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Abstract	
	
Genetic	 interaction	networks	are	a	powerful	approach	 for	 functional	genomics,	 and	 the	

synthetic	lethal	interactions	that	comprise	these	networks	offer	a	compelling	strategy	for	

identifying	 candidate	 cancer	 targets.	 As	 the	 number	 of	 published	 shRNA	 and	 CRISPR	

perturbation	screens	in	cancer	cell	lines	expands,	there	is	an	opportunity	for	integrative	

analysis	 that	 goes	 further	 than	 pairwise	 synthetic	 lethality	 and	 discovers	 genetic	

vulnerabilities	of	related	sets	of	cell	lines.	We	re-analyze	over	100	high-quality,	genome-

scale	shRNA	screens	in	human	cancer	cell	lines	and	derive	a	quantitative	fitness	score	for	

each	gene	that	accurately	reflects	genotype-specific	gene	essentiality.	We	identify	pairs	of	

genes	with	 correlated	 essentiality	profiles	 and	merge	 them	 into	 a	 cancer	 coessentiality	

network,	where	shared	patterns	of	genetic	vulnerability	in	cell	lines	give	rise	to	clusters	

of	functionally	related	genes	in	the	network.	Network	clustering	discriminates	among	all	

three	 defined	 subtypes	 of	 breast	 cancer	 cell	 lines	 (basal,	 luminal,	 and	Her2-amplified),	

and	further	identifies	novel	subsets	of	Her2+	and	ovarian	cancer	cells.	 	We	demonstrate	

the	 utility	 of	 the	 network	 as	 a	 platform	 for	 both	 hypothesis-driven	 and	 data-driven	

discovery	of	context-specific	essential	genes	and	their	associated	biomarkers.	
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Introduction	
	
	

The	concept	of	synthetic	lethality,	where	one	gene	becomes	essential	in	the	presence	of	a	

second	 gene’s	 mutation	 or	 loss	 of	 function,	 has	 long	 been	 recognized	 as	 a	 powerful	

strategy	 to	 finding	 candidate	 therapeutic	 targets	 for	 cancer	 [1].	 Recently,	 several	

promising	 leads	 for	 chemotherapeutic	 targeting	 were	 discovered	 by	 identifying	 likely	

synthetic	 lethal	 gene	 pairs	 where	 one	 member	 of	 the	 pair	 is	 frequently	 co-deleted	

alongside	a	neighboring	tumor	suppressor	gene	–	an	approach	called	collateral	 lethality	

[2].	 In	 glioblastoma,	 for	 example,	 the	 glycolytic	 gene	 enolase	 1	 (ENO1)	 is	 frequently	

deleted,	rendering	those	cells	specifically	dependent	on	the	gene’s	homologue,	ENO2	[2].	

Similarly,	in	pancreatic	cancer,	malic	enzyme	2	(ME2),	which	converts	malate	to	pyruvate	

in	the	mitochondria,	imparts	a	selective	dependency	on	its	paralog	ME3	when	ME2	is	co-

deleted	with	tumor	suppressor	SMAD4	[3].		

	

The	 best	 known	 clinical	 application	 of	 synthetic	 lethality	 is	 the	 emergent	 sensitivity	 to	

PARP	 inhibitors	 discovered	 in	 BRCA1	 and	 BRCA2	 mutant	 cells	 [4-6].	 The	 FDA	 has	

recently	 expanded	 the	 clinical	 application	 of	 the	 PARP	 inhibitor	 olaparib	 beyond	

BRCA1/2-mutant	 ovarian	 cancer	 to	 patients	with	 BRCA1/2	 or	 ATM-mutated	 advanced	

prostate	cancer.	The	addition	of	ATM-mutant	backgrounds	 is	 the	result	of	an	 important	

trend	in	preclinical	research	regarding	olaparib	inhibitor	efficacy:		tumors	(and	cell	lines)	

deficient	in	any	of	several	components	of	the	homologous	recombination	(HR)	mediated	

DNA	double	 strand	break	 repair	machinery	 are	 highly	 dependent	 on	 alternative	 repair	

pathways	mediated	by	PARP	[7,	8].	Mutations	in	more	than	a	dozen	genes	involved	in	HR	

and	 other	 DNA	 damage	 response	 pathways	 are	 also	 associated	with	 reliance	 on	 PARP	

and,	in	turn,	increased	sensitivity	to	olaparib	[9,	10].	

	

Several	genetic	screening	approaches	are	currently	underway	to	systematically	define	the	

network	of	synthetic	lethal	relationships	in	human	cells,	in	order	to	refine	our	knowledge	

of	 functional	 genomics	 and	 to	 exploit	 specific	 interactions	 for	 cancer	 targeting.	Digenic	

knockout	 screens	 in	 human	 cells	 using	 dual-gRNA	 CRISPR/Cas9	 constructs	 have	
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demonstrated	 the	 potential	 of	 targeted	 pairwise	 gene	 knockout	 screens	 [11,	 12],	 but	

scalability	is	a	major	issue	and	technology	advances	will	be	required	before	this	strategy	

can	be	employed	on	a	genomic	scale.	

	

A	 second	 approach,	 whole-genome	 screens	 across	 a	 panel	 of	 isogenic	 “query	 gene”	

knockout	 cell	 lines,	 offers	 considerable	 advantages	 for	 functional	 genomics:	 a	 single,	

genome-scale	perturbation	library	can	be	developed	and	re-used	across	a	 large	number	

of	 experiments,	 allowing	 relatively	 easy	 data	 integration.	 This	 approach	 has	 been	 used	

with	 great	 success	 in	 yeast:	 	 a	massive	 survey	 of	 23	million	 double	mutants	 defined	 a	

global	map	of	genetic	interactions	[13,	14]	and	demonstrated	that	genes	with	correlated	

genetic	 interaction	 profiles	 across	 a	 panel	 of	 query	 strains	 were	 often	 involved	 in	 the	

same	 biological	 processes,	 enabling	 functional	 characterization	 of	 previously	

uncharacterized	 genes.	 Such	 a	 strategy	 holds	 great	 promise	 for	 human	 functional	

genomics	 studies	 but	 may	 be	 less	 applicable	 for	 cancer	 targeting,	 as	 tumor-relevant	

synthetic	lethals	are	often	context	dependent	and	not	generalizable	from	isogenic	screens	

[10,	 12,	 15].	 Indeed	 the	 dynamics	 of	 genetic	 interaction	 networks	 are	 also	 an	 area	 of	

active	research	[16,	17].	

	

The	 third	 strategy	 involves	 genome-scale	 perturbation	 screens	 across	 a	 large	 panel	 of	

genetically	 diverse	 cancer	 cell	 lines.	 The	 integrated	 analysis	 of	 such	 data	would	 reveal	

genes	that	are	consistently	essential	across	similar	cell	lines	(e.g.	those	sharing	a	common	

driver	oncogene),	helping	to	address	the	generalizability	issue	in	isogenic	screens	[18].	It	

would	aid	the	identification	of	genetic	vulnerabilities	that	are	specific	to	a	given	genetic	

background	or	 subtype	by	demonstrating	 their	nonessentiality	 outside	of	 that	 subtype.	

Also,	 such	 a	 study	would	 carry	 its	 own	 internal	 controls,	 as	 functionally	 related	 genes	

should	show	correlated	patterns	of	essentiality	across	sufficiently	diverse	backgrounds.	

	

In	 this	 study,	 we	 describe	 the	 integrated	 analysis	 of	 a	 large	 compendium	 of	 genetic	

perturbation	screens.	Using	over	100	genome-scale,	pooled-library	shRNA	screens	from	

breast	 [19],	 ovarian	 [20],	 and	 pancreatic	 [21]	 cancer	 cell	 lines,	 all	 conducted	 with	 a	

common	shRNA	library	and	using	similar	experimental	designs,	we	show	that	optimizing	
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for	 co-functionality	 reveals	 a	 gene	 coessentiality	 network	whose	 structure	 is	 driven	by	

the	 shared	 genetic	 vulnerabilities	 of	 the	 cell	 lines.	 We	 demonstrate	 that	 clusters	 of	

coessential	genes	define	known	as	well	as	novel	 subgroups	of	 cell	 lines,	and	show	how	

the	 network	 can	 be	 integrated	with	 tumor	molecular	 data	 to	 predict	 known	 and	 novel	

drug	 targets	 and	 their	 biomarkers.	 This	 approach	 demonstrates	 how	 the	 integrated	

analysis	of	noisy	cell	line	screens	can	be	used	for	hypothesis-driven	as	well	as	data-driven	

discovery.	

	
	
Results	
	
Generating	the	coessentiality	network	

A	fundamental	insight	from	the	systematic	survey	of	genetic	interactions	in	yeast	is	that	if	

two	genes	have	similar	interaction	profiles	across	the	same	panel	of	genetic	backgrounds,	

they	are	 likely	 to	be	 involved	 in	 the	 same	biological	process	 [22].	We	reasoned	 that	an	

analogous	principle	should	hold	in	human	cell	lines:		that	a	gene’s	perturbation-induced	

fitness	 defect	 likely	 varies	 across	 different	 genetic	 backgrounds,	 yielding	 a	 gene	

“essentiality	 profile,”	 and	 that	 genes	 with	 correlated	 essentiality	 profiles	 (“coessential	

genes”)	should	be	involved	in	the	same	cellular	functions.	We	hypothesized	that,	given	a	

high-quality	set	of	perturbation	fitness	screens	across	a	sufficiently	diverse	set	of	tumor	

genetic	backgrounds	and	tissues	of	origin,	patterns	of	covariation	in	essentiality	profiles	

that	correspond	to	known	tissues	or	subtypes	might	reveal	new	context-specific	essential	

genes	 that	 could	potentially	 serve	as	novel	 therapeutic	 targets.	Moreover,	we	 reasoned	

that	 the	 cell	 lines	 driving	 these	 patterns	 of	 covariation	 might	 reveal	 novel	 genetic	 or	

phenotypic	subtypes	based	on	shared	genetic	vulnerabilities.	

	

To	this	end,	we	re-analyzed	a	set	of	genome-scale	pooled	library	shRNA	screens	in	human	

cell	 lines	 [19-21].	 All	 the	 screens	 were	 conducted	 with	 an	 shRNA	 library	 containing	

78,432	lentiviral-encoded	shRNA	hairpins	targeting	16,056	human	Refseq	protein-coding	

genes,	 facilitating	 comparisons	 across	 screens.	 We	 applied	 the	 BAGEL	 algorithm	 to	

generate	a	log	Bayes	Factor	of	gene	essentiality	for	each	gene	in	each	cell	line,	resulting	in	
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a	 matrix	 of	 scores	 for	 12,913	 genes	 across	 112	 cell	 lines	 (Figure	 1a),	 with	 matching	

RNAseq	gene	expression	profiles	(Supplementary	Tables	1-3).			

	

We	 measured	 the	 functional	 coherence	 of	 this	 dataset	 by	 calculating	 the	 Pearson	

correlation	coefficient	of	the	fitness	profiles	of	all	pairs	of	genes,	rank-ordering	gene	pairs	

by	 correlation	 coefficient,	 binning	 into	 groups	 of	 1,000	 pairs,	 and	 measuring	 the	

cumulative	log	likelihood	of	shared	KEGG	terms	in	each	bin	([23]	;	see	Methods).	Overall,	

the	raw	Bayes	Factor	matrix	yielded	no	relationship	between	 fitness	profile	correlation	

and	functional	interaction	(Figure	1b,	black).	

	

After	observing	major	 technical	 (i.e.	non-biological)	sources	of	variation	 in	 the	data,	we	

applied	a	variety	of	filtering	and	normalization	measures	in	an	attempt	to	maximize	the	

functional	enrichment	of	highly	correlated	genes.	Initially,	we	normalized	each	gene’s	BF	

score	by	the	number	of	hairpins	used	to	generate	the	score	(see	Methods)	and	quantile	

normalized	 the	 matrix.	 This	 yielded	 a	 fourfold	 enrichment	 in	 co-functionality	 across	

highly	correlated	pairs	(Figure	1b,	blue).	Then,	based	on	observations	that	shRNA	screens	

are	most	 accurate	when	 targeting	 high-expression	 genes	 [24],	 we	 included	 only	 genes	

which	were	 called	 essential	 (normalized	BF>2)	 in	 at	 least	 one	 cell	 line	where	 the	 gene	

also	showed	mRNA	expression	above	median	for	that	sample	(see	Methods).	This	yielded	

a	 final	data	set	of	2,883	genes	 in	112	cell	 lines	(Figure	1c	and	Supplementary	Table	4).	

Genes	with	highly	correlated	essentiality	profiles	 in	this	 filtered	data	set	showed	nearly	

30-fold	 enrichment	 for	 involvement	 in	 the	 same	 biological	 process,	 validating	 our	

hypothesis	 that	 human	 essentiality	 profiles	 are	 analogous	 to	 yeast	 genetic	 interaction	

profiles	 (Figure	 1b,	 red).	 Hereafter,	 we	 refer	 to	 each	 gene’s	 hairpin-	 and	 quantile-

normalized	 Bayes	 Factor	 in	 this	 matrix	 as	 its	 essentiality	 score,	 where	 an	 essentiality	

score	>	2	is	considered	a	high-confidence	hit.	

	

We	then	merged	the	gene	pairs	with	the	highest	correlations	(adjusted	P-value	<	0.001,	

corresponding	 to	 a	 Pearson	 correlation	 coefficient	 of	 0.457	 across	 112	 samples)	 into	 a	

network	where	nodes	 represent	 genes	 and	edges	 connect	 genes	with	highly	 correlated	

essentiality	profiles.	Most	of	the	gene	pairs	merged	into	one	giant	connected	component,	
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with	 1,484	 edges	 connecting	 564	 genes	 (Figure	 1d	 and	 Supplementary	 Table	 5).	 We	

clustered	 the	 network	 using	 mcl	 [25],	 an	 implementation	 of	 Markov	 clustering,	 and	

observed	 that	many	 clusters	 showed	 high	 functional	 coherence,	 as	 would	 be	 expected	

from	 a	 network	 trained	 on	 maximizing	 the	 presence	 of	 co-functional	 gene	 pairs.	 In	

particular,	 the	 ribosome	 and	 proteasome	 appeared	 in	 distinct	 clusters	 in	 the	

coessentiality	network	(Figure	1d,	red	and	purple	clusters;	Supplementary	Table	6).			

	

Clusters	in	the	coessentiality	network	are	defined	by	distinct	cell	types	

Though	the	presence	of	functionally	coherent	clusters	serves	as	a	useful	positive	control	

for	our	approach,	our	motivating	hypothesis	was	that	other	clusters	of	coessential	genes	

might	reveal	subtype-specific	patterns	of	genetic	vulnerability.	Indeed,	one	of	the	largest	

clusters	 in	 the	 network	 contained	 well-characterized	 oncogenes	 CCND1,	 CDK4,	 and	

FOXA1,	known	to	be	specific	to	breast	cancers	of	luminal	subtype	(Figure	1d,	dark	blue).	

We	 extracted	 the	 29	 genes	 in	 this	 cluster	 from	 the	 essentiality	 matrix	 and	 performed	

hierarchical	clustering	on	the	cell	 lines.	As	expected,	 luminal	and	Her2-amplified	breast	

cancer	 cell	 lines	 clustered	 together	with	 higher	 essentiality	 scores	 across	 this	 panel	 of	

genes	 (Figure	 2a).	 A	 smaller	 cluster	 containing	 only	 ERBB2	 and	 ERBB3	 (Figure	 1d)	

segregates	 Her2-amplified	 cell	 lines	 (Figure	 2b).	 Interestingly,	 a	 third	 cluster	 further	

subdivides	 the	Her2-amplified	 cell	 lines.	 The	 five	 genes	 in	 the	 cluster	 include	 all	 three	

subunits	of	 the	mitochondrial	 alpha-ketoglutarate	dehydrogenase	 complex	 (DLD,	DLST,	

OGDH;	Figure	2c),	a	key	component	of	the	TCA	cycle.	This	complex	is	strongly	essential	in	

five	 Her2+	 cell	 lines	 but	 nonessential	 in	 8	 others,	 suggesting	 the	 presence	 of	 further	

metabolic	subtypes	within	the	recognized	Her2+	subtype	[26].	A	recent	report	indicates	

that	 dependency	 on	 αKGDH	 is	 driven	 by	 PIK3CA	 mutations	 [27].	 However,	 the	
differential	 sensitivity	 to	 perturbation	 in	 our	 network	 is	 not	 correlated	 with	 PIK3CA	

mutation	 status:	 3/5	 sensitive	 cell	 lines	 and	 4/8	 insensitive	 cell	 lines	 carry	 oncogenic	

PIK3CA	mutations	 (P=0.59,	 Fisher’s	 exact	 test).	 The	 emergence	 of	 known,	well-defined	

subtypes	from	the	gene	clusters	in	the	coessentiality	network	validates	the	effectiveness	

of	 this	 approach,	 and	 the	 indication	 of	 even	more	 fine-grained	 subtyping	 indicates	 the	

power	of	the	coessentiality	network	to	discover	novel	relationships	between	cell	lines.	
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Among	 the	 largest	 clusters	 in	 the	 network	 is	 a	 group	 of	 50	 genes,	 of	which	 45	 encode	

proteins	which	 operate	 in	 the	mitochondria	 (P<5x10-44,	 11-fold	 enrichment;	 Figure	 1e,	

green	 cluster).	 These	 genes	 are	 highly	 enriched	 for	 genes	 encoding	 subunits	 of	 the	

electron	 transport	 chain	 complexes,	 as	 well	 as	 other	 proteins	 involved	 in	 processes	

required	 for	 ETC	 complex	 biogenesis	 (e.g.	 the	 mitochondrial	 ribosome).	 Hierarchical	

clustering	the	cell	 lines	according	to	their	essentiality	profiles	across	these	genes	yields	

three	 dominant	 clusters,	 two	 of	 which	 are	 clearly	 associated	 with	 higher	 essentiality	

scores	in	this	set	of	genes	(Figure	3a).	These	two	sets	of	cell	lines	collectively	contain	11	

of	13	Her2-amplified	breast	cancer	cell	lines	as	well	as	12	of	35	ovarian	cancer	cell	lines	

(9	 of	 21	HGSOC	 and	 3	 of	 14	 E/CC	 cell	 lines).	 To	 validate	 this	 cluster,	we	 selected	 five	

ovarian	 cancer	 cell	 lines	 predicted	 to	 be	 oxphos-sensitive	 and	 nine	 predicted	 to	 be	

oxphos-insensitive	 and	 treated	 them	 with	 the	 Complex	 I	 inhibitor	 rotenone.	 All	 five	

oxphos-sensitive	 cell	 lines	 showed	 lower	viability	 in	 the	presence	of	 rotenone	 than	 the	

nine	insensitive	lines	(Figure	3b).	

	

Complex	I	is	gaining	attention	as	a	candidate	therapeutic	target	in	cancer,	in	particular	as	

a	 target	 of	 the	 widely	 prescribed	 antidiabetic	 drug	 metformin[28,	 29].	 Identifying	 a	

biomarker	 of	 Complex	 I	 sensitivity	 could	 have	 major	 clinical	 relevance.	 To	 explore	

whether	 our	 observed	 difference	 in	 phenotype	 among	 similar	 cancer	 cell	 lines	 might	

reflect	 some	 identifiable	 molecular	 difference	 in	 tumors,	 we	 searched	 for	 functional	

phenotypes	or	biomarkers	that	might	segregate	the	cell	lines.		Surprisingly,	we	found	no	

significant	 functional	 enrichment	among	differentially	 expressed	genes	 (Supplementary	

Table	6),	including	no	difference	among	gene	sets	related	to	oxidative	phosphorylation	or	

mitochondrial	 function.	 A	 subsequent	 analysis	 based	 on	 genomic	 coordinates	 of	

differentially	 expressed	 genes	 did,	 however,	 reveal	 several	 loci	 that	 are	 candidates	 for	

copy	number	aberrations	(Supplementary	Table	7).	In	particular,	genes	located	at	5q14-

22	 show	 significantly	 lower	 expression	 in	 the	 oxphos-sensitive	 cells,	 suggesting	 a	

genomic	copy	loss	at	that	locus	(Figure	3c).	In	TCGA	data	from	ovarian	tumors	[30,	31],	

tumors	with	 a	 heterozygous	 or	 homozygous	 copy	 loss	 at	 this	 locus	 show	 a	 significant	

increase	in	median	survival,	especially	for	tumors	of	the	mesenchymal	subtype	(41	vs.	31	

months;	P=0.039,	log-rank	test;	Figure	3d).	The	survival	difference	appears	to	be	limited	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2017. ; https://doi.org/10.1101/134346doi: bioRxiv preprint 

https://doi.org/10.1101/134346
http://creativecommons.org/licenses/by-nc/4.0/


to	the	mesenchymal	subtype:		including	all	ovarian	tumors	(n=481)	improves	the	P-value	

(P=0.0049)	but	reduces	the	median	survival	difference	to	2.5	months,	while	no	difference	

is	 indicated	 for	 proliferative	 (P=0.12),	 immunoreactive	 (P=0.82),	 or	 fallopian	 subtypes	

(P=0.85).	This	example	highlights	an	indirect	approach	to	discovering	tumor	subtypes	of	

potential	 clinical	 relevance:	 identifying	 phenotypic	 differences	 between	 groups	 of	 cell	

lines,	 finding	 biomarkers	 that	 segregate	 those	 phenotypes,	 and	 applying	 those	

biomarkers	to	primary	tumor	data.	

	

Core	essentials	are	more	sensitive	to	perturbation	at	lower	expression	levels	

The	 matrix	 of	 gene	 essentiality	 scores	 holds	 utility	 beyond	 the	 correlation	 network	

described.	We	 examined	 the	 relationship	 between	 gene	 expression	 and	 essentiality	 by	

calculating	 the	Pearson	correlation	 coefficient	between	a	gene’s	 essentiality	profile	 and	

its	 expression	profile	 across	 the	 same	 samples.	Across	 the	2,883	 essential	 genes	 in	 the	

final	data	set,	 the	distribution	of	correlation	coefficients	 is	roughly	normally	distributed	

and	centered	at	zero	(Figure	4a),	indicating	no	general	relationship	between	variation	in	

expression	and	variation	in	essentiality.	However,	we	observed	two	notable	exceptions	to	

this	general	trend.	First,	“core	essential”	genes—genes	expected	to	be	essential	across	all	

cell	 lines	 [32]—show	 a	 strong	 bias	 toward	 negative	 correlation,	 indicating	 that	 lower	

expression	implies	a	greater	sensitivity	to	perturbation	(Figure	4a,	orange	curve).	This	is	

broadly	consistent	with	studies	of	variation	 in	gene	expression	across	C.	elegans	strains	

[33]	 as	well	 as	 the	 increasing	 body	 of	work	 suggesting	 heterozygous	 copy	 loss	 of	 core	

essential	 genes	 in	 cancer	 cells—and	 the	 commensurate	 lower	 gene	 expression—

increases	sensitivity	to	drugs	targeting	those	genes	and	pathways		[2,	34-36].	Second,	at	

the	 other	 end	 of	 the	 spectrum,	 genes	 with	 highly	 positive	 expression/essentiality	

correlation	tend	to	be	tissue-specific	essential	genes.	Of	the	nine	genes	with	correlation	

coefficient	>=	0.4	(Figure	4a,	inset),	all	showed	a	strong	tendency	toward	essentiality	in	a	

specific	 subtype,	 including	previously	mentioned	SPDEF	and	FOXA1	 in	 luminal-subtype	

breast	 cancer	 cells,	 ERBB2	 and	 estrogen	 receptor	 gene	 ESR1	 in	 Her2+	 and	 luminal-

subtype	cells,	respectively,	and	FUBP1	and	PAX8	in	ovarian	cancer	cells.	

	

EXO1	depletion	sensitizes	OV/ECC	cells	to	MDM2	inhibition	
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We	expected	 that	 the	expression-dependent	essentiality	of	MDM2,	a	gene	whose	major	

role	 in	 cancer	 is	 the	 suppression	 of	P53	 protein	 expression,	 would	 be	 associated	with	

subtypes	 that	 are	 not	 characterized	 by	 genetic	 suppression	 of	 pro-apoptotic	 TP53	

activity,	 e.g.	 by	 mutation,	 deletion,	 or	 methylation.	 We	 found	 this	 to	 be	 true	 for	

BrCa/luminal	 cell	 lines	 (P=0.015;	 Fisher’s	 exact	 test)	 but,	 surprisingly,	 not	 true	 for	

ovarian	 cancer	 cell	 lines,	 where	 endometrioid	 and	 clear	 cell	 subtypes	 are	 often	

characterized	by	wildtype	TP53	(P=0.454;	Figure	4b).	

	

To	 explore	 the	 possibility	 that	 these	 cells	 rely	 on	 different	 DNA	 damage	 response	

pathways,	we	compared	 the	essentiality	 scores	 in	ovarian	cancer	cell	 lines	with	 (n=21)	

and	 without	 (n=7)	 TP53	 mutations,	 after	 excluding	 7	 cases	 with	 low	 TP53	 mRNA	

expression	(Figure	4C).	The	top	hit	was	EXO1,	an	exonuclease	involved	in	DNA	mismatch	

repair	and	double	strand	break	repair	[37,	38].	While	P53wt	and	P53mut	ovarian	cancer	

cell	 lines	 showed	a	marked	difference	 in	 sensitivity	 to	perturbation	of	EXO1	by	 shRNA	

(P=3.9x10-7,	t-test;	Figure	4c,	inset),	it	is	worth	noting	that	even	the	EXO1-sensitive	lines	

did	 not	 meet	 our	 threshold	 of	 high-confidence	 hits	 (essentiality	 score	 >=2).	 This	 is	

consistent	with	the	fact	that	CRISPR-mediated	EXO1	knockout	in	P53wt	cells	did	not	elicit	

a	 severe	 fitness	 defect	 (Figure	 4d).	 However,	 EXO1	 deletion	 did	 restore	 sensitivity	 to	

MDM2	 inhibition:	 	EXO1null	P53wt	cells	are	more	sensitive	 to	MDM2	 inhibitor	nutlin-3a	

than	 their	 EXO1wt	 parental	 strains	 (Figure	 4e),	 supporting	 the	 existence	 of	 a	 synthetic	

interaction	between	p53	mutation	state	and	EXO1	in	this	cell	type	and	further	confirming	

the	 utility	 of	 the	 coessentiality	 network	 to	 identify	 novel	 context-specific	 genetic	

interactions.	

	

	

Discussion	

	

A	key	insight	from	the	systematic	survey	of	yeast	genetic	interactions	is	that	genes	which	

operate	 in	 the	 same	 biological	 processes	 tend	 to	 have	 similar	 profiles	 of	 genetic	

interactions	across	a	diverse	panel	of	query	strains;	that	is,	they	show	the	same	patterns	

of	 fitness	 defects	 across	 different	 genetic	 backgrounds.	We	 applied	 this	 concept	 to	 the	
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analysis	 of	 genetic	 perturbation	 screens	 in	 human	 cell	 lines,	 using	 the	 BAGEL-derived	

Bayes	 Factor	 as	 a	 fitness	 score.	 Initially,	 the	 approach	 did	 not	 appear	 to	 work,	 as	

correlated	 gene	 fitness	 profiles	 showed	 no	 enrichment	 for	 co-functionality.	 However,	

after	filtering	the	data	to	include	only	high-quality	screens	and	high-confidence	essential	

genes,	 the	picture	 came	 into	 focus,	with	highly	 correlated	genes	 showing	nearly	 thirty-

fold	enrichment	for	shared	biological	process	annotations.	This	preliminary	result	further	

illustrates	 the	value	of	 the	BAGEL	algorithm	 in	offering	a	 semi-quantitative	measure	of	

gene	 knockdown	 fitness	 as	 well	 as	 the	 utility	 of	 the	 approach	 outlined	 in	 [32]	 to	

distinguish	 high	 quality	 screens	 from	 those	 that	 should	 be	 removed	 from	 downstream	

analyses.	

	

We	combined	the	highly	correlated	gene	pairs	into	a	network	of	genes,	where	genes	are	

connected	by	an	edge	if	they	show	a	correlated	fitness	profile	across	the	panel	of	112	cell	

lines.	Clustering	 this	network	revealed	groups	of	genes,	 some	of	which	operate	 in	well-

annotated	biological	pathways—e.g.	the	ribosome	and	proteasome	clusters—while	other	

genes	 were	 grouped	 together	 based	 on	 patterns	 of	 covariation	 in	 fitness	 across	 the	

different	cellular	contexts	included	in	the	network.	Clusters	identifying	genes	specifically	

essential	in	luminal	and	Her2-amplified	breast	cancer	cell	lines,	for	example,	were	readily	

identified	 in	 the	 network,	 validating	 our	 approach.	 Furthermore,	 among	 the	 novel	

clusters	 was	 a	 large	 cluster	 of	 genes	 related	 to	 mitochondrial	 function	 that	 segregate	

ovarian	 cancer	 cell	 lines	 into	 oxphos-sensitive	 and	 oxphos-resistant	 classes.	 This	 latter	

group	shows	a	molecular	signature	represented	by	chromosomal	copy	loss	in	the	5q14-

22	region	that,	in	turn,	offers	a	survival	advantage	for	ovarian	cancer	patients.	Thus,	the	

coessentiality	network	offers	 a	method	of	 identifying	both	novel	differentially	 essential	

genes	 across	 known	 subtypes	 but	 also	 a	 way	 to	 discover	 new	 subtypes,	 with	 possible	

clinical	relevance,	from	a	large	body	of	shRNA	knockdown	data.	

	

The	 matrix	 of	 essentiality	 scores	 we	 generated	 offers	 utility	 beyond	 the	 network	

approaches	 described.	We	measured	 the	 correlation	 between	 these	 normalized	 fitness	

scores	 and	 mRNA	 expression	 levels	 of	 the	 same	 gene,	 which	 revealed	 three	 distinct	

subgroups.	 Tissues-specific	 essentials	 show	high	 expression/fitness	 correlation	 but	 are	
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rare	among	the	subtypes	that	were	assayed	here.	Core	essentials,	in	contrast,	showed	an	

increasing	 sensitivity	 to	 perturbation	 at	 lower	 expression	 levels.	 This	 is	 generally	

consistent	with	the	concept	of	genomic	copy	loss	of	essential	genes	leading	to	a	possible	

therapeutic	 window	 for	 drug	 targeting,	 and	 extends	 the	 pool	 of	 candidate	 targets	 to	

include	all	core	essential	genes	(i.e.	those	essential	in	virtually	all	backgrounds).	Finally,	

the	 bulk	 of	 the	 signal	 is	 that	 there	 is	 no	 signal:	 	 in	 general	 essential	 genes	 showed	 no	

correlation	 between	 their	 expression	 level	 and	 their	 knockdown	 fitness.	 This	 has	

potentially	major	implications	for	efforts	to	analyze	the	large	corpus	of	tumor	molecular	

data	 generated	 by,	 for	 example,	 The	 Cancer	 Genome	 Atlas.	 If	 the	 majority	 of	 context-

dependent	essential	genes	show	no	relationship	between	fitness	and	expression	level,	or	

other	molecular	signatures,	 then	this	 large	class	of	potential	therapeutic	targets	may	be	

invisible	to	analyses	of	tumor	molecular	data	alone.	

	

Fortunately,	 large-scale	screening	of	cancer	cell	 lines	using	CRISPR/Cas9	gene	knockout	

libraries	is	underway,	providing	a	systematic	view	of	genetic	vulnerabilities	in	cancer	cell	

lines	 [24,	 39-42].	 We	 and	 others	 have	 shown	 that	 CRISPR/Cas9	 fitness	 screens	 can	

provide	 an	 enormous	 improvement	 in	 both	 sensitivity	 and	 specificity	 over	 shRNA	

screens.	The	application	of	the	coessentiality	network	approach	described	here	to	a	large	

body	of	diverse	CRISPR	screens	should	reveal	even	deeper	insight	about	context-specific	

vulnerabilities	and	 their	biomarkers,	as	well	as	 the	 functional	genomics	of	cancer	more	

generally.	
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Methods	

	

Primary	data	processing	

Data	 from	 shRNA	 screens	 in	 pancreatic,	 ovarian,	 and	 breast	 cancer	 cell	 lines	 was	

downloaded	from	the	Donnelly-Princess	Margaret	Screening	Centre	(formerly	COLT	[43])	

at	dpsc.ccbr.utoronto.ca.	The	shRNA	and	RNA-seq	data	are	from	three	published	studies	

of	shRNA	screens	[19-21].	

	

Each	 screen	 consists	 of	 a	 reference	 timepoint	 (T0)	 and	 one	 to	 two	 experimental	

timepoints	(T1,	T2),	typically	assayed	in	triplicate	using	custom	microarrays.	See	[21]	for	

experimental	details.	shRNA	hairpins	(hereafter	 ‘hairpins’)	are	retained	if	 log2	intensity	

at	 the	 T0	 timepoint	 was	 >	 9.	 Fold-changes	 were	 calculated	 independently	 for	 each	

replicate	at	each	 timepoint,	 and	a	Bayes	Factor	was	calculated	using	BAGEL	 [32]	on	all	

replicates	 at	 each	 timepoint.	 Bayes	 Factors	 are	 summed	 across	 timepoints	 for	 a	 final	

gene-level	Bayes	Factor	for	each	cell	line.	

	

In	parallel,	RNA-seq	on	each	cell	line	was	processed	using	Tophat	v2	[44]	and	Cufflinks	v2	

[45]	 in	 quantitation-only	 mode,	 and	 later	 filtered	 for	 protein	 coding	 genes.	 Gene	

expression	 values	 for	 all	 cell	 lines	were	 combined	 into	 a	matrix	 of	 log2(FPKM	 +	 0.01)	

values	 and	 the	matrix	was	 quantile	 normalized.	 The	modal	 expression	 value	was	 then	
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calculated	as	 the	peak	of	 the	main	distribution	of	biologically	 relevant	 gene	expression	

(log2	FPKM	=	3.76).	Quantile	normalized	logFPKM	values	are	in	Supplementary	Table	2.	

	

Calculating	functional	enrichment	of	correlated	essentiality	profiles	

For	all	gene	pairs,	a	Pearson	correlation	coefficient	was	calculated	comparing	the	vectors	

of	 Bayes	 Factors	 across	 the	 112	 cell	 lines.	 Correlations	were	 rank	 ordered	 and	 binned	

into	groups	of	1,000.	For	each	bin,	the	enrichment	for	co-functionality	was	evaluated	as	

the	 fraction	 of	 gene	 pairs	 involved	 in	 the	 same	 biological	 process	 (‘true	 positives’)	

relative	 to	 the	 fraction	 of	 gene	 pairs	 involved	 in	 different	 biological	 processes	 (‘false	

positives’).	Biological	process	annotations	were	taken	from	KEGG	pathways	downloaded	

from	 the	 Molecular	 Signatures	 Database	 (file	 c2.curated.kegg.v4.0.symbols.gmt	 ,	 [46]),	

after	removing	the	ribosome,	proteasome,	and	all	terms	with	>	200	genes.	

	

To	 maximize	 functional	 enrichment,	 three	 normalization	 and	 filtering	 methods	 were	

applied.	First,	each	Bayes	Factor	for	each	gene	in	each	cell	line	was	divided	by	the	number	

of	 hairpins	used	 to	 calculate	 the	BF.	 Second,	 the	matrix	 of	 hairpin-normalized	BFs	was	

quantile	 normalized.	 This	 hairpin-	 and	 quantile-normalized	 BF	 is	 referred	 to	 as	 the	

“essentiality	score”.	Third,	a	gene	was	only	retained	for	downstream	analysis	if	it	had	an	

essentiality	score	>	2	(corresponding	to	~15%	FDR)	in	at	 least	two	cell	 lines	where	the	

gene	was	also	expressed	at	above	modal	expression.	The	filtered	gene	set	includes	2,883	

genes.	

	

To	create	the	coessentiality	network,	the	mcl	clustering	algorithm	was	applied	to	sets	of	

highly	 correlated	 genes	 using	 a	 sampling	 strategy	 across	 three	 parameters.	 First,	

correlation	 thresholds	 of	 0.1%,	 0.2%,	 0.5%,	 and	 1.0%	 FDR	 were	 applied	 (n=1,568,	

n=2,240,	 n=3,684,	 n=5,690	 gene	 pairs	 respectively).	 Second,	 native	 correlations	 or	

correlations	raised	to	the	4th	power	were	considered.	Third,	the	–I	parameter	of	mcl	was	

applied	in	a	range	from	1.8	to	4.1	in	0.1	increments.	

	

The	 output	 from	 mcl	 is	 a	 list	 of	 hard	 clusters	 (each	 gene	 is	 assigned	 to	 exactly	 one	

cluster).	The	functional	enrichment	of	each	mcl	run	output	was	evaluated	using	the	same	
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process	 as	 functional	 enrichment	 of	 the	 essentiality	 score	 correlations,	 but	 considering	

whether	co-clustered	genes	were	also	enriched	 for	co-functionality.	 	The	data	set	using	

correlations	at	FDR	0.1%,	raised	to	the	4th	power,	and	with	mcl	–I	2.0	was	judged	to	have	

the	best	combination	of	coverage	and	functional	enrichment;	 this	subset	of	correlations	

comprises	the	Cancer	Coessentiality	Network	v1.0	(Supplementary	Table	5)	and	the	mcl	

output	defines	the	clusters	described	in	this	study	(Supplementary	Table	6).	

	

Tumor	genomic	analysis	

Gene-level	 copy	number	data	 for	 481	ovarian	 tumors	 from	 [30]	was	downloaded	 from	

cBioPortal	 [31].	 	 Mean	 log2	 copy	 number	 across	 all	 genes	 in	 the	 5q14-22	 locus	 was	

calculated	and	samples	were	divided	into	“copy	loss”	(mean	copy	number	<	-0.5)	and	“no	

copy	 loss”	 (mean	 copy	number	>	 -0.5).	 	 Kaplan-Meier	 survival	 analysis	was	performed	

using	the	lifelines	package	in	Python	v	2.7.	

	

Validation	experiments	

Cell	 lines	 for	OxPhos	vulnerabilities.	 Cell	 lines	were	 either	 developed	 in-house	 or	 kindly	

provided	by	Dr.	Richard	Marcotte	 (B.	Neel	 Lab)	 or	Dr.	 Fabrice	 Sircoulomb	 (R.	Rottapel	

Lab)	at	Princess	Margaret	Cancer	Center,	and	were	verified	by	short	tandem	repeat	(STR)	

profiling.	 A	 full	 description	 of	 each	 cell	 line	 used,	 including	 the	 tissue	 origin	 and	 their	

culture	environment	is	detailed	in	Supplementary	Table	9	Cell	lines	were	selected	based	

on	 their	 tissue	 subtypes,	distribution	 in	 the	 cluster	heatmap	 (Figure	3a),	 as	well	 as	 the	

growth	conditions.	The	representative	cell	lines	of	cluster	that	predicted	high	sensitivity	

to	OXPHOS	perturbation	include	five	ovarian	(OV1369,	OV90neo,	TOV1369TR,	TOV1946	

and	 TOV21G)	 and	 three	 breast	 (BT20,	 HCC1419	 and	 SKBR5)	 cancer	 cell	 lines.	 The	

representative	cell	 lines	 that	are	predicted	 to	be	 less	sensitive	 to	OXPHOS	perturbation	

include	ten	ovarian	(ES2,	JHOC5,	OVCAR5,	OVCAR8,	PEA1,	PEA2,	PEO4,	PEO6,	PEO14	and	

SKOV3),	one	breast	(MCF7)	and	two	pancreatic	(GP3A	and	MIAPACA2)	cancer	cell	lines.	

To	normalize	for	media-specific	effects	on	cell	proliferation,	all	cell	lines	were	cultured	in	

the	 same	 growth	 media	 as	 in	 the	 pooled	 shRNA	 screens	 from	 which	 the	 Cancer	

Coessentiality	Network	was	derived	(see	[21]).	
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Rotenone	sensitivity	assays.	Each	cell	 line	was	plated	 into	15-cm	culture	plates	(Corning,	

430599)	and	was	grown	to	80%	confluence	in	the	requisite	medium.	Cells	were	washed	

with	 warm	 Dulbecco's	 phosphate-buffered	 saline	 (DPBS)	 (Gibco,	 14190-144),	 treated	

with	 0.25%	 trypsin-EDTA	 solution	 (Gibco,	 25200-056)	 for	 five	 to	 ten	minutes	 or	 until	

they	 lift	off	at	37°C,	re-suspended	 in	warm	medium	and	counted	using	the	Beckman	Z2	

Coulter	Counter	with	a	size	gate	setting	between	10.00μm	and	27.85μm.	Cells	were	plated	

in	ten	6-well	plates	(Corning,	3516)	at	~200,000	cells	per	well,	in	a	total	volume	of	3mL	

per	well.	After	24	hours,	the	medium	was	replaced	with	3mL	of	fresh	medium	containing	

1μM	rotenone	or	0.1%	DMSO	such	that	each	6-well	plate	contains	triplicates	of	rotenone-

treated	and	DMSO-treated	cells.	 	A	100mM	stock	solution	was	prepared	from	dissolving	

39.441mg	 of	 rotenone	 (Sigma-Aldrich,	 R8875)	 in	 1mL	 of	 dimethyl	 sulfoxide	 (DMSO)	

Hybri-Max™	 (Sigma-Aldrich,	 D2650).	 From	 the	 100mM	 stock,	 1mM	 aliquots	 were	

prepared	and	were	stored	at	-20°C.	Working	concentration	of	1μM	was	freshly	prepared	

on	the	day	of	drug	treatment	from	1:1,000	dilution	of	1mM	solution	in	cell	culture	media	

(i.e.	 Final	 DMSO	 concentration	 of	 0.1%).	 Cell	 proliferation	 was	 assessed	 by	 counting	

replicate	populations	every	12	hours	for	five	days.	Each	replicate	was	washed	with	warm	

DPBS,	trypsinized	and	resuspended	in	2mL	of	DPBS.	After	mixing	the	cell	suspension	by	

gently	pipetting	up	and	down	several	times,	500μL	of	each	replicate	was	added	to	9.5mL	

of	IsoFlow™	Sheath	Fluid	(Beckman	Coulter,	8547008),	and	the	prepared	samples	were	

counted	using	the	Beckman	Z2	Coulter	Counter.	

	

Phenoformin	 sensitivity	 assays.	 Cells	 were	 plated	 in	 12-well	 plates	 (Corning,	 3513)	 at	

~80,000-120,000	 cells	 per	well,	 in	 a	 total	 volume	of	 2mL	per	well.	 After	 24	hours,	 the	

medium	was	 replaced	 with	 2mL	 of	 fresh	medium	 containing	 40μM,	 100μM	 or	 200μM	

phenformin	 or	 0.1%	 DMSO,	 such	 that	 each	 12-well	 plate	 contains	 three	 different	

concentrations	of	phenformin-	and	DMSO-treated	triplicates.	The	working	concentrations	

were	 freshly	 prepared	 from	 1:1,000	 dilution	 of	 40mM,	 100mM	 and	 200mM	 stock	

solutions	in	cell	culture	media	to	get	a	final	DMSO	concentration	of	0.1%.	The	cells	were	

counted	after	96	hours	of	proliferation	in	the	presence	of	phenformin.	Cells	were	washed	

with	warm	DPBS,	trypsinized	and	resuspended	in	1mL	of	DPBS.	After	gentle	mixing	of	the	

cell	suspension	by	pipetting	up	and	down	several	times,	500μL	of	each	sample	was	added	
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to	 9.5mL	 of	 IsoFlow™	 Sheath	 Fluid	 (Beckman	 Coulter,	 8547008),	 and	 the	 prepared	

mixture	was	counted	using	the	Beckman	Z2	Coulter	Counter.	

	

Generation	 of	 EXO1	 knockouts	 in	 ovarian	 cancer	 cell	 lines.	 Six	 ovarian	 cancer	 cell	 lines	

were	 selected	based	on	 their	 varying	p53	 status:	 JHOC5,	OVCAR8	and	TOV21G	express	

wild-type	p53;	whereas	OV1369,	 PEO6	 and	 SKOV3	harbor	 three	different	 p53	mutants	

including	G244C,	G244D	and	null,	 respectively.	A	 full	description	of	 each	 cell	 line	used,	

including	the	tissue	origins	of	cell	 lines	and	their	culture	environment	is	summarized	in	

Supplemental	 Table	 10.	 Three	 sgRNAs	 targeting	 EXO1	 and	 one	 sgRNA	 targeting	 LacZ	

were	 chosen	 from	 the	 Toronto	 Knockout	 (TKO)	 library	 [24].	 The	 forward	 and	 reverse	

oligonucleotides	 including	 the	 20	 base	 pair	 target	 sequence	 and	 the	 BsmBI	 overhangs	

were	synthesized	as	follows.	

	
Each	pair	of	oligos	was	phosphorylated	and	annealed.	LentiCRISPRv2	(LCv2)	(Addgene,	

plasmid	#52961)	 [47],	 a	 single	 vector	 containing	 two	expression	 cassettes,	SpCas9	and	

the	guide	RNA,	were	digested	using	BsmBI,	and	the	annealed	oligos	were	cloned	into	the	

sgRNA	 scaffold.	 The	 resulting	 ligation	 products,	 LCv2-EXO1	 and	 LCv2-LacZ,	 were	

transformed	into	One	Shot®	Stbl3™	chemically	competent	E.	Coli	(Invitrogen,	C7373-03),	

and	 the	 plasmid	 DNA	was	 isolated	 using	 the	 PureLink®	 HiPure	 Plasmid	 Midiprep	 Kit	

(Invitrogen,	K2100-04).	

	

For	lentivirus	production,	low	passage	number	293T	packaging	cells	were	seeded	in	low-

antibiotic	 growth	media	 at	~350,000	 cells	 per	 10cm	plate	 (Corning,	 430167).	 After	 24	

hours	of	 incubation,	 a	mixture	of	 the	 three	 transfection	plasmids,	 5400ng	of	packaging	

vector	psPAX2,	600ng	of	envelope	vector	pMD.2G	and	6.0μg	of	LCv2-EXO1	or	LCv2-LacZ,	

as	well	as	a	master	mix	of	OPTI-MEM	(540μL	per	transfection;	Gibco,	31985-062)	and	X-

treme	GENE	9	DNA	transfection	reagent	(36μL	per	transfection;	Roche,	06-365-809-001)	
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were	prepared.	The	 transfection	mix	was	 incubated	 for	 thirty	minutes	before	 added	 to	

the	packaging	cells.	At	24	hours	post-transfection,	 the	medium	was	changed	 to	 remove	

the	 transfection	 reagent	 and	 replaced	with	 10mL	 of	 high-bovine	 serum	 albumin	 (BSA)	

growth	medium	per	10cm	plate	for	viral	harvests.	The	lentivirus-containing	medium	was	

harvested	at	~48	hours	post-transfection	and	new	high-BSA	growth	medium	were	added	

to	cells	for	second	viral	harvests	at	~72	hours	post-transfection.	The	harvested	lentivirus	

was	aliquoted	in	sterile	15-mL	conical	polypropylene	centrifuge	tubes	(Corning,	430791)	

and	stored	at	 -80°C.	For	 infection,	cells	were	seeded	 in	6-well	plates	(Corning,	3516)	at	

300,000	cells	per	well	and	 infected	with	 the	 lentiviral	 sgRNA	 targeted	 to	EXO1	or	LacZ	

along	with	8μg/mL	polybrene	(Sigma,	H9268)	 to	 increase	 the	virus	 infection	efficiency.	

After	 24	 hours,	 the	 virus-containing	 medium	 was	 removed	 and	 replaced	 with	 new	

medium	 containing	 2μg/mL	 puromycin	 for	 selection	 of	 transduced	 cells. Cells	 were	

incubated	for	an	additional	48	hours	or	until	the	no-infection	control	is	completely	wiped	

out.	Each	of	the	puromycin-selected	infected	populations	was	expanded	to	10-cm	culture	

plates.	

	

Stable	 EXO1	 knockout	 (EXO1-KO)	 lines	 were	 generated	 by	 transducing	 a	 lentiviral	

construct	 (LCv2)	 containing	 Cas9	 nuclease	 and	 sgRNA	 targeting	 EXO1	 into	 six	 ovarian	

cancer	cell	 lines	of	varying	p53	status:	 JHOC5	(wild-type),	OVCAR8(wild-type),	TOV21G	

(wild-type),	OV1369	(G244C),	PEO6	(G244D)	and	SKOV3	(null).	Following	the	 lentiviral	

infection,	 puromycin	 was	 used	 for	 selection	 of	 stably	 transduced	 cells,	 and	 knockouts	

were	confirmed	by	western	blot.	

	

Cell	proliferation	assays	with	Nutlin-3a.	 Cells	were	 seeded	 in	 24-well	 plates	 at	~50,000	

cells	 in	a	volume	of	1mL	per	well,	or	 in	12-well	plates	at	~100,000	cells	 in	a	volume	of	

2mL	per	well.	After	24	hours,	the	medium	was	replaced	with	1	or	2mL	of	fresh	medium	

containing	10μM	nutlin-3a	or	0.1%	DMSO	in	triplicates.	Working	concentration	of	10μM	

was	freshly	prepared	on	the	day	of	drug	treatment	from	1:1,000	dilution	of	10mM	stock	

solution	 in	cell	culture	media	(i.e.	Final	DMSO	concentration	of	0.1%).	Cell	proliferation	

was	 assessed	by	 counting	 replicate	populations	 after	96	hours	of	drug	 treatment.	Each	

replicate	 was	 washed	 with	 warm	 DPBS,	 trypsinized	 and	 resuspended	 in	 1	 or	 2mL	 of	
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DPBS.	After	mixing	 the	 cell	 suspension	by	 gently	 pipetting	up	 and	down	 several	 times,	

500μL	of	each	replicate	was	sampled	for	counting	with	the	Beckman	Z2	Coulter	Counter.	
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Figure	legends	

	

Figure	 1.	 The	 coessentiality	 network.	 (A)	 Raw	data	 is	 a	matrix	 of	 Bayes	 Factors	 for	

>15,000	genes	across	>100	cell	line	screens.	(B)	Correlation	of	essentiality	scores	across	

screens	vs.	cofunctionality	(y-axis).	Black,	raw	data	gives	no	signal.	Blue,	normalized	BFs	

improve	 cofunctionality	 signal.	 Red,	 filtering	 for	 high-confidence	 essential	 genes	 yields	

30-fold	 enrichment	 for	 co-functionality.	 (C)	Final	 data	 set	 consists	 of	 112	 screens	 from	

breast,	ovarian,	pancreatic,	and	colorectal	cancer	cell	lines.	(D)	The	cancer	coessentiality	

network	 of	 2,883	 genes,	 with	 major	 clusters	 highlighted	 and	 annotated	 with	

characteristic	genes/systems.	

	

Figure	 2.	 Cancer	 subtypes	 drive	 coessential	 clusters.	 (A)	 Large	 cluster	 containing	

known	 oncogenes	 (red;	 e.g.	 CKD4,	 CCND1,	 FOXA1)	 is	 driven	 by	 subtype	 specific	

essentiality	in	BrCa/Luminal	and	BrCa/Her2+	cell	lines	(tissue	key,	bottom).	(B)		Smaller	

cluster	 containing	 ERBB2	 and	 ERBB3	 differentiates	 BrCa/Her2+	 cell	 lines.	 (C)	 Cluster	

with	 all	 three	 subunits	 of	 alpha-ketoglutarate	 dehydrogenase	 (KGDH)	 complex	 divides	

BrCa/Her2+	cell	lines	into	two	subgroups.	

	

Figure	 3.	 Oxphos	 cluster.	 (A)	 A	 large	 cluster	 of	mitochondrial	 genes	 is	 preferentially	

essential	in	BrCa/Her2+	and	a	subset	of	OvCa	cell	lines.	A	subset	of	OvCa	cell	lines	(blue,	

purple	stars)	were	selected	for	further	validation.	(B)	 	Relative	viability	of	OvCa	lines	in	

the	presence	of	Rotenone.	(C)	Differential	expression	of	OvCa/HGS	oxphos	sensitive	and	

insensitive	 cells	 showed	 strong	 bias	 at	 5q14-22	 locus,	 consistent	 with	 copy	 number	

aberration.	(D)	TCGA	data	shows	5q14-22	copy	loss	provides	survival	benefit	 in	HGSOC	

patients.	

	

Figure	 4.	 (A)	 Most	 essential	 genes	 show	 no	 correlation	 between	 expression	 and	

essentiality	 (black).	 Core	 essentials	 show	 negative	 correlation	 (orange).	 The	 small	

number	of	positively	correlated	genes	are	highly	enriched	for	subtype-specific	essential	

genes	 (inset).	 (B)	MDM2	 is	 essential	 in	 P53wt	 cell	 lines	 in	 BrCa	 (top)	 but	 not	 in	 OvCa	

(bottom).	 (C)	 Exonuclease	 EXO1	 is	 the	 top	 differentially	 essential	 gene	 in	 OvCa	 lines	
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expressing	WT	 vs	mutated	 P53,	 but	 is	 not	 a	 highly	 essential	 gene.	 (D)	 EXO1	 knockout	

does	not	kill	P53	mutant	(red)	or	P53	wildtype	(blue)	ovarian	cancer	cells.	(E)	Survival	in	

the	 presence	 of	 nutlin	 3a.	 	 EXO1	 knockout	 sensitizes	 P53	 wildtype	 cells	 but	 not	 P53	

mutant	cells	to	MDM2	inhibition.	

	 	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2017. ; https://doi.org/10.1101/134346doi: bioRxiv preprint 

https://doi.org/10.1101/134346
http://creativecommons.org/licenses/by-nc/4.0/


Figure	1.	
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Figure	2.	

	

	
	

	 	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2017. ; https://doi.org/10.1101/134346doi: bioRxiv preprint 

https://doi.org/10.1101/134346
http://creativecommons.org/licenses/by-nc/4.0/


Figure	3.	
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Figure	4.	
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