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1 Abstract1

Hundreds of clinical studies have been published that demonstrate associations2

between the human microbiome and a variety of diseases. Yet, fundamental3

questions remain on how we can generalize this knowledge. For example, if dis-4

eases are mainly characterized by a small number of pathogenic species, then5

new targeted antimicrobial therapies may be called for. Alternatively, if diseases6

are characterized by a lack of healthy commensal bacteria, then new probiotic7

therapies might be a better option. Results from individual studies, however,8

can be inconsistent or in conflict, and comparing published data is further com-9

plicated by the lack of standard processing and analysis methods.10

Here, we introduce the MicrobiomeHD database, which includes 29 pub-11

lished case-control gut microbiome studies spanning ten different diseases. Using12

standardized data processing and analyses, we perform a comprehensive cross-13

disease meta-analysis of these studies. We find consistent and specific patterns14

of disease-associated microbiome changes. A few diseases are associated with15

many individual bacterial associations, while most show only around 20 genus-16

level changes. Some diseases are marked by the presence of pathogenic microbes17

whereas others are characterized by a depletion of health-associated bacteria.18

Furthermore, over 60% of microbes associated with individual diseases fall into a19
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set of “core” health and disease-associated microbes, which are associated with20

multiple disease states. This suggests a universal microbial response to disease.21

2 Introduction22

The human gastrointestinal tract digests food, absorbs nutrients, and plays23

important roles in maintaining metabolic homeostasis. The microbes residing24

in our gut harvest energy from the food we eat, train our immune system,25

break down xenobiotics and other foreign products, and release metabolites and26

hormones important for regulating our physiology [1, 2, 3]. Chemical signals27

from our microbiota can act locally within the gut, and can also have larger28

systemic effects (e.g. the ‘gut-brain axis’) [4, 5, 6].29

Due to the physiological interplay between humans and our microbial com-30

munities, many diseases are hypothesized to be associated with shifts away from31

a “healthy” gut microbiome. These include metabolic disorders, inflammatory32

and auto-immune diseases, neurological conditions, and cancer, among others33

[1, 3, 7, 8, 9]. Certain gut-related conditions (e.g. obesity and inflammatory34

bowel disease) have been extensively studied in human cohorts and in animal35

experiments, where significant and sometimes causal microbial associations have36

been shown. These studies have spurred research into a number of complex dis-37

eases with unclear etiologies where a connection to the microbiome is suspected.38

Overall, our current understanding of the precise relationships between the39

human gut microbiome and disease remains limited. Existing case-control stud-40

ies often report finding disease-associated microbial “dysbiosis”. However, the41

term “dysbiosis” is inconsistently and often vaguely defined, and can have a42

wide range of interpretations [10]. Thus, we lack a comprehensive understand-43

ing of precisely how microbial communities and specific microbes within those44

communities cause, respond to, or contribute to disease. Are different dis-45

eases characterized by distinct shifts in the gut microbiome? Are some diseases46

marked by an invasion of pathogens whereas others show a depletion of beneficial47

bacteria? Can we identify microbial biomarkers for certain conditions, which48

are consistently enriched or depleted in a disease across many patient cohorts?49

Finally, are some bacteria part of a core “healthy” or “diseased” microbiome50

and consistently associated with health or disease in general?51

One approach to synthesize existing knowledge is to identify consistencies52

across studies through a meta-analysis, which allows researchers to find and re-53

move false positives and negatives that may obscure underlying biological pat-54

terns. However, prior meta-analyses of case-control gut microbiome studies have55

yielded mixed results and did not contextualize their findings across multiple56

diseases [11, 12, 13]. For some conditions like inflammatory bowel disease (IBD),57

an overall difference in the gut microbiota was found within several studies, but58

no individual microbes were consistently associated with IBD across studies59

[11]. For other conditions, like obesity, multiple meta-analyses have found little60

to no difference in the gut microbiomes of obese and lean patients [11, 12, 13],61

even though the microbiome has been causally linked to obesity in mouse mod-62
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els [3, 14]. These meta-analyses have been limited by focusing on only one or63

two diseases, and thus do not extend their findings across a broader landscape64

of human disease to answer more general questions about overall patterns of65

disease-associated microbiome shifts.66

In this paper, we collected 29 published case-control 16S amplicon sequencing67

gut microbiome datasets spanning ten different disease states. We acquired raw68

data and disease metadata for each study and systematically re-processed and69

re-analyzed the data. We investigated whether consistent and specific disease-70

associated changes in gut microbial communities could be identified across multi-71

ple studies of the same disease. Certain diseases (e.g. colorectal cancer (CRC))72

are marked by an overabundance of disease-associated bacteria, while others73

(e.g. IBD) are characterized by a depletion of health-associated bacteria. Some74

conditions (e.g. diarrhea) exhibit large-scale community shifts with many asso-75

ciated bacteria, while most show only a handful of associations. However, many76

bacterial associations are not specific to individual diseases but rather form a77

generic response to overall health and disease. In most studies, the majority of78

the individual disease-associated microbes were part of this core set of bacteria79

that define generalized healthy and diseased states.80

Together, these findings reveal distinct categories of dysbiosis which can81

inform the development of microbiome-based diagnostics and therapeutics. For82

example, the search for microbiome-based diagnostics may be more appropriate83

for diseases with consistently enriched disease-associated microbes, like CRC.84

On the other hand, patients with diseases which are characterized by depletion85

of health-associated microbes, like IBD, may benefit from prebiotic or probiotic86

interventions designed to enrich for these taxa. Furthermore, conditions which87

are characterized by large-scale shifts in community structure may be well-suited88

to treatment with fecal microbiota transplatation, as in Clostridium difficile89

infection (CDI) [15]. Finally, identifying a core response to disease suggests90

the possibility of developing generalized microbiome interventions for a broad91

variety of gastrointestinal conditions, such as a probiotic containing the “core”92

health-associated taxa.93

3 Results94

In order to generalize our knowledge about associations between the human mi-95

crobiome and disease, we must synthesize results across many existing studies.96

Despite the fact that hundreds of individual studies have shown associations97

with the gut microbiome, comparing these results is difficult because of a lack98

of standard data processing and analysis methods. To answer questions about99

the reproducibility and generalizability of reported associations, we collected,100

re-processed, and re-analyzed raw data from a collection of microbiome datasets.101

We included studies with publicly available 16S amplicon sequencing data (i.e.102

FASTQ or FASTA) for stool samples from at least 15 case patients which also103

had associated disease metadata (i.e. case or control disease labels). Studies104

which exclusively focused on children under 5 years old were excluded from105
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our analyses. We identified over 50 suitable case-control 16S datasets, of which106

29 were successfully downloaded and included in the MicrobiomeHD database.107

Characteristics of these datasets, including sample sizes, diseases and condi-108

tions, and references, are shown in Table 1 and Supplementary Table 2. For109

each downloaded study, we processed the raw sequencing data through our 16S110

processing pipeline1 (see Supplementary Tables 3 and 4 for detailed data sources111

and processing methods). 100% denovo OTUs were assigned taxonomy with the112

RDP classifier [16] (c = 0.5), converted to relative abundances by dividing by113

total sample reads, and collapsed to the genus level.114

3.1 Most disease states show altered microbiomes115

We first asked whether reported associations between the gut microbiome and116

disease would be recapitulated once we controlled for processing and analysis117

approaches. To test whether the gut microbiome is altered in a variety of dis-118

ease states, we built genus-level random forest classifiers to classify cases from119

controls within each study. We compared the resulting area under the Re-120

ceiver Operating Characteristic (ROC) curves (AUC) across studies (Fig. 1A).121

We could classify cases from controls (AUC > 0.7) for at least one dataset122

for all diseases except arthritis and Parkinson’s disease, which each only had123

one study. Notably, all diarrhea datasets (except Youngster et al. (2014) [15],124

which had only 4 distinct control patients and thus was not included in this125

analysis) had very high classifiability (AUC > 0.9). We successfully classified126

patients from controls in three out of four IBD studies and four out of five CRC127

studies, which is consistent with previous work showing that these patients can128

be readily distinguished from controls using supervised classification methods129

[11, 17, 18, 19, 20]. Thus, the microbiome is indeed altered in many different130

diseases.131

3.2 Loss of beneficial microbes or enrichment of pathogens?132

We next wondered whether the specific type of alteration was consistent across133

independent cohorts of patients with the same disease. We performed univari-134

ate tests on genus-level relative abundances for each dataset independently and135

compared results across studies (Kruskal-Wallis (KW) test with the Benjamini-136

Hochberg false discovery rate (FDR) correction [21]). Our re-analyses of the137

studies were largely consistent with the originally reported results. The same138

taxonomic groups showed similar trends as in the original publications, despite139

differences in data-processing methodologies (see Supplementary Info 7.1 for a140

full comparison of our re-analysis with previously published results). Further-141

more, we found that the disease-associated changes in the microbiome could be142

categorized into meaningful groups which provide insight into possible etiologies143

or therapeutic strategies for different types of disease.144

In some diseases, microbiome shifts are dominated by an enrich-145

ment of a small number of “pathogenic” bacteria. In these cases, it146

1https://github.com/thomasgurry/amplicon_sequencing_pipeline
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is more likely that the microbes play a causal role and that they could be147

targeted with narrow-spectrum antimicrobials. Colorectal cancer is character-148

ized by such a shift, and we found significant agreement across the five CRC149

studies [8, 18, 19, 20, 22] (Figures 1, 2). Dysbiosis associated with CRC is150

generally characterized by increased prevalence of the known pathogenic or151

pathogen-associated Fusobacterium, Porphyromonas, Peptostreptococcus, Parvi-152

monas, and Enterobacter genera (i.e. these genera were higher in CRC pa-153

tients in 2 or more studies, Figures 2, 3A). Fusobacterium is associated with a154

broad spectrum of human diseases and Porphyromonas is a known oral pathogen155

[23, 24].156

By contrast, other disease-associated microbiome shifts are char-157

acterized by a depletion of health-associated bacteria in patients rel-158

ative to controls. In these cases, probiotics that replace missing taxa may be159

a better treatment strategy than anti-microbials. Across our four IBD studies,160

patient microbiomes were dominated by a depletion of genera in patients relative161

to controls, especially butyrate-producing Clostridiales [17, 25, 26, 27] (Figure162

1B, 2). In particular, five genera from the Ruminococcacaea and Lachnospira-163

caea families were consistently depleted in IBD patients relative to controls in164

at least two studies (Figure 3A). These taxa are known to produce short chain165

fatty acids in the gut and are often associated with health [28, 29, 30].166

In some studies, confounding variables may drive associations. For167

example, there were no consistent differences between cases and controls across168

HIV studies because of demonstrated confounders [31, 32, 33] (Figure 2, 3A). In169

the Lozupone et al. (2013) [32] dataset, we found enrichment in Prevotella, Can-170

tenibacterium, Dialister, Allisonella, and Megasphera in HIV-positive patients.171

However, the Noguera-Julian et al. (2016) study showed that the genera that172

were significantly associated with HIV in the Lozupone paper were strongly as-173

sociated with sexual behavior (e.g. men who have sex with men were associated174

with much higher Prevotella levels), while HIV was associated with higher lev-175

els of Erysipelotrichaceae and lower levels of Oligosphaeraceae and Megasphaera176

relative to control patients, after controlling for sexual behavior. Thus, there177

is no consensus on what genera are associated with HIV. Obesity is another178

example where confounding variables may drive microbiome alterations. Three179

recent meta-analyses found no reproducible obesity-associated microbiome shifts180

[11, 12, 13], which is consistent with our classification results where we were only181

able to accurately classify obese and control patients in two out of five studies182

(Zhu et al. (2013) [1], Turnbaugh et al. (2009) [34]; Figure 1A). Our genus-level183

re-analysis did find a few consistent differences between lean and obese patients184

[1, 34, 35, 36, 37]. Two genera, Roseburia and Mogibacterium, were significantly185

enriched in obese individuals across two of the obesity studies (Figure 3A). Fur-186

thermore, Anaerovorax, Adlercreutzia, Oscillibacter, Pseudoflavonifractor, and187

Clostridium IV were depleted in obese patients relative to controls in two of188

the studies. However, two of the five studies had no significant genus-level as-189

sociations (q < 0.05), despite one having a large sample size (Zupancic et al.190

(2012) [36]). This suggests that confounding factors like diet may have given191

rise to certain associations found in our re-analysis and previously reported in192

6

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2017. ; https://doi.org/10.1101/134031doi: bioRxiv preprint 

https://doi.org/10.1101/134031
http://creativecommons.org/licenses/by-nc/4.0/


the literature [13]. More studies that control for potential confounders, like193

host behavior and diet, will be required for diseases like obesity and HIV, where194

associations with the microbiome remain unclear.195

Some conditions are characterized by a broad restructuring of gut196

microbial communities. In these cases, full community restoration strate-197

gies like fecal microbiota transplants may be more appropriate. For exam-198

ple, diarrhea consistently results in large-scale rearrangements in the compo-199

sition of the gut microbiome, which is likely reflective of reduced stool tran-200

sit time (Figures 1, 2). We saw many microbes consistently associated with201

both Clostridium difficile infection (CDI) and non-CDI infectious diarrhea (Fig-202

ures 2, 3A) [15, 38, 39, 40]. In general, Proteobacteria increase in prevalence203

in patients with diarrhea, with a concomitant decrease in the relative abun-204

dances of Bacteroidetes and Firmicutes. In particular, we see a reduction in205

butyrate-producing Clostridia, including genera within Ruminococcaceae and206

Lachnospiraceae families, which have been associated with a healthy gut [41].207

We also see an increase in prevalence of organisms often associated with lower pH208

and higher oxygen levels of the upper-gut, like Lactobacillaceae and Enterobac-209

teriaceae, in patients with diarrhea (Figure 3A) [42]. Additionally, both CDI210

and non-CDI diarrhea patients had lower Shannon alpha diversity, a measure211

of overall community structure, than healthy controls in all studies (Supple-212

mentary Figure 4). Consistent with the CDI and non-CDI diarrheal studies,213

we also found that organisms associated with the upper gut, like Lactobacillus214

and Enterobacteriaceae, appear to be enriched in IBD patients, who can present215

with diarrheal symptoms (Figure 3A) [42, 43]. IBD patients also tended to216

have lower alpha diversities than controls (Crohn’s disease vs. controls in three217

studies, ulcerative colitis vs. controls in two studies; Supplementary Figure 4),218

though this difference was less drastic than in the diarrheal studies where all219

patients had active diarrhea.220

3.3 A core set of microbes associated with health and dis-221

ease222

Finally, we sought to identify a unified microbiome response to general health223

and disease. Previous studies have proposed that reduced alpha diversity is a re-224

liable indicator of disease-associated dysbiosis [34, 39, 44]. In our re-analysis, we225

found no consistent reduction of alpha diversity in case patients, with the excep-226

tion of diarrhea and perhaps IBD (Supplementary Figure 4). These results are227

consistent with previous meta-analyses, which found inconsistent relationships228

between alpha diversity and disease and very small effect sizes in non-diarrheal229

diseases [11, 12].230

We next compared genera across all diseases in order to determine231

whether some microbes respond to multiple disease states, forming a232

core response to health and illness. We considered a genus to be part of233

the “core” microbial response if it was significantly enriched or depleted (q <234

0.05) in at least one dataset from at least two different diseases. We identified 35235

health-associated genera and 24 disease-associated genera out of the 139 genera236
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that were significant in at least one dataset (Figure 3). We also found five237

genera that were both health- and disease-associated (i.e. they were enriched238

in controls across at least two diseases, but were also depleted in controls in239

different datasets across at least two diseases) (Figure 3A, black). Perhaps240

these genera represent bacteria disproportionately affected by confounders or241

technical artifacts. Alternatively, these organisms may play different roles across242

different diseases or community contexts.243

Here, we identify distinct sub-groups of health- and disease-associated244

organisms within the Bacteroidetes and Firmicutes phyla, which dom-245

inate the guts of healthy people. The order Clostridiales is associated with246

health while the orders Lactobacillales, Enterobacterales, and Clostridiales In-247

certae Sedis XI are associated with disease. All but two of the “core” genera248

in the order Clostridiales were associated with health (24 genera out of 26),249

comprising the majority of all of the health-associated core microbes. All of250

the “core” genera in the orders Lactobacillales and Enterobacterales (five and251

two genera respectively) and four out of five in the order Clostridiales Incertae252

Sedis XI were associated with disease. The Enterobacterales genera associated253

with disease are largely facultative anaerobes, and are often associated with254

the upper gut. Similarly, Lactobacillales genera are adapted to the lower pH of255

the upper gastrointestinal tract [42]. Therefore, these disease-associated taxa256

may be indicators of shorter stool transit times and disruptions in the redox257

state and/or pH of the lower intestine, rather than specific pathogens. These258

“core” genera are consistent with the results from a recent meta-analysis of259

six metagenomics datasets, which also found Lactobacillales and Clostridiales260

microbes among the most discriminative classification features across multiple261

studies [45]. The order Bacteroidales is more mixed: four Bacteroidales genera262

were associated with health, two with disease, and two with both health and263

disease. Three of the four health-associated Bacteroidales genera were in the264

family Porphyromonadaceae. Of the “core” genera in the the family Prevotel-265

laceae, one was associated with disease and one was variable (i.e. associated266

with both health and disease). Notably, Noguera-Julian et al. showed that267

Prevotella is associated with sexual behavior rather than a specific disease state268

[31] - perhaps other bacteria in the Prevotellaceae group are also affected by269

environmental and behavioral factors, contributing to their variability across270

studies.271

A majority of bacterial associations within individual studies over-272

lap with the “core” response. This indicates that most previously reported273

microbe-disease associations may not be specific to individual diseases but in-274

stead likely reflect a universal microbial response to disease. For each dataset275

that had at least one significant (q < 0.05) association, we calculated the per-276

cent of associated genera which were also part of the “core” response in the277

same direction (Figure 3B). Strikingly, the majority of responses were not spe-278

cific to individual diseases; on average, 67% of a dataset’s genus-level associa-279

tions were genera in the “core” response. In light of this finding, it is crucial280

that researchers consider these “core” bacteria when interpreting results from281

their case-control studies. To ensure that an identified microbial association282
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is disease-specific, researchers should make sure that it is not part of the uni-283

versal response by cross-checking their results with an updated list of “core”284

microbes. Researchers can access an updated list of “core” microbes from this285

analysis at the MicrobiomeHD database [46], or they can curate their own lists286

by performing similar cross-disease meta-analyses.287

The core healthy microbiome is made up of bacteria that are both288

ubiquitous and abundant across people, whereas bacteria within the289

core disease microbiome are abundant when present but are not ubiq-290

uitous. We calculated the average abundance (i.e. the total abundance across291

all patients divided by the number of patients with non-zero abundance) and292

ubiquity (i.e. the number of patients with the genus present divided by the total293

number of patients) for each “core” genus. We found that the “core” health-294

associated genera were more ubiquitous than the disease-associated ones, but295

not necessarily more abundant (Figure 3C). Thus, presence/absence of core gen-296

era appears to be a better indicator of disease-associated microbial shifts than297

changes in the overall abundance of these genera. However, a small subset of298

the core disease-associated genera were relatively ubiquitous across patients.299

Among the most ubiquitous were Escherichia/Shigella and Streptococcus. Es-300

cherichia includes common commensal strains, as well as pathogenic strains [47],301

and is frequently present in healthy people’s guts as well as over-represented in302

sick patients. Genera within Enterobacteriaceae, Lactobacillaceae, and Strepto-303

coccaceae families are dominant in the upper gastrointestinal tract [42, 48] and304

are present in many people’s stool at low frequency. These taxa likely become305

enriched with faster stool transit time (i.e. signatures of diarrhea) [42, 49].306

3.4 Comparing studies within and across diseases sepa-307

rates signal from noise308

Identifying disease-specific and “core” microbial responses required comparing309

studies both within and across multiple diseases and the variety of diseases310

and conditions included in this analysis strengthened the generalizability of our311

findings. Multiple studies of the same disease were necessary to identify shifts312

consistently associated with individual diseases. We did not find consistent bac-313

terial associations for conditions with fewer than four datasets (Figure 1, 3A).314

Within-disease meta-analysis also increased our ability to interpret the results315

from any one dataset. Despite few significant differences, some of these studies316

(e.g. Zhang et al. (2013) [50], Zhu et al. (2013) [1]) had high classifiability317

of patients vs. controls (AUC > 0.7, Figure 1A), indicating that there may318

be a disease-associated shift that was not detected by univariate comparisons.319

However, because few other studies of the same disease were available for com-320

parison, we could not confidently interpret the classification results beyond the321

reported AUC. For other studies with high AUCs but few univariate associations322

(e.g. Vincent et al. (2013) [39], Morgan et al. (2012) [26], Chen et al. (2012)323

[22]), our confidence that the high AUCs reflect true disease-associated differ-324

ences increased because the high AUCs were consistent with other classifiers325

from the same disease type.326
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Meta-analysis identified false positives and false negatives across327

studies and conditions. For example, we found that reported associations328

between alpha diversity and disease within individual studies tended to lose329

significance when looking across studies, except in the case of diarrhea and330

perhaps IBD (Supplementary Figure 4). Another example of a false positive331

was the association between Prevotella and disease. Autism [2], rheumatoid332

arthritis [51], and HIV [32, 33] have each been reported to enrich for Prevotella333

relative to healthy patients. We found no association between autism or arthritis334

and Prevotella in our re-analysis. As mentioned above, in the case of HIV, the335

association with Prevotella was due to demographic factors unrelated to disease336

[31]. Regardless of whether shifts in Prevotella are truly biologically related337

to each studied disease state, it is clear that such shifts are not specific to one338

particular condition and should not be reported as putative biomarkers. We339

also found that certain signals picked out by meta-analysis did not always hold340

within individual studies. One example of such a false negative was the lack of341

association between Fusobacterium and CRC in the Zackular et al. (2014) study342

[20], despite the highly consistent enrichment of Fusobacterium across most343

other CRC studies. Notably, we were also not able to accurately classify cases344

from controls in the Zackular study, suggesting that this study may have been345

underpowered or confounded in some way. Individual studies are plagued by low346

statistical power, confounding variables, and batch effects, which can obscure347

biological signals. The identification of disease-specific and “core” microbiome348

alterations will continue to improve as more datasets and diseases are included349

in future meta-analyses.350

4 Conclusion351

Here, we report universal patterns of disease-associated shifts in the human gut352

microbiome which differ in their directionality (i.e. fraction of disease-enriched353

vs. disease-depleted genera) and extent (i.e. total number of genera that differ354

between cases and controls). Some diseases are characterized by an invasion355

of pathogenic or disease-associated bacteria (e.g. CRC), while others largely356

show a depletion of health-associated microbes (e.g. IBD). Diarrheal illnesses357

induce large-scale rearrangement of many members of the microbiota, whereas358

other conditions show fewer associations. We also find a “core” set of microbes359

associated with more than one disease and that these “core” microbes comprise360

the majority of disease-associated microbes within any given study. Therefore,361

disease case-control studies should be interpreted with extra caution, as the362

majority of identifed microbial associations are likely to not be indicative of a363

disease-specific biological difference, but rather a general response to health or364

disease.365

The identification of a “core” microbial response is an important concept366

that should be considered in all future case-control microbiome studies. For367

example, microbes that are associated with a “core” disease-independent re-368

sponse to illness would not be useful as disease-specific diagnostics or to address369
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causality [10]. On the other hand, bacteria that are part of the “core” healthy370

response could be developed into a generic probiotic which may be suited for371

many different disease states.372

This analysis is the first to compare microbiome studies across more than373

two different diseases and highlights the importance of making raw data pub-374

licly available to enable future, more comprehensive analyses. This analysis does375

not include all possible studies, and certain important gastrointestinal diseases376

(e.g. irritable bowel syndrome) are missing, largely due to data and metadata377

availability. Case-control microbiome studies should make their raw data and378

associated patient metadata publicly available so that future studies can expand379

on this work and include more cohorts from the same diseases as well as more380

diseases. To re-analyze these studies, we applied standard methods commonly381

used in the field and assumed that the original study designs and patient selec-382

tion methods were adequate. We were reassured to find that a straightforward383

and standardized approach was able to recover very similar results to those pre-384

viously reported in the various papers. Thus, we did not formally investigate385

heterogeneity between cohorts or technical inter-study batch effects. However, it386

is clear from our genus-level results that there is significant variation even across387

studies of the same disease. There are many possible reasons for this variation388

(experimental and sequencing artifacts, host-related covariates, etc. [52, 53]),389

and future analyses should consider methods to correct for host confounders390

and technical batch effects.391

Despite the limitations of this study, our results provide more nuanced in-392

sight into dysbiosis, revealing distinct types of alterations that more precisely393

describe disease-associated microbiome shifts. As the number of case-control co-394

horts increases, similar meta-analyses could be used to compare related diseases395

and identify microbiome alterations associated with general host physiological396

changes. For example, there may be a group of microbes which respond to397

or cause systemic inflammation. Could we identify these microbes by compar-398

ing multiple inflammatory or auto-immune diseases and study them to better399

understand the interactions between the microbiome and our immune system?400

Furthermore, some microbes may be consistently associated with neurological401

diseases and could contribute to the gastrointestinal symptoms that accom-402

pany or precede neurological manifestations [2, 9]. Studying these microbes403

could help us understand the ‘gut-brain axis’ by identifying common neuroac-404

tive molecules produced by these bacteria, which could also be used as targets405

for new treatments [4, 5, 6]. Finally, meta-analysis could be used to identify sub-406

sets of patients who exhibit distinct microbiome shifts in heterogenous diseases407

like IBD, allowing for further stratification of disease subtypes [27, 54]. This408

work demonstrates that employing standard methods to contextualize new re-409

sults within the broader landscape of clinically relevant microbiome studies is410

feasible and adds value to individual analyses. As excitement in this field grows,411

researchers should harness the increasing number of replicated case-control stud-412

ies to swiftly and productively advance microbiome science from putative asso-413

ciations to transformative clinical impact.414
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5 Methods415

5.1 Dataset collection416

We identified case-control 16S studies from keyword searches in PubMed and by417

following references in meta-analyses and related case-control studies. We in-418

cluded studies with publicly available raw 16S data (fastq or fasta) and metadata419

indicating case or control status for each sample. Most data was downloaded420

from online repositories (e.g. SRA) or links provided in the original publica-421

tions, but some were acquired after personal communication with the authors422

(Supplementary Table 4). We did not include any studies which required addi-423

tional ethics committee approvals or authorizations for access (e.g. controlled424

dbGaP studies). In studies where multiple body sites were sampled or where425

multiple samples were taken per patient, we also required the respective meta-426

data to include those studies. We analyzed only stool 16S samples, and excluded427

studies with fewer than 15 case patients. In CRC studies with multiple control428

groups (e.g. healthy and non-CRC adenoma), only the healthy patients were429

used as controls for all of our comparisons. In studies with non-healthy controls430

(e.g. non-IBD patients), these patients were used as controls (as in the original431

papers). In the Schubert et al. CDI study [38], which had both healthy and432

non-CDI diarrheal controls, both groups were used as controls in this analysis.433

When obesity studies reported body mass index, we considered patients with434

BMI less than 25 as our control group and patients with BMI greater than 30435

as the case group.436

5.2 16S processing437

Raw data were downloaded and processed through our in-house 16S processing438

pipeline2. Data and metadata were acquired as described in Supplementary439

Table 4. When needed, we de-multiplexed sequences by finding exact matches to440

the provided barcodes and trimmed primers with a maximum of 1 mismatch. In441

general, sequences were quality filtered by truncating at the first base with Q <442

25. However, some datasets did not pass this stringent quality threshold (i.e. the443

resulting OTU table was either missing many of the original samples, or the read444

depth was significantly lower than reported in the original paper). For 454 data,445

we loosened the quality threshold to 20, whereas for paired-end Illumina data446

we removed reads with more than 2 expected errors. If possible, all reads were447

trimmed to 200 bp. In cases where this length trimming discarded a majority of448

sequences, we lowered our threshold to 150 or 101 bp. The specific processing449

parameters we used for each dataset can be found in Supplementary Table 3.450

To assign OTUs, we clustered OTUs at 100% similarity using USEARCH [55]451

and assigned taxonomy to the resulting OTUs with the RDP classifier [16] and a452

confidence cutoff of 0.5. For each dataset, we removed samples with fewer than453

100 reads and OTUs with fewer than 10 reads, as well as OTUs which were454

present in fewer than 1% of samples within a study. We calculated the relative455

2https://github.com/thomasgurry/amplicon_sequencing_pipeline
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abundance of each OTU by dividing its value by the total reads per sample.456

We then collapsed OTUs to genus level by summing their respective relative457

abundances, discarding any OTUs which were unannotated at the genus level.458

All statistical analyses were performed on this genus-level relative abundance459

data.460

5.3 Statistical analyses461

To perform supervised classification of cases and controls, we built Random462

Forest classifiers with 5-fold cross-validation. To build our train and test sets,463

we used the python scikit-learn StratifiedKFold function with shuffling of464

the data [56]. To build our classifiers, we used the RandomForestClassifier465

function with 1000 estimators and other default settings [56]. We found no sig-466

nificant effect of various Random Forest parameters on the AUC (Supplementary467

Figures 10 and 11). We calculated the interpolated area under the ROC curve468

(AUC) for each classifier based on the cross-validation testing results.469

We performed univariate analyses on the relative abundances of genera in470

cases and controls with a non-parametric Kruskal-Wallis test using the471

scipy.stats.mstats.kruskalwallis function [57]. We corrected for multiple472

hypothesis testing in each dataset with the Benjamini-Hochberg false discovery473

rate [21]. We performed all analyses on genus-level relative abundances for each474

dataset individually, and then compared these results across all studies.475

We considered a genus to be consistently associated with a disease (Figure476

3A, bottom) if it was significantly associated (q < 0.05) with the disease in477

the same direction in at least two studies of that disease. We considered a478

genus to be part of the “core” microbial associations (Figure 3A, top) if it was479

significantly associated (q < 0.05) in at least one dataset of at least two different480

diseases in the same direction.481

5.4 Microbiome community analyses482

Shannon Index alpha diversities were calculated based on the non-collapsed483

100% OTU-level relative abundances, and included un-annotated OTUs.484

We calculated the average abundance and ubiquity (Figure 3C) of each genus485

as the mean of its average values in each dataset across all patients. To calculate486

the abundance of each genus, we first calculated each genus’s mean abundance487

within each dataset. We counted only patients with non-zero abundance of the488

genus in this calculation. We then took the average of these mean abundances489

across all datatsets. To calculate the ubiquity of each genus, we calculated the490

percent of patients with non-zero abundance of that genus in each dataset. We491

then took the average of these mean ubiquities across all datasets.492

5.5 Code and data availability493

Raw sequencing data for each study can be accessed as described in Supple-494

mentary Table 4. The raw processed OTU tables can be accessed at the Micro-495
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biomeHD database, available at https://doi.org/10.5281/zenodo.569601496

[46]. The code to reproduce all of the analyses in this paper is available at497

https://github.com/cduvallet/microbiomeHD.498

Supplementary files, including the q-values for all genus-level comparisons in499

every dataset, disease-associated genera for the diseases with more than three500

datasets, and a list of “core” genera are also available at https://github.com/501

cduvallet/microbiomeHD.502

6 Table and Figures503
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Dataset ID N controls Controls N cases Cases Ref.

Baxter 2016, CRC 172 H 120 CRC [18]

Zeller 2014, CRC 75 H 41 CRC [19]

Wang 2012, CRC 54 H 44 CRC [8]

Zackular 2014, CRC 30 H 30 CRC [20]

Chen 2012, CRC 22 H 21 CRC [22]

Goodrich 2014, OB 428 H 185 OB [35]

Turnbaugh 2009, OB 61 H 195 OB [34]

Zupancic 2012, OB 96 H 101 OB [36]

Ross 2015, OB 26 H 37 OB [37]

Zhu 2013, OB 16 H 25 OB [1]

Gevers 2014, IBD 16 nonIBD 146 CD [25]

Morgan 2012, IBD 18 H 108 UC, CD [26]

Papa 2012, IBD 24 nonIBD 66 UC, CD [17]

Willing 2009, IBD 35 H 45 UC, CD [27]

Schubert 2014, CDI 243 H, nonCDI 93 CDI [38]

Singh 2015, EDD 82 H 201 EDD [40]

Vincent 2013, CDI 25 H 25 CDI [39]

Youngster 2014, CDI 4 H 19 CDI [15]

Noguera-Julian 2016, HIV 34 H 205 HIV [31]

Dinh 2015, HIV 15 H 21 HIV [33]

Lozupone 2013, HIV 13 H 23 HIV [32]

Son 2015, ASD 44 H 59 ASD [7]

Kang 2013, ASD 20 H 19 ASD [2]

Alkanani 2015, T1D 55 H 57 T1D [58]

Mejia-Leon 2014, T1D 8 H 21 T1D [59]

Wong 2013, NASH 22 H 16 NASH [60]

Zhu 2013, NASH 16 H 22 NASH [1]

Zhang 2013, LIV 25 H 46 CIRR, MHE [50]

Scher 2013, ART 28 H 86 PSA, RA [51]

Scheperjans 2015, PAR 74 H 74 PAR [9]

Table 1: Datasets collected and processed through standardized pipeline. Dis-
ease labels: ASD = Austism spectrum disorder, CDI = Clostridium difficile
infection, CRC = colorectal cancer, EDD = enteric diarrheal disease, HIV =
human immunodeficiency virus, UC = Ulcerative colitis, CD = Crohn’s dis-
ease, LIV = liver diseases, CIRR = Liver cirrhosis, MHE = minimal hepatic
encephalopathy, NASH = non-alcoholic steatohepatitis, OB = obese, PAR =
Parkinson’s disease, PSA = psoriatic arthritis, ART = arthritis, RA = rheuma-
toid arthritis, T1D = Type I Diabetes. nonCDI controls are patients with
diarrhea who tested negative for C. difficile infection. nonIBD controls are pa-
tients with gastrointestinal symptoms but no intestinal inflammation. Datasets
are ordered as in Figure 1.
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A B

Figure 1: Most diseases show microbiome alterations, and consistent
disease-associated shifts differ in their extent and direction. (A) Left:
Total sample size for each study included in these analyses. Additional infor-
mation about each dataset can be found in Table 1. Studies on the y-axis
are grouped by disease and ordered by decreasing sample size (top to bottom).
Right: Area under the ROC curve for genus-level random forest classifiers.
X-axis starts at 0.5, the expected value for a classifier which assigns labels ran-
domly, and AUCs less than 0.5 are not shown. ROC curves for all datasets are
in Supplementary Figure 5. (B) Left: Number of genera with q < 0.05 (FDR
KW test) for each dataset. If a study has no significant associations, no point
is shown. Right: Direction of the microbiome shift, i.e. the percent of total
associated genera which were enriched in diseased patients. In datasets on the
leftmost blue line, 100% of associated (q < 0.05) genera are health-associated
(i.e. depleted in patients relative to controls). In datasets on the rightmost red
line, 100% of associated (q < 0.05) genera are disease-associated (i.e. enriched
in patients relative to controls). Supplementary Figures 8 and 9 show q-values
and effects for each genus in each study.
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Figure 2: Comparing results from multiple studies of the same dis-
ease reveals patterns in disease-associated microbiome alterations.
Heatmaps showing log10(q-values) for each disease (FDR, KW test). Rows in-
clude all genera which were significant in at least one dataset within each disease,
columns are datasets. Q-values are colored by direction of the effect, where red
indicates higher mean abundance in disease patients and blue indicates higher
mean abundance in controls. Opacity ranges from q = 0.05 to 1, where q values
less than 0.05 are the most opaque and q values close to 1 are gray. White
indicates that the genus was not present in that dataset. Within each heatmap,
rows are ordered from most disease-associated (top) to most health-associated
(bottom) (i.e. by the sum across rows of the log10(q-values), signed according
to directionality of the effect). The extent of a disease-associated microbiome
shift can be visualized by the number of rows in each disease heatmap; the di-
rectionality of a shift can be seen in the ratio of red rows to blue rows within
each disease. See Supplementary Figure 6 for genus (row) labels.
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Figure 3: The majority of disease-associated microbiome alterations
overlap with a “core” microbial response to disease. (A) Core and
disease-associated genera. Genera are in columns, arranged phylogenetically
according to a PhyloT tree built from genus-level NCBI IDs (http://phylot.
biobyte.de). Core genera are associated with health (or disease) in at least
two different diseases (q < 0.05, FDR KW test). Disease-specific genera are
significant in the same direction in at least two studies of the same disease (q
< 0.05, FDR KW test). As in Figure 2, blue indicates higher mean abundance
in controls and red indicates higher mean abundance in patients. Black bars
indicate mixed genera which were associated with health in two diseases and
also associated with disease in two diseases. Core genera are calculated using
results from all datasets. Disease-specific genera are shown for diseases with at
least 3 studies. Phyla, left to right: Euryarchaeota (brown), Verrucomicrobia
Subdivision 5 (gray), Candidatus Saccharibacteria (gray), Bacteroidetes (blue),
Proteobacteria (red), Synergistetes (pink), Actinobacteria (green), Firmicutes
(purple), Verrucomicrobia (gray), Lentisphaerae (pink), Fusobacteria (orange).
See Supplementary Figure 7 for genus labels. (B) The percent of each study’s
genus-level associations which overlap with the core response (q < 0.05). Only
datasets with at least one significant association are shown. (C) Overall abun-
dance and ubiquity of core genera across all patients in all datasets. “Core”
genera on the x-axis are as defined above.
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7 Supplementary Information504

7.1 Re-processing and re-analyzing raw data yields results505

which are generally consistent with previously pub-506

lished results507

Our re-analyses of the 29 studies were largely consistent with the originally508

reported results, with the same taxonomic groups showing similar trends despite509

differences in data-processing methodologies. We usually found fewer significant510

(q < 0.05) differences between control and diseased groups, which is likely due511

to our choice of a non-parametric statistical test (Kruskall-Wallis) paired with512

a multi-test correction (FDR). Thus, our results are more conservative. We also513

collapsed to genus level in order to compare results across disparate studies,514

which prevented us from identifying species- or strain-specific associations which515

the original authors may have identified. A major advantage of our re-analysis516

is that each data set was processed and analyzed in the same way, which allowed517

us to more directly compare results across studies and diseases.518

7.1.1 Clostridium difficile Infection and enteric diarrhea are charac-519

terized by large-scale shifts in the microbiome (CDI; 4 studies)520

Schubert et al. (2014) looked at how the gut microbiota differed between521

CDI patients with diarrhea (n = 94), non-CDI patients with diarrhea (n =522

89), and non-diarrheal controls (n = 155) [38]. Similar to other CDI stud-523

ies, the authors found a significant reduction in alpha diversity in patients524

with diarrhea (p = 0.007). They found that OTUs from the Ruminococcaceae,525

Lachnospiraceae, Bacteroides, Prevotellaceae, and Porphyromonadaceae fami-526

lies were enriched in healthy subjects relative to patients with CDI and non-527

CDI diarrhea. They also showed that OTUs from the Enterococcus genus and528

the Enterobacteriaceae and Erysipelotrichaceae families were more prevalent529

in patients with diarrhea. In our analysis of the data, we also observed a530

significant reduction in alpha diversity in patients with diarrhea (q <= 0.05,531

KW test). Similarly, we found that Enterobacteriaceae, Enterococcus, and532

Erysipelotrichaceae were enriched in CDI patients, in addition to Veillonella, Fu-533

sobacterium, Robinsonella, Clostridium type XIVa, Streptococcus, Lactobacillus,534

Tetragenococcus, Gemella, Parabacteroides, Dysgonomonas, and Actinomyces.535

As in the original study, we found that Bacteroides, Alstipes, Anaerovorax,536

Oxalobacter, Pseudomonas, Bordetella, Prevotellaceae, Porphyromonadaceae,537

Lachnospiraceae, and Ruminococcaceae were more abundant in the healthy con-538

trols. We also found Clostridium XI, Gemmiger, Proteus, Tetragenococcus,539

Buttiauxella, Raoultella, Flavonifractor, Serratia, Eggerthella, Carnobacterium,540

Mogibacterium, Aggregatibacter, Yersinia, Parvimonas, Sutterellaceae and Clostridi-541

ales Incertae Sedis XIII to be enriched in the controls (q <= 0.05, KW tests).542

Overall, our analysis closely matched what was presented in the original manuscript.543

Vincent et al. (2013) compared 25 patients with CDI to 25 healthy control544

patients [39]. The authors found a significant reduction in alpha diversity (p <=545
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0.05, Mann-Whitney U test). They also report a reduction in Bacteroidaceae546

and Clostridiales Incertae Sedis XI in CDI patients relative to controls, and an547

enrichment in Enterococcaceae in CDI patients (p < 0.05, logistic regression).548

After reprocessing these data and collapsing abundances to the genus level, we549

observed a similar reduction in alpha diversity (q <= 0.05, KW test). We saw550

that the Enterococcaceae genera Enterococcus and Proteus were enriched in CDI551

patients. Healthy controls showed higher levels of Prevotella, Peptoniphilus,552

Fusobacterium, Parabacteroides, Anaerococcus, Murdochiella, Finegoldia, and553

Odoribacter, relative to CDI patients. In summary, our results are fairly similar554

to the authors’ original analysis, showing a depletion in Bacteroidetes and an555

enrichment in Proteobacteria in CDI patients.556

Youngster et al. (2014) applied fecal microbiota transplants (FMTs) with557

materials collected from 5 healthy donors to 20 patients with recurrent Clostrid-558

ium difficile infections (CDIs) [15]. The goal of this study was to determine559

whether nasal-gastric tube or colonoscopy administration of FMTs was most560

effective for treating CDIs (i.e. half of the CDI patients received one or the561

other treatment). The authors reported a significant reduction in alpha diver-562

sity in CDI patients vs. the healthy donors (p < 0.001). They did not assess563

whether there were significant differences in microbial community composition564

between CDI patients and donors, although they show that composition be-565

comes more similar to donors following FMT. In our analysis, we also found566

a significant reduction in alpha diversity (p <= 0.05, KW test). We iden-567

tified 8 genera that were enriched and 15 genera that were depleted in CDI568

patients, relative to healthy stool donors (q <= 0.05, KW tests). Specifically,569

Enterococcus, Defluviitalea, Acetivibrio, Allisonella, Oxalobacter, Mitsuokella,570

Corynebacterium, and Porphyromonas were enriched in CDI patients. Many of571

these CDI-associated genera are facultative anaerobes that are usually found572

at very low relative abundances in the gut. Healthy donors were enriched in573

genera from Ruminococcaceae and Lachnospiraceae families, in addition to the574

genera Dialister and Anaerosporobacter. Additionally, healthy donors showed575

greater levels of Bacteroides and several Actinobacterial genera. Many of the576

genera associated with health are known short chain fatty acid (SCFA) produc-577

ers. SCFAs, like butyrate and propionate, have been positively associated with578

colon health [41].579

Singh et al. (2015) examined differences in the gut microbiome between in-580

dividuals with enteric infections (n=200) and healthy controls (n=75) [40]. The581

authors report a significant drop in alpha diversity in diseased patients relative582

to the controls (p < 0.05). They also report a general reduction in the domi-583

nance of Firmicutes and Bacteroidetes phyla and an increase in the prevalence584

of Proteobacteria in diseased patients. Specifically, they report an increase in585

the abundance of Enterobacteriaceae, Lactobacillaceae, Pasteurellaceae, Strep-586

tococcus, Bacilli, Escherichia, Haemophilus, and certain Ruminococcus species587

in patients with diarrhea. In healthy people, they report a significant enrich-588

ment in Verrucomicrobia, Dorea, Blautia, Holdermania, Ruminococcaceae, Lach-589

nospiraceae, Butyricimonas, Faecalibacterium, Bacteroidaceae, and Bifidobac-590

terium, Sutterella, Parabacteroides, Rikenellaceae, and Oscillospira. After re-591
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processing the data, we found very similar results to those originally reported.592

We found that alpha diversity was significantly lower in patients with enteric593

infections (q <= 0.05, KW test). We saw significant enrichment in Proteobacte-594

ria families in patients with diarrhea, including Enterobacteriaceae, Pasteurel-595

laceae, Campylobacteraceae, and Neisseriaceae. We also saw higher levels of596

Comamonas, Aeromonas, Gemella, Fusobacterium, Veillonella, Peptostrepto-597

coccus, Ruminococcus II, Parvimonas, Streptococcus, Lactococcus, Lactobacil-598

lus, Tetragenococcus, Enterococcus, and Collinsella in diseased patients. In599

the healthy controls, we also found enrichment of Sutterella, Verrucomicrobia600

(Akkermansia), Ruminococcaceae, Lachnospiraceae, Bacteroidaceae, and Bifi-601

dobacterium. In addition, we saw higher levels of 43 genera, including several602

members of Rumminococcaceae, Lachnospiraceae, and Bacteroidales in healthy603

controls (q <= 0.05, KW tests). Overall, our results largely overlap with those604

presented, but we identify a number of significant taxa that were not originally605

reported.606

Taken together, we see large-scale shifts in the microbiome associated with607

both CDI and non-CDI diarrhea. The dysbiosis of enteric infection and diarrhea608

is quite consistent across studies. In general, Proteobacteria increase in preva-609

lence in patients with diarrhea, with a concomitant decrease in Bacteroidetes610

and Firmicutes. In particular, we see a reduction in butyrate-producing Clostridia,611

including genera within Ruminococcaceae and Lachnospiraceae families, which612

have been associated with a healthy gut. We also see in increase in prevalence613

of organisms often associated with lower pH and higher oxygen levels of the614

upper-gut, like Lactobacillaceae and Enterobacteriaceae [42], in patients with615

diarrhea. Thus, diarrhea leads to consistent and large-scale rearrangements in616

the composition of the gut microbiome.617

7.1.2 Colorectal Cancer has a consistent, pathogenic microbial sig-618

nature (CRC; 5 studies)619

Baxter et al. (2016) looked at differences in the microbiomes of 120 colorec-620

tal cancer (CRC) patients, 198 patients with non-cancerous adenomas, and 172621

healthy controls [18]. Similar to prior work, the authors found that Porphy-622

romonas, Peptostreptococcus, Parvimonas, and Fusobacterium were positively623

associated with CRC. Furthermore, they found that the absence of certain Lach-624

nospiraceae species was associated with the presence of adenomas. We found625

similar patterns in our re-analysis of these data, with Fusobacterium, Peptostrep-626

tococcus, Parvimonas, and Porphyromonas enriched in CRC patients (q <=627

0.05, KW tests). We also found higher levels of Anaerococcus, Peptoniphilus,628

Catenibacterium, Collinsella, Staphylococcus, Victivallis, Enterobacter in CRC629

patients (q <= 0.05, KW tests). We found that healthy controls were enriched630

in Lachnobacterium (genus within Lachnospiraceae), Gemmiger (within Rum-631

minococcaceae), Clostridium XVIII, and Haemophilus (q <= 0.05, KW tests).632

Overall, these results match what has been reported previously for CRC [61].633

Zeller et al. (2014) collected microbiome data from 41 CRC patients and 75634

control patients [19]. At the phylum level, they found that Proteobacteria, Fu-635
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sobacteria, and Bacteroidetes, were more abundant in CRC patients, while Fir-636

micutes and Actinobacteria were enriched in control patients. At the genus level,637

the authors report higher levels of Fusobacterium, Pseudoflavonifractor, Pep-638

tostreptococcus, Leptotrichia, Porphyromonas, Desulfovibrio, Parvimonas, Se-639

lenomonas, and Bilophila in CRC patients. Healthy controls were enriched in Bi-640

fidobacterium, Acinetobacter, Campylobacter, Ruminococcus, and Eubacterium641

genera. In our re-analysis we found enrichment of Eikenella, Comamonas, Fu-642

sobacterium, Flavonifractor, Anaerotruncus, Peptostreptococcus, Anaerovorax,643

Parvimonas, Porphyromonas, and Butyricimonas genera in CRC patients (q644

<= 0.05, KW tests). In healthy patients, we found higher levels of Anaerostipes645

(within Lachnospiraceae; q <= 0.05, KW tests).646

Wang et al. (2011) analyzed a cohort of 46 CRC patients and 56 healthy647

controls [8]. The authors found no difference in alpha diversity between CRC648

and control patients. CRC patients had higher abundances of Porphyromonas,649

Escherichia-Shigella, Enterococcus, Streptococcus, and Peptostreptococcus gen-650

era. The authors report that healthy controls were enriched Bacteroides, Rose-651

buria, Alistipes, Eubacterium, and Parasutterella genera. We found very sim-652

ilar results in our re-analysis of these data. We saw greater levels of Kleb-653

siella, Escherichia-Shigella, Enterobacter, Peptostreptococcus, Enterococcus, and654

Porphyromonas genera in CRC patients (q <= 0.05, KW tests). And we ob-655

served significantly higher levels of Bacteroides, and several genera within Lach-656

nospiraceae in healthy controls (q <= 0.05, KW tests). Furthermore, we also657

did not detect any significant differences in alpha diversity between CRC and658

healthy patients.659

Zackular et al. (2014) compared the microbiomes of 30 CRC patients, 30 pa-660

tients with non-cancerous adenomas, and 30 healthy controls [20]. The authors661

reported higher levels of Lachnospiraceae and Bacteroides in healthy patients,662

while Fusobacterium, Enterobacteriaceae, and Porphyromonas were enriched in663

CRC patients. In our re-analysis, the only significant difference we found was an664

enrichment of Fusobacterium in CRC patients (q <= 0.05, KW tests). However,665

non-significant trends pointed in the same direction as the results reported in666

the original manuscript.667

Chen et al. (2012) analyzed stool from 22 healthy patients and 21 CRC668

patients [22]. The authors found that Paraprevotella, Eubacterium, Desulfovib-669

rio, Mogibacterium, Collinsella, Anaerotruncus, Slackia, Anaerococcus, Porphy-670

romonas, Fusobacterium, and Peptostreptococcus genera were significantly en-671

riched in CRC patients relative to controls, while Bifidobacterium, Faecalibac-672

terium, and Blautia were reduced in CRC patients. In our re-analysis of this673

data set, we found no significant differences between CRC and control patients.674

Again, this is likely due to the small number of replicates and the implementa-675

tion of multiple-test corrections. However, non-significant trends were largely676

in agreement with the original results.677

Across these six colorectal cancer studies, we find significant agreement. Dys-678

biosis associated with CRC is generally characterized by increased prevalence of679

Fusobacterium, Porphyromonas, Peptostreptococcus, Parvimonas, Leptotrichia,680

Desulfovibrio, and Anaerococcus genera (i.e. these genera were higher in CRC681
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patients in 2 or more studies). In addition, there is a consistent decrease in682

the abundances of Faecalibacterium, Blautia, Bacteroides genera and organisms683

from the Lachnospiraceae family in CRC patients. CRC appears to have a684

smaller impact on overall community structure than diahrrea. Indeed, we saw685

no significant differences in alpha diversity between healthy controls and CRC686

patients. In summary, CRC is characterized by a consistent dysbiosis.687

7.1.3 Inflammatory Bowel Disease is characterized by a depletion688

of health-associated bacteria (IBD - Ulcerative Colitis and689

Crohn’s Disease; 4 studies)690

Gevers et al. (2014) looked for microbial signatures of Crohn’s disease (CD)691

samples across 447 CD patients and 221 healthy controls [25]. The authors692

report increased abundance of Enterobacteriaceae, Pasteurellaceae, Veillonel-693

laceae, and Fusobacteriaceae in CD patients. CD patients also showed a drop694

in the abundances of Erysipelotrichales, Bacteroidales, and Clostridiales (Ru-695

minococcaceae and Lachnospiraceae) taxa. These results were based on a mix-696

ture of 16S amplicon and shotgun metagenomic sequencing. In our re-analysis of697

the 16S stool data, we found significant enrichment in Ruminococcaceae (Papil-698

libacter, Pseudoflavonifractor, Subdoligranulum, Ruminococcus, and Sporobac-699

ter), Lachnospiraceae (Roseburia, Hespellia, Ruminococcus II ), Eubacterium,700

Anaerosporobacter, Collinsella, and Methanobrevibacter in healthy patients (q701

<= 0.05, KW tests). The only genera that we saw significantly enriched in CD702

patients were Lactobacillus and Acetanaerobacterium (q <= 0.05, KW tests).703

We found a similar set of taxa enriched in the controls, but did not detect as704

many significant CD-enriched genera as the authors reported. This is likely due705

to the fact that we restricted our analysis to the 16S stool data. However, we706

saw non-significant trends in Enterobacteriaceae and Veillonellaceae consistent707

with the results reported in the original paper.708

Morgan et al. (2012) studied a cohort of 119 CD patients, 74 UC patients,709

and 27 healthy controls [26]. The authors found that healthy patients gut mi-710

crobiomes were significantly enriched in Roseburia, Phascolarctobacterium, and711

an unclassified genus in the family Veillonellaceae. Patients with UC showed712

significantly higher levels of Clostridiaceae. In our re-analysis, we did not find713

any genera that were significantly enriched in IBD patients. We found that714

healthy patients had significantly greater abundances of Ruminococcus, Gem-715

miger, Lachnospiraceae incertae sedis, Ethanoligenens, and Clostridium IV (q716

<= 0.05, KW tests).717

Papa et al. (2012) studied a cohort of 23 CD patients, 43 UC patients, and718

24 non-IBD controls [17]. At the genus level, they found that controls were719

enriched in Alistipes, Subdoligranulum, Anaerovorax, Oscillibacter, Parabac-720

teroides, Odoribacter, Ruminococcus, Butyricicoccus, Akkermansia, Anaerotrun-721

cus, Sporobacter, Phascolarctobacterium, Lawsonia, Ethanoligenens, Peptococ-722

cus relative to IBD patients. The only genus that was found to be enriched723

in IBD patients was Escherichia-Shigella. In our re-analysis, we also found724

Escherichia-Shigella and Cronobacter to be enriched in patients with IBD (q <=725
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0.05, KW tests). Control patients showed higher abundances of Phascolarctobac-726

terium, Subdoligranulum, Ruminococcus, Oscillibacter, Gemmiger, Clostridium727

IV, Butyricicoccus, Ruminococcus II, Alistipes, Parabacteroides, and Odoribac-728

ter (q <= 0.05, KW tests). Overall, our results match very closely what was729

found in the original paper.730

Willing et al. (2010) compared 29 CD patients and 16 UC patients to 35731

healthy controls [27]. The authors reported variable, and sometimes opposing732

shifts in the microbiomes of patients with UC, ileal CD and colonic CD. They733

only found one significant OTU (Ruminococcus gnavus), which was enriched734

in ileal CD patients relative to controls. We found no significant differences735

between IBD and healthy patients in our re-analysis.736

In summary, there are certain consistencies across IBD studies. IBD pa-737

tients tend to be depleted in butyrate-producing clostridia: Ruminococcus and738

Lachnospiraceae. The organisms the are enriched in CD and UC patients tend739

to vary across studies. One consistency is organisms associated with the upper740

gut, like Lactobacillus and Enterobacteriaceae appear to be enriched in IBD pa-741

tients [42]. This result fits with the reduced stool transit times associated with742

IBD (i.e. diarrhea).743

7.1.4 Obesity shows a somewhat inconsistent microbial signature744

(OB; 5 studies)745

Goodrich et al. (2014) studied a cohort of 416 twin pairs: 422 normal BMI,746

322 overweight, and 185 obese [35]. The authors report higher levels of Lacto-747

bacillaceae, Eggerthella, and Lachnospiraceae (Blautia and Dorea) in obese in-748

dividuals (q < 0.05, FDR-corrected T-test). They showed enrichment for Chris-749

tensenellaceae, Dehalobacterium, Lachnospira, Mogibacteriaceae, Rikenellaceae,750

Methanobre, Coriobacteriaceae, Peptococcaceae, Oscillospira, Ruminococcaceae,751

and Sarcina in healthy BMI individuals (q < 0.05, FDR-corrected T-test). In752

our re-analysis, we found higher levels of Roseburia, Blautia, Streptococcus,753

Mogibacterium, Weissella and Clostridium XIVb in obese individuals, while754

Pseudoflavonifractor, Oscillibacter, Anaerofilum, Robinsoniella, Sporobacter and755

Anaerovorax were more abundant in low-BMI individuals (q <= 0.05, KW756

tests). We are not sure why our analyses were so different from the authors757

original findings, but this may be due to the fact that we used a different sta-758

tistical test and binned the data at the genus level.759

Zupancic et al. (2012) analyzed 310 individuals from an Amish population760

with varying BMIs [36]. They found a significant increase in the abundance of761

Collinsella in obese individuals, while Lachnobacterium, Anaerotruncus, Fae-762

calibacterium, and Clostridium were enriched in lean individuals. We found763

no significant differences in the proportion of genera between lean and obese764

individuals in our re-analysis.765

Turnbaugh et al. (2008) looked differences in gut microbial community struc-766

ture between 31 monozygotic and 23 dizygotic twin pairs concordant for lean-767

ness or obesity [34]. The authors report a reduction in alpha diversity in obese768

individuals. They also report a significant decrease in Bacteroidetes and an769
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increase in Actinobacteria in obese twins. In our re-analysis of these data, we770

did not see a significant reduction in alpha diversity (Supplementary Figure771

4). We found significant increases in Collinsella, Lactobacillus, Roseburia, Aci-772

daminococcus, Catenibacterium, and Megasphaera in obese twins (q <= 0.05,773

KW tests). Phascolarctobacterium, Coprobacterium, Clostridium IV, Clostrid-774

ium XIVb, Clostridium XVIII, Ruminococcus, Pseudoflavonifractor, Oscillibac-775

ter, Flavonifractor, Clostridium IV, Alistipes, Barnisiella, and Gordonibacter776

were significantly enriched in lean twins (q <= 0.05, KW tests).777

Ross et al. (2015) looked at 63 Mexican American patients with varying778

BMIs [37]. They found no significant differences between patients with high779

and low BMIs within their 63 patient cohort, but identified several significant780

differences between their patient population and the HMP data set. However,781

it is unclear whether these differences were related to obesity, so we do not782

discuss them here. Our re-analysis of these results also found no significant783

differences in the relative abundances of bacterial genera between high- and784

low-BMI subjects.785

Zhu et al. (2013) compared across a cohort of 16 healthy and 25 obese786

patients, in addition to 22 patients with Nonalcoholic steatohepatitis (see be-787

low) [1]. For obesity, the authors found that Prevotella was enriched in high-788

BMI patients, while healthy controls showed significantly greater relative abun-789

dances of Bifidobacterium, Blautia, and Faecalibacterium. In our re-analysis of790

these data, we found a significant enrichment of Prevotella, Selenomonas, Co-791

mamonas, Finegoldia, Campylobacter, Anaerococcus, Porphyromonas, Mogibac-792

terium, Leuconostoc, and Varibaculum in obese patients (q <= 0.05). Healthy793

patients were significantly enriched in Blautia, Lachnospiraceae incertae sedis,794

Akkermansia, Anaerovorax, Murdochiella, and Clostridium IV (q <= 0.05).795

Overall, we founds several differences between lean and obese patients that796

were consistent across at least two studies. Roseburia, Mogibacterium, and797

Barnisiella were enriched in obese individuals in more than one study. Pseud-798

oflavonifractor, Oscillobacter, Anaerovorax and Faecalibacterium were the only799

genera enriched in the controls across more than one study. However, no gen-800

era showed consistent differences across three or more studies. Our results are801

largely consistent with a recent meta-analysis of obesity studies, which found802

no universal signature of human obesity [12].803

7.1.5 Human Immunodeficiency Virus (HIV; 3 studies)804

Dinh et al. (2015) compared the gut microbiome from 16 healthy patients to 22805

patients with chronic HIV infections [33]. The authors report an general enrich-806

ment in Proteobacteria in HIV-infected patients. At the genus level, they found a807

significant enrichment in Barnesiella and a depletion in Alistipes in HIV-infected808

patients. In our re-analysis of these data we found no significant differences in809

the relative abundances of genera between healthy and HIV-infected patients.810

Lozupone et al. (2013) looked at 22 HIV-positive patients and 13 healthy811

controls [32]. The authors reported enrichment of Prevotella, Cantenibacterium,812

Dialister, Allisonella, and Megasphera genera in HIV-positive patients, while813
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Bacteroides and Alstipes were more abundant in controls. We found all the814

associations reported above in our re-analysis. Additionally, we saw higher rel-815

ative abundances of Peptostreptococcus, Eryspelotrichaceae incertae sedis, Allo-816

prevotella, Desulfovibrio, Hallella, Mogibacterium, Peptococcus, and Catenibac-817

terium in HIV-positive patients. And healthy patients were also enriched in818

Oridibacter, Anaerostipes, and Parasutterella. Many of the significant genera819

from the Lozupone study were shown to be strongly associated with sexuality820

in the Noguera-Julian study (i.e. these genera were significantly different in821

men who have sex with men versus other subjects; see below) and may not822

necessarily be related to HIV status.823

Noguera-Julian et al. (2016) studied a cohort of 293 HIV-infected patients824

and 57 healthy controls. The authors found that many putative associations825

between HIV and the microbiome were driven by sexual preference (i.e. Pre-826

votella, along with several other genera, were enriched in men who have sex with827

men). After controlling for this demographic confounder, the authors reported828

that higher levels of Erysipelotrichaceae, Fusobacterium, Methanobrevibacteria829

could classify HIV-positive patients and higher levels of Oligosphaeraceae, Bu-830

tyricomonas, and Turicibacter could classify control patients [31]. There was831

a weaker association between Megasphaera and being HIV-negative, and this832

genera was also observed to be significant in our re-analysis. Due to the large833

size of their study, the authors were able to separate the influences of sexuality834

and HIV-status from one another.835

Overall, there is not yet a strong consensus on the impacts of HIV on the836

human gut microbiome. However, the Noguera-Julian et al. (2016) paper was837

able to show that prior results showing enrichment of Prevotella in HIV-positive838

patients was an artifact due to this genera being enriched in men who have sex839

with men.840

7.1.6 Autism Spectrum Disorder (ASD; 2 studies)841

Kang et al. (2013) reported a reduced prevalence of Prevotella and other fer-842

mentative organisms in the guts of ASD children [2]. In particular, the authors843

showed significant (q <= 0.05, Mann-Whitney) depletion in unclassified Pre-844

votella and Veillonellaceae genera in autistic children (n = 20 treatment and845

20 controls). The authors also note a reduced alpha diversity in autistic chil-846

dren. After reprocessing these data, we found no significant differences in alpha847

diversity or genera abundances between autistic and control children (Fig. 1;848

q > 0.05, Kruskal-Wallis). The original conclusion that Prevotella and Veil-849

lonellaceae were different was based on q-values of 0.04, which is only mod-850

erately convincing evidence against the null-hypothesis. Therefore, the loss of851

this marginal significance (for q <= 0.05) is unsurprising when using a different852

statistical test.853

In a more recent study, Son et al. (2015) found no significant differences in854

microbial community diversity or composition between autistic and neurotyp-855

ical children (n = 59 ASD and 44 neurotypical) [7]. One genus, representing856

chloroplast sequences, was associated with ASD children with functional con-857
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stipation, but this signal appeared to be due to dietary intake of chia seeds.858

Similar to the authors findings, we did not detect any significant differences859

in genera abundances between ASD children and neurotypical children in the860

reprocessed data (q > 0.05, Kruskal-Wallis).861

Taken together, we find no evidence for changes in the composition or diver-862

sity of the gut microbiome in response to ASD. However, we cannot discount863

subtle dysbiosis (i.e. small effect size) in response to ASD due to the small864

number of patients in each study.865

7.1.7 Type 1 Diabetes (T1D; 2 studies)866

Alkanani et al. (2015) compared 23 healthy patients to 35 early-onset T1D pa-867

tients and 21 seropositive T1D patients [58]. The authors report higher relative868

abundances of Lactobacillus, Prevotella and Staphylococcus genera in healthy869

patients. T1D patients showed higher levels of Bacteroides. In our re-analysis,870

we found no significant differences in bacterial genera across healthy and dis-871

eased patients.872

Mejia-Leon et al. (2014) compared 8 healthy patients to 8 early-onset T1D873

patients and 13 T1D patients who had received 2 years of treatment [59]. Similar874

to Alkanani et al. (2015), they found controls to be significantly enriched in875

Prevotella and T1D patients enriched in Bacteroides. They also found higher876

levels of Acidaminococcus and Megamonas genera (in the Veillonellaceae family)877

in the controls. We saw no significant differences in our re-analysis of these data.878

Overall, the original authors report a consistent increase in Bacteroides and879

depletion in Prevotella genera associated with T1D. However, our re-analysis880

found that these differences did not pass our significance threshold. Thus, we881

cannot yet conclude that there is a consistent dysbiosis associated with T1D.882

7.1.8 Nonalcoholic Steatohepatitis (NASH; 2 studies)883

Zhu et al. (2013) compared the microbiomes from 16 healthy individuals to884

22 patients with NASH [1]. They found significantly lower relative abundances885

of Bifidobacterium, Blautia, and Faecalibacterium genera in NASH patients.886

NASH patients were enriched in Escherichia, compared to controls, and tended887

to show increased levels of Proteobacteria. In our re-analysis, we found that888

NASH patients showed significantly higher levels of Cetobacterium, Desulfomi-889

crobium, Anaerococcus, Peptoniphilus, Campylobacter, Finegoldia, Mogibacterium,890

Porphyromonas, Varibaculum, Weissella, Prevotella, Peptococcus, Negativic-891

occus, Leuconostoc, Pyramidobacter, Mobiluncus, Gallicola, Hallella, Fusobac-892

terium, Moryella, Escherichia/Shigella, Syntrophococcus, Olsenella and Lacto-893

bacillus genera (q < 0.05, KW test). Conversely, control patients were sig-894

nificantly enriched in Corynebacterium, Faecalibacterium, Clostridium XI, Ru-895

minococcus, Anaerostipes, Anaerovorax, Alistipes, Lachnospiracea incertae sedis,896

Gemmiger, Barnesiella, Bifidobacterium, Akkermansia, Murdochiella, Coprococ-897

cus, Blautia, and Clostridium IV genera (q < 0.05, KW test).898
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Wong et al. (2013) investigated a cohort of 16 healthy and 22 NASH pa-899

tients [60]. They found that control patients were enriched in Faecalibacterium900

and Anaerosporobacter genera, while NASH patients showed significantly higher901

levels of Parabacteroides and Alisonella genera. In our re-analysis of these data,902

we saw no significant differences.903

In summary, there were not many consistencies between the two NASH904

studies analyzed here. The original studies consistently report a depletion in905

Faecalibacterium in NASH patients. Thus, the overall influence of NASH on the906

microbiome is difficult to assess without further study.907

7.1.9 Minimal Hepatic Encephalopathy and Liver Cirrhosis (LIV; 1908

study)909

Zhang et al. (2013) looked at the microbiomes of 26 healthy patients, 26 pa-910

tients with MHE, and 25 patients with CIRR [50]. The original paper reported911

several genera that differed between diseased and control patients. Odoribacter,912

Flavonifractor, and Coprobacillus were all enriched in MHE patients relative913

to controls, while Eubacterium, Lachnospira, Parasutteralla, and an unclassified914

Erysipelotrichaceae genus were enriched in healthy patients. The authors also915

reported depletion in Prevotella in non-MHE patients with cirrhosis (CIRR),916

relative to controls. When we re-processed and re-analyzed these data, the only917

difference we found was an enrichment in Veillonella in case (MHE and CIRR)918

patients (q < 0.05, KW test).919

7.1.10 Rheumatoid and Psoriatic Arthritis (ART; 1 study)920

Scher et al. (2013) investigated the impacts of arthritis on a cohort of 86 arthritic921

and 28 healthy patients [51]. The authors report that greater abundances of Pre-922

votella copri can predict susceptibility to arthritis. There were three types of923

arthritic conditions studied, but only new-onset untreated rheumatoid arthritis924

(NORA) showed a strong association with Prevotella. The other RA groups925

were not easily distinguishable from controls. Indeed, when grouping all arthri-926

tis patients together for our re-analysis, we did not find any genera that were927

significantly different between arthritic patients and controls.928

7.1.11 Parkinson’s Disease (PAR; 1 study)929

Scheperjans et al. (2014) looked for differences in the gut microbiome between930

72 neurotypical patients and 72 PAR patients [9]. They found a small handful of931

significant differences at the family level. Control patients showed higher relative932

abundances of Prevotellaceae, while PAR patients were enriched in Lactobacil-933

laceae, Verrucomicrobiaceae, Bradyrhizobiaceae, and Clostridiales Incertae Sedis934

(p < 0.05). In our re-analysis, we found significantly higher relative abundances935

of Lactobacillus (within Lactobacillaceae) and Alistipes (within Rikenellaceae)936

in PAR patients (q < 0.05).937
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8 Supplementary Tables and Figures938

Dataset ID Year N controls Controls N cases Cases
Median

reads per
sample

Sequencer 16S Region Ref.

Kang 2013, ASD 2013 20 H 19 ASD 1345 454 V2-V3 [2]

Son 2015, ASD 2015 44 H 59 ASD 4777 Miseq V1-V2 [7]

Schubert 2014, CDI 2014 243 H, nonCDI 93 CDI 4670 454 V3-V5 [38]

Singh 2015, CDI 2015 82 H 201 EDD 2585 454 V3-V5 [40]

Vincent 2013, CDI 2013 25 H 25 CDI 2526 454 V3-V5 [39]

Youngster 2014, CDI 2014 4 H 19 CDI 14696 Miseq V4 [15]

Baxter 2016, CRC 2016 172 H 120 CRC 9476 Miseq V4 [18]

Chen 2012, CRC 2012 22 H 21 CRC 1152 454 V1-V3 [22]

Wang 2012, CRC 2012 54 H 44 CRC 161 454 V3 [8]

Zackular 2014, CRC 2014 30 H 30 CRC 54269 MiSeq V4 [20]

Zeller 2014, CRC 2014 75 H 41 CRC 120612 MiSeq V4 [19]

Dinh 2015, HIV 2015 15 H 21 HIV 3248 454 V3-V5 [33]

Lozupone 2013, HIV 2013 13 H 23 HIV 3262 MiSeq V4 [32]

Noguera-Julian 2016, HIV 2016 34 H 205 HIV 16506 MiSeq V3-V4 [31]

Gevers 2014, IBD 2014 16 nonIBD 146 CD 9773 Miseq V4 [25]

Morgan 2012, IBD 2012 18 H 108 UC, CD 1020 454 V3-V5 [26]

Papa 2012, IBD 2012 24 nonIBD 66 UC, CD 1303 454 V3-V5 [17]

Willing 2009, IBD 2009 35 H 45 UC, CD 1118 454 V5-V6 [27]

Zhang 2013, LIV 2013 25 H 46 CIRR, MHE 487 454 V1-V2 [50]

Wong 2013, NASH 2013 22 H 16 NASH 1980 454 V1-V2 [60]

Zhu 2013, NASH 2013 16 H 22 NASH 9904 454 V4 [1]

Goodrich 2014, OB 2014 428 H 185 OB 27026 Miseq V4 [35]

Ross 2015, OB 2015 26 H 37 OB 4562 454 V1-V3 [37]

Turnbaugh 2009, OB 2009 61 H 195 OB 1569 454 V2 [34]

Zhu 2013, OB 2013 16 H 25 OB 9904 454 V4 [1]

Zupancic 2012, OB 2012 96 H 101 OB 1616 454 V1-V3 [36]

Scheperjans 2015, PAR 2015 74 H 74 PAR 2351 454 V1-V3 [9]

Scher 2013, ART 2013 28 H 86 PSA, RA 2194 454 V1-V2 [51]

Alkanani 2015, T1D 2015 55 H 57 T1D 9117 MiSeq V4 [58]

Mejia-Leon 2014, T1D 2014 8 H 21 T1D 4702 454 V4 [59]

Table 2: Datasets collected and processed through standardized pipeline. Dis-
ease labels: ASD = Austism spectrum disorder, CDI = Clostridium difficile
infection, CRC = colorectal cancer, EDD = enteric diarrheal disease, HIV =
human immunodeficiency virus, UC = Ulcerative colitis, CD = Crohn’s dis-
ease, LIV = liver diseases, CIRR = Liver cirrhosis, MHE = minimal hepatic
encephalopathy, NASH = non-alcoholic steatohepatitis, OB = obese, PAR =
Parkinson’s disease, PSA = psoriatic arthritis, ART = arthritis, RA = rheuma-
toid arthritis, T1D = Type I Diabetes. nonCDI controls are patients with
diarrhea who tested negative for C. difficile infection. nonIBD controls are pa-
tients with gastrointestinal symptoms but no intestinal inflammation. Datasets
are ordered alphabetically by disease and within disease by first author.
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Dataset ID Data type Barcodes Primers Quality filtering Quality cutoff Length trim

Kang 2013, ASD fastq No Yes -fastq truncqual 25 200

Son 2015, ASD fastq No Yes -fastq truncqual 25 200

Schubert 2014, CDI fastq No Yes -fastq truncqual 25 150

Vincent 2013, CDI fastq No Yes -fastq truncqual 20 101

Youngster 2014, CDI fastq No No -fastq truncqual 25 200

Baxter 2016, CRC fastq No No -fastq truncqual 25 250

Chen 2012, CRC fastq Yes Yes -fastq truncqual 25 200

Wang 2012, CRC fastq Yes Yes -fastq truncqual 25 150

Zackular 2014, CRC fastq No No -fastq truncqual 25 200

Zeller 2014, CRC fastq No No -fastq truncqual 25 200

Singh 2015, EDD fasta n/a n/a n/a n/a 200

Dinh 2015, HIV fastq No No -fastq truncqual 25 200

Lozupone 2013, HIV fastq No No -fastq truncqual 25 150

Noguera-Julian 2016, HIV fastq No Yes -fastq truncqual 25 200

Gevers 2014, IBD fastq No No -fastq truncqual 25 200

Morgan 2012, IBD fastq No Yes -fastq truncqual 25 200

Papa 2012, IBD fasta n/a n/a n/a n/a 200

Willing 2009, IBD fastq No Yes -fastq maxee 2 200

Zhang 2013, LIV fastq No Yes -fastq truncqual 25 200

Wong 2013, NASH fastq No No -fastq truncqual 25 200

Zhu 2013, NASH fasta n/a n/a n/a n/a 200

Goodrich 2014, OB fastq No No -fastq truncqual 25 200

Ross 2015, OB fastq No No -fastq truncqual 25 150

Turnbaugh 2009, OB fasta n/a n/a n/a n/a 200

Zhu 2013, OB fasta n/a n/a n/a n/a 200

Zupancic 2012, OB fastq No No -fastq truncqual 25 200

Scheperjans 2015, PAR fastq No Yes -fastq truncqual 25 200

Scher 2013, ART fastq No Yes -fastq truncqual 25 200

Alkanani 2015, T1D fastq No No -fastq maxee 2 200

Mejia-Leon 2014, T1D fastq Yes Yes -fastq truncqual 25 150

Table 3: Processing parameters for all datasets. Barcodes column indicates
whether we assigned reads to samples by their barcodes (Yes) or if the files were
already de-multiplexed (No). Primers column indicates whether we removed the
primers from sequences. Quality filtering and Quality cutoff columns
indicate the type of quality filtering we performed on the data. Length trim is
the length to which all sequences were truncated before clustering into OTUs. In
the case of -fastq truncqual quality filtering, reads were length trimmed after
quality truncation. In the case of -fastq maxee quality filtering, reads were
length trimmed before quality filtering. Datasets are ordered alphabetically by
disease and within disease by first author.
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Dataset ID Raw data Metadata

Kang 2013, ASD SRA study SRP017161 SRA

Son 2015, ASD SRA study SRP057700 SRA

Schubert 2014, CDI mothur.org/CDI MicrobiomeModeling mothur.org

Vincent 2013, CDI email authors email authors

Youngster 2014, CDI SRA study SRP040146 email authors

Baxter 2016, CRC SRA study SRP062005 SRA

Chen 2012, CRC SRA study SRP009633 SRA sample description

Wang 2012, CRC SRA study SRP005150 SRA study description

Zackular 2014, CRC mothur.org/MicrobiomeBiomarkerCRC mothur.org

Zeller 2014, CRC ENA study PRJEB6070 Table S1 and S2

Singh 2015, EDD http://dx.doi.org/10.6084/m9.figshare.1447256 Additional File 4

Dinh 2015, HIV SRA study SRP039076 SRA

Lozupone 2013, HIV ENA study PRJEB4335 Qiita study 1700

Noguera-Julian 2016, HIV SRA study SRP068240 SRA

Gevers 2014, IBD SRA study SRP040765 Table S2

Morgan 2012, IBD SRA study SRP015953 http://huttenhower.sph.harvard.edu/ibd2012

Papa 2012, IBD email authors email authors

Willing 2009, IBD email authors email authors

Zhang 2013, LIV SRA study SRP015698 SRA

Wong 2013, NASH SRA study SRP011160 SRA

Zhu 2013, NASH MG-RAST, study mgp1195 MG-RAST

Goodrich 2014, OB ENA studies PRJEB6702 and PRJEB6705 ENA

Ross 2015, OB SRA study SRP053023 SRA

Turnbaugh 2009, OB https://gordonlab.wustl.edu/NatureTwins 2008/TurnbaughNature 11 30 08.html Table S1

Zhu 2013, OB MG-RAST, study mgp1195 (same data as nash zhu) MG-RAST

Zupancic 2012, OB SRA study SRP002465 SRA

Scheperjans 2015, PAR ENA study PRJEB4927 sample names

Scher 2013, ART SRA study SRP023463 SRA

Alkanani 2015, T1D email authors email authors

Mejia-Leon 2014, T1D email authors email authors

Table 4: Locations of raw data and associated metadata for each dataset used
in these analyses.
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Figure 4: Reduction in alpha diversity is not a reliable indicator of
“dysbiosis.” Shannon diversity index across all patient groups in all studies,
calculated on OTUs (i.e. not collapsed to genus level, and including unannotated
OTUs). Diarrheal patients consistently have lower alpha diversity than non-
diarrheal controls (green box). Crohn’s disease (CD) patients also show a slight
reduction of alpha diversity relative to controls in three out of four IBD studies
and ulcerative colitis (UC) patients in two studies (purple box). Obese patients
have inconsistent and small reductions in alpha diversity, consistent with a previ-
ous meta-analysis [12]. ∗ : 0.01 < p < 0.05, ∗∗ : 10−4 < p < 0.01, ∗∗∗ : p < 10−4.
P values are calculated from a two-sided T-test (using scipy.stats.ttest ind)
and are not corrected for multiple tests. Note that ob zhu and nash zhu are the
same study; the full cohort results are presented only once in this plot (ob zhu).
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Figure 5: ROC curves for each of the classifiers in Figure 1. Datasets are
grouped by disease and ordered alphabetically first by disease and then by first
author.
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Figure 6: Same heatmaps as in Figure 2, with rows labeled by family and genus
taxonomy.
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Figure 7: Panel A from Figure 3, with genus labels.
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Figure 8: Heatmap of log10(q values) for all genera which were significant (q
< 0.05) in at least one dataset, across all studies. Rows are genera, ordered
phylogenetically (as in Figure 3A). Columns are datasets, grouped by disease
and ordered according to total sample size (decreasing from left to right). The
first and second heatmap panels from the left are the same as in Figure 3A.
q-values are colored according to directionality of the effect, where red indicates
higher mean abundance in patients relative to controls and blue indicates higher
mean abundance in controls. Opacity indicates significance and ranges from 0.05
to 1, where q values less than 0.05 are the darkest colors and q values close to
1 are gray. White indicates that the genus was not present in that dataset.
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Figure 9: Heatmap of log-fold change between cases and controls (i.e.
log2( mean abundance in cases

mean abundance in controls ) for all genera which were significant (q < 0.05)
in at least one dataset, across all studies. Rows are genera, ordered phylo-
genetically (as in Figure 3A). Columns are datasets, grouped by disease and
ordered according to total sample size (decreasing from left to right). The first
and second heatmap panels from the left are the same as in Figure 3A. Values
are colored according to directionality of the effect, where red indicates higher
mean abundance in patients relative to controls and blue indicates higher mean
abundance in controls. Opacity indicates fold change and ranges from 1300 to
0, where fold changes greater than 1300 are the darkest colors and fold changes
close to 0 are gray. White indicates that the genus was not present in that
dataset.
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Figure 10: Varying Random Forest parameters does not significantly affect AUC
of classification of cases from controls (Gini criteria). Random Forest classifiers
built by using the Gini impurity (“gini”) split criteria. Upward-pointing trian-
gles are classifiers built with 10000 estimators; downward-pointing triangles are
built with 1000 estimators. Colors indicate the value of min samples leaf (the
minimum number of samples required to be at a leaf node): red = 1, blue = 2,
green = 3. X-axes are the value of min samples split (the minimum number
of samples required to split an internal node) [56]. All Random Forests were
built using the random state seed 12345.
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Figure 11: Varying Random Forest parameters does not significantly affect
AUC of classification of cases from controls (entropy criteria). Random For-
est classifiers built by using the information gain (“entropy”) split criteria.
Upward-pointing triangles are classifiers built with 10000 estimators; downward-
pointing triangles are built with 1000 estimators. Colors indicate the value of
min samples leaf (the minimum number of samples required to be at a leaf
node): red = 1, blue = 2, green = 3. X-axes are the value of min samples split

(the minimum number of samples required to split an internal node) [56]. All
Random Forests were built using random state seed 12345.
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Maria Casadellà, Piotr Nowak, Falk Hildebrand, Georg Zeller, Mariona1082
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