear RNA and enrich circular RNA. As a result,
one popular way for validating a circular RNA detection tool is running the tool
in two different types of reads: one from only rRNA eliminated sample (called
untreated), and the other from RNase R treated sample. The circular RNA which
can be found in both types of reads is considered to be reliable.
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Fig. 4. (A) The number of circular RNA called by each tool from chromosome 1 to
chromosome 3. Yellow bars: the number of called circular RNAs which do not match
with database. Blue bars: the number of circular RNAs that have matches in database.
(B) Intersection: the number of circular RNAs in the intersection of reliable circular
RNA Nhdb between CircMarker and other tools. High intersection ratio implies low
bias. (C) The running time (in minutes) of each tool in all three chromosomes.

Data Collection. The reference genome and the annotation file are from Mus
Musculus GRCm38 Release79. The RNase R treated reads are from SRR2219951
and the untreated reads are from SRR2185851. The library was prepared using
the script Seq v2 Kit from Epicentre [12], and this data has been used to delineate
the circular RNA complement of mouse brain at age 8 to 9 weeks. Both datasets
contain pair-end reads, and SRR2219951 (treated) contains 44,661,952 sequences
while SRR2185851 (untreated) contains 65,879,618 sequences.

We use the first three chromosomes of Mus Musculus with the two types of
reads for comparison. We use the following three statistics. (1) Reliable circu-
lar RNA: the reliable circular RNA are from the intersection of called circular
RNAs between the treated and untreated reads. Each tool reports its own re-
liable circular RNA from chromosomes 1 to 3. (2) Consensus-based sensitivity:
we say a called circular RNA to be trusted if this circRNA is called by at least
two tools. These trusted RNAs are considered to be “benchmark”. We collect
these trusted circular RNA for each chromosome. Then, we calculate the in-
tersection between the reliable circular RNA and the benchmark for each tool
respectively from chromosome 1 to 3. The consensus-based sensitivity is cal-

culated by: |intersection||benchmark| . (3) Running time. Ideally, a circular RNA detection

tool should obtain large number of reliable circRNA with high consensus-based
sensitivity and fast running time in each chromosome.

The results are shown in Figure 5. CircMarker finds larger number of re-
liable circular RNA than others in all three chromosomes (Figure 5 A). The
number of circRNAs in benchmark (i.e. trusted circRNA supported by at least
two tools) is 322, 353 and 186 for chromosomes 1 to 3 respectively. One can see
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Fig. 5. (A) The number of reliable circular RNAs called by each tool from chromosomes
1 to 3. The reliable circular RNAs come from the candidates which could be found in
both treated and untreated sample. (B) The consensus-based sensitivity of each tool,
which measures how many benchmark (i.e. found by at least two tools) circular RNA
be contributed by the reliable circular RNA from each tool.

that CircMarker gets the largest number of reliable circular RNA in all three
chromosomes. In addition, it gains the highest consensus-based sensitivity in
chromosome 1 and 3, but has slightly lower than find circ in chromosome 2 (Fig-
ure 5 B). Moreover, CircMarker only needs around 15 minutes to finish the whole
analysis of teated sample while other tools may take at least 1 hour (CIRCexplo-
prer even takes more than 9 hours). Overall, CircMarker outperforms the other
tools on this data.

4 Conclusion

In this paper, we develop a new circular RNA detection method called Circ-
Marker based on k-mer analysis. CircMarker runs much faster than other tools
because it doesn’t perform reads mapping. Moreover, k-mers contain useful in-
formation about circular RNA detection. Our results on both simulation data
and real data demonstrate that CircMarker can find more circular RNA. It
has higher consensus-based sensitivity and high accuracy/reliable ratio com-
pared with others. In addition, the circular RNAs called by CircMarker often
contain most circular RNAs called by other tools in the real data we tested.
This implies that CircMarker has low bias. CircMarker is easy for use. Circ-
Marker is a stand-alone tool (implemented by C++) and does not depend on
any third party tools. The source code and test data can be downloaded at:
https://github.com/lxwgcool/CircMarker.
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