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Abstract

Motivation: We set out to develop an algorithm that can mine differential gene expres-
sion data to identify candidate cell type-specific DNA regulatory sequences. Differential
expression is usually quantified as a continuous score—fold-change, test-statistic, p-
value—comparing biological classes. Unlike existing approaches, our de novo strategy,
termed SArKS, applies nonparametric kernel smoothing to uncover promoter motifs
that correlate with elevated differential expression scores. SArKS detects motifs by
smoothing sequence scores over sequence similarity. A second round of smoothing
over spatial proximity reveals multi-motif domains (MMDs). Discovered motifs can
then be merged or extended based on adjacency within MMDs. False positive rates
are estimated and controlled by permutation testing. Results: We applied SArKS
to published gene expression data representing distinct neocortical neuron classes in
M. musculus and interneuron developmental states in H. sapiens. When benchmarked
against several existing algorithms for correlative motif discovery using a cross-validation
procedure, SATKS identified larger motif sets that formed the basis for regression models
with higher correlative power. Availability: https://github.com/denniscwylie/sarks.
Contact: denniswylieQaustin.utexas.edu. Supplementary information: appended
to document.

1 Introduction

Discrete sequences—of tones, of symbols, or of molecular building blocks—can provide clues
to other characteristics of the entities from which they are derived: a phrase in a bird’s song
can reveal which species it belongs to, the use of an idiomatic expression can pinpoint a
speaker’s geographic origin, and a specific short string of nucleotide residues can illuminate
the function of a DNA domain. In these examples, insights are gleaned from informative
motifs—short subsequences that match some frequently recurring discernible pattern.
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Of particular interest are DNA regions modulating differential gene expression. The
regions contain motifs that produce defined patterns of gene expression, however the details
of how and which motifs are needed for expression specificity remain poorly understood.

We present a broadly-applicable algorithm for identifying DNA regulatory regions that
support differential gene expression. Our strategy is predicated on the following suppositions:
(a) gene expression regulatory regimes involve the binding of transcription factors (TF's)
to sites on non-coding DNA in the vicinity of a transcription start site (TSS) (Maston
et al. (2006); Nguyen and D’haeseleer (2006)); (b) TFs act combinatorially to attract and
repel transcription machinery (Walhout (2006)); (c) the same TF binding site may appear
multiple times within a stretch of DNA, interspersed with other binding sites (Gotea et al.
(2010)); and (d) there is more than one solution: different genes, even those co-expressed
within a single cell, may rely on different regulatory mechanisms (Badis et al. (2009)).
In accord with these suppositions, we aim to identify TF binding sites associated with
enriched transcripts and scrutinize their arrangement for significant patterns that can then
be evaluated experimentally.

Many motif identification methods have been described. Consensus-based methods such
as Weeder (Pavesi et al. (2001, 2004)) focus on fixed-length motifs that repeatedly occur
(with few mismatches) in sequences of interest, and can be efficiently implemented using
suffix trees (Sagot (1998); Marsan and Sagot (2000); Pavesi et al. (2001)). Alternately,
profile-based methods such as MEME (Bailey and Elkan (1995); Bailey et al. (2006, 2009))
build a probabilistic motif profile to be compared to a background model in order to classify
subsequences as either matching the motif or not.

In contrast, discriminative methods (Sinha (2003)) identify motifs that differentiate
one set of sequences (e.g., promoter regions for genes with a given expression pattern)
from another (e.g., reference promoter regions). Many approaches have been applied to
this differentiation problem (e.g., Segal et al. (2002); Segal and Sharan (2005); Redhead
and Bailey (2007); Fauteux et al. (2008); Valen et al. (2009); Huggins et al. (2011); Yao
et al. (2014)). One popular example, DREME (Bailey (2011)), employs Fisher’s exact test
to compare counts of motif matches in the target/positive sequences with counts in the
background /negative sequences. HOMER (Heinz et al. (2010)) uses similar hypergeometric
enrichment calculations, but couples them to a zero-or-one-occurrence-per-sequence (ZOOPS)
scoring approach. The recent motif finder STEME (Reid and Wernisch (2014)) extends
a suffix tree-based approximate expectation-maximization approach (Reid and Wernisch
(2011)) into a practical tool capable of discriminative motif discovery.

When discriminative methods are applied to differential gene expression, they impose a
binary representation (such as elevated or not elevated expression). However, differential
gene expression is generally described using a continuous measure (¢-statistics, f-statistics,
etc.), with some genes more affected than others by a difference in state. It is more useful,
therefore, to use “correlative motif discovery,” which seeks motifs whose presence signals
a trend towards higher or lower values of the continuous measure. A few such correlative
algorithms have been described, including MOTIF REGRESSOR (Conlon et al. (2003)),
which first applies the (non-correlative) MDScan (Liu et al. (2002)) algorithm to identify
motifs in a subset of high-scoring sequences, then filters the motif set based on the predictive
value of regression models based on the selected motifs. Another correlative algorithm, FIRE
(Elemento et al. (2007)), iteratively optimizes the mutual information between sequence scores
and occurrences of candidate motifs, starting from a set of most informative “seed” motifs.
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Both of these algorithms may be seen as applying correlational information (regression or
mutual information, respectively) as a filter to select and refine a set of candidate motifs
generated in a non-correlative manner.

The generation of a seed motif set paves the way for sequence ranking by counting
occurrences of the uncovered motifs within each sequence w,. However, as the number of
possible motifs of length & grows exponentially with k, given a fixed set of sequences {wy}
and a suitably large k, only a fraction of possible length-k motifs will be observed in any
sequence wy. For example, in 1000 sequences wi, . . ., wigpp €ach of length |wy| = 1000, at
most one million k-mers of any length k can be found.

In contrast, we aimed to develop SATKS as an algorithm for correlative motif discovery
that does not require seed motifs to minimize the possibility of missing informative motifs
due to suboptimal seeding. Our solution was to focus on observed substrings of the sequences
wp, not all possible k-mer patterns that could be present in the wy.

Specifically, SArKS relies on suffixes of wp—substrings formed by deleting the beginning
of a string. As there are only |wp| non-empty suffixes of wy, SArKS is able to process all
suffixes of its input sequences even when when they are long and/or numerous. SArKS then
assesses suffix similarity by lexicographic sorting: just as words sharing a common prefix
are found close together in a dictionary, suffixes starting with a shared k-mer are assigned
similar numeric positions in the sorted list of all suffixes (Figure 1). By correlating sorted
suffix position with suffix sequence score using kernel smoothing, SArKS develops this idea
into a de novo motif discovery algorithm, with a natural extension for identification of longer
multi-motif domains (MMDs) spanning tens to hundreds of bases (Section 2).

We applied SATKS to two RNA-seq data sets using nonparametric permutation testing
to compute significance thresholds for correlative motif discovery and to estimate false
positive rates. We demonstrate that SArKS outperforms existing algorithms at identifying
correlative motifs in cross-validation testing scenarios. The top motif patterns and MMDs
identified by SArKS include known regulatory elements (Mathelier et al. (2015); Elbarbary
et al. (2016)). Thus, the correlational motif discovery approach used by SArKS takes
full advantage of differential expression RNA-seq data to illuminate prospective sequence-
dependent mechanisms of gene expression regulation.

2 Methods

Symbolic notation is described both when introduced and systematically in Section S2.1.
Given n sequences wy, (also referred to as words) with associated scores yp, the essential
steps of the algorithm (illustrated in Figure 1 and described in Section 2.1) consist of:

1. concatenating all the sequences wy into one supersequence z;

2. constructing the suffix array [s;] of this supersequence (Equation (2)), where 7 indexes
all suffixes of = sorted into lexicographic order;

3. mapping suffix positions 7 back to the sequences wy, from which the beginnings of the
associated suffixes are derived (Equation (3)); and

4. for each i, applying kernel smoothing to locally regress the sequence scores y;; on suffix
positions j lexically near i (Equation (4)).
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Figure 1: Overview of SArKS method. (A) Concatenation of sequences wy (end-of-sequence character
indicated by white space instead of $ for visual clarity) to form string z = DSNASANSDRNAYS$AYS. (B)
Table of all suffixes of z (part of each suffix following first end-of-sequence character shown in light gray),
along with index b of input sequence ws each suffix derived from and score y» associated with ws. (C) Sorted
suffix table indicating suffix array index 4, suffix array value s;, suffix (sequence following first end-of-sequence
character has been removed), sequence of origin b;, associated score y;,, and smoothed score §; generated
using smoothing window of size 3 (kernel half-width k = 1). (D) Smoothed scores §; plotted against suffix
array index 4, indicating peak at 7 = 8 corresponding to suffix NAY of input sequence DRNAY. Note that
prefix NA of this suffix is longest substring common to the two input sequences w1 and ws with scores y, > 0.

We thus encode the motif pattern corresponding to the first few characters of the suffix of
x beginning at character s; with the numerical suffix array index value i. Because i gives
the position of a suffix in the lexicographically sorted list of suffixes of the concatenated
supersequence x, multiple occurrences of a highly conserved motif—even if they derive from
different sequences wp—will be consolidated into a run 4, ¢ + 1, ..., j of consecutive index
values. Averaging together runs of j — ¢ consecutive scores by kernel smoothing using a
kernel of width j — i thus offers a way to compare the scores yp,, Yp,,,, - -, Yp; to the overall
score distribution (1).
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2.1 Motif selection

2.1 Motif selection

Concatenate all words wy, (each assumed to end in the line-terminator character $ lexically
prior to all other characters) to form word

T =Wy * Wy *...% Wp_1 (1)
of length I, = |z| = >, |luwp|. Define also I, = >, |wy|. Then z[ly,lp11) = ws; that
is, the substring of the concatenated string starting at position I, (inclusive) and ending
immediately before position 11 (exclusive) is the sequence w;, (we denote the first character
of a string w by w]0], the second wl1], etc.).

Lexically sort suffixes x5 = x[s, |z|) into ordered set

S = {$507$517"‘ ’$81n71} (2)

thereby defining suffix array [s;] mapping index 7 of suffix in S to suffix position s in z (in
our software we rely on the Skew algorithm (Kérkkéinen and Sanders (2003)) modified to
use a difference cover of 7 and implemented in SeqAn (Déring et al. (2008)) to efficiently
compute the suffix array).

Define block array [b;] by

b =max{b|l, <s;} (3)

mapping index ¢ of suffix in S to block b containing suffix position s;. The block array then
tells us that the character x[s;] at position s; in the concatenated string x is derived from
wy, [s; — Ip,] in the sequence wy,.

Calculate smoothed scores as locally weighted averages

G = > Kijyp, ()
YKy
where the kernel Kj; acts as a weighting factor for the contribution of the score y;, to the
smoothing window centered at sorted suffix index i. Kj; is used to measure how similar (the
beginning of) the suffix x[s;, |z|) is to be considered to (the beginning of) the suffix z[s;, |z|)
in the calculation of a representative score y; averaged over suffixes similar to x[s;, |z|). As
the suffixes have been sorted into lexicographic order, the magnitude of the difference i — j
reflects this similarity: the key idea of the kernel smoothing approach described here is that
Equation (4) with K;; defined to be a function of |i — j| may therefore offer a computationally
tractable approach for identifying similar substrings which tend to occur preferentially in
high scoring words wy.
In this work we use a uniform kernel

() _
K" =

1 ifli—j| <k
0 otherwise

which allows Equation (4) to be computed in terms of cumulative sums:

Zj Ki(;)ybj 1 itk 1 itk i—k—1
= > o, = D we = > (6)
> Ki(j{f) 2k +1 P 2k + 1 = o=

The kernel half-width x appearing in Equation (5) is an important adjustable parameter
controlling the degree of smoothing. Increasing x smooths over more diverse suffixes,
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2.1 Motif selection

potentially increasing statistical power at the expense of the resolution of the detected motifs
(i.e., length of k-mer prefix common to suffixes in the smoothing window). We recommend
investigating a range of values of this parameter as is illustrated in Section 3.

Set length k; for k-mer associated with suffix array index i by averaging locally the
length of suffix sequence identity:

b= >z Kijmax {k < kmax | z[s;j, sj + k) = z[si, s; + k)}
Z 2 i K

(7)

where kpax functions both to increase computational efficiency and to make l%z more robust in
the presence of a small number of long identical substrings. All results presented here based
on kmax = 12: This value was selected as kmax ~ log,|z| where x is the longest concatenated
sequence string considered in Section 3.2.1, so that for k > k.« there are more distinct
k-mers than there are positions for such k-mers to occur in all of the sequences wj; composing
T.

Equation (7) is similar to Equation (4) except that: (a) Equation (7) smooths the length
of the longest prefix on which the suffixes z[s;, |z|) and z[s;, |z|) agree instead of smoothing
the score yp, as in Equation (4); and (b) Equation (7) omits the central term i = j as it
trivially compares the suffix beginning at s; to itself and is thus uninformative.

A straightforward approach to identifying correlative motifs using SArKS would then be
to set a score threshold 6 and take motifs to be k-mers prefixing the suffixes starting at the
positions s; in the concatenated string x. This is the essence of our method, though below
we add two filters designed to pinpoint the optimal locations s; at which to initiate motifs
and, in Section S2.2, to remove likely false positive positions.

Defining the negative spatial shift operator n(i) which yields the unique suffix array
index corresponding to the spatial position immediately prior to s;, so that s, =s; — 1,
as well as the positive shift operator p(i) similarly defined by the condition s,;) = s; + 1,
we start with a preliminary filtered suffix array index set I consisting of those i for which
(1) the smoothed score g; > 6 and (2) g; is not less than the smoothed scores of the spatial
positions in z immediately adjacent to s; (i.e., s; must be the loci of a peak in plot of ¥;
versus spatial position s;):

I={i|(@=0) A (ne) < 9 2 Jps) } ®)
from which we obtain the associated set M of k-mers beginning at the positions s; in = by

M = {x[si, sit+ ki) i e 1} 9)

where U%J is the nearest integer to k;. Strategies for setting the filtering threshold 6 based
on the permutation testing method are described in Section S2.5. In the next section we
recommend one additional filter—designed to limit the impact of intra-sequence tandem
repeats on reported motifs—to be incorporated into the definition of the index set I, replacing
Equation (8) by Equation (10), for use in Equation (9).

The k-mers composing the set M (Equation (9)) constitute the SArKS motif set when
spatial smoothing is not employed. When spatial smoothing is employed to detect multi-motif
domains (Sections 2.3 and S2.4), a modified procedure for merging spatially contiguous
motifs within such domains leads to Equation (S9) for the final k-mer motif set Mpatial-
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2.2 Limiting the impact of intra-sequence repeats

2.2 Limiting the impact of intra-sequence repeats

The frequent occurrence of short tandem repeats in the genome (Ellegren (2004)) can cause
smoothing windows to be skewed towards a relatively small number of distinct sequences
(discussed in Section S2.2). As a result, the smoothed motif scores may reflect fewer input
sequences, reducing precision and increasing false positive rates among the high scoring
motifs. To filter out such false positives, section S2.2 introduces the Gini impurity score g;
measuring the “effective sequence count” contributing to the smoothing window centered at
i, while Section S2.5 demonstrates that g; predicts the variance of the smoothed score for
suffix array index ¢ under the null hypothesis of independence between sequence and score.
We can thus modify equation (8) to remove potential false positive i values characterized by
low Gini impurities g;:

T={i| @ >6) A (g <9i = Gpiy) A (9> gin) } (10)
screening out positions ¢ for which the repeated occurrence of a few high-scoring words in
the window centered at i leads to ¢; > 6.

2.3 Spatial smoothing to identify multi-motif domains (MMDs)

Existing motif discovery approaches recognize the tendency of regulatory motifs to cluster into
domains (Wasserman and Sandelin (2004)). Our algorithm exploits this feature, identifying
candidate regulatory regions through the application of a second round of kernel-smoothing
over suffix positions s; within words:

" Zt LSz’t

where we use uniform kernels of the form

1 if (OS (tj—Sl') <>\) VAN (blzb])
0 otherwise

IO _

sity —

(12)

(generally with width A # k) to search for regions of length \ with elevated densities of
high-scoring motifs. Note that g, defined by Equation (11) is indexed not by suffix array
index 7 but by suffix array value s; giving the spatial position s; in the concatenated word .

Spatial smoothing requires a threshold Ospatial 7 0, as the doubly-smoothed scores ﬁsi
tend to be less dispersed compared to the singly-smoothed ¢;. The threshold Og,atia1 can
be used to define an index set Igpatial in @ manner similar to how I is defined by Equation
(10). This procedure is detailed in Section S2.4, which additionally defines the set Jspatial of
suffix array indices ¢ corresponding to the starting positions of MMDs. It then details the
procedure adopted by SArKS to merge spatially contiguous motifs within the same MMD,

yielding the set Iypaiia1 of suffix array indices ¢ and merged motif lengths l%sl. required to
obtain the merged motif set Mpatial analogous to equation (9).

2.4 Permutation testing to establish significance of motif set

The significance of the correlation between the motifs uncovered by SArKS and the sequence
scores ¥, can be evaluated by examining results obtained when the sequences w;, and the
scores 1, are independent of each other. To this end, the word scores y; are subjected to
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permutation 7 to define yéﬂ) = Yr(p)- 1f the permutation 7 is randomly selected independently

of both the sequences wy and the scores ¥, any true relationships between sequences and
scores will be disrupted. Section S2.5 and Section S2.6 develop the strategy used by SArKS
to set thresholds 6 (and/or Ogspatial) for each combination of parameters &, A, gmin to control
the overall false positive rate.

3 Results and discussion

3.1 Illustration of SArKS using simulated data

To illustrate SArKS, we first applied it to a simple simulated toy data set in which 30
random sequences wy, were generated with each letter wy[s] drawn independently from a
Unif {A,C,G,T} distribution. We then embedded the k-mer motif CATACTGAGA (k = 10)
in the last 10 sequences (i.e., those wy, with b > 20) by choosing a position s, independently
for each sequence wy, from Unif {0, ..., |wy| — k} and replacing wy[sp, sp + k) with the motif.
Scores were assigned to the sequences according to whether the motif had been embedded:
yp = 0if b € [0,20), yp, = 1 if b > 20.

The kernel half-width x = 4 was used to obtain smoothing windows of size similar to
the number of motif-positive sequences, 2k + 1 &~ [{b | y, = 1}|. As this number cannot be
known in advance when applying SArKS to real data, in practice we recommend testing a
range of x values as done in Section 3.2.1 below.

Figure 2 plots g; as obtained from Equation (4) applying the method of Section 2.1
to search for motifs. The highest peaks in the plot correspond to the positions of various
substrings of the embedded motif, and correspond to the set M of k-mers defined by the
[si,5; + | ki]) column of Table 1.

Removing nested motifs from Table 1 as described in Section S2.3, Equation (S7) leaves
only the rows for i € {2257,2258,2256, 1462, 1458, 1463}. Applying Equation (S8) then
extends the 8-mer ATACTGAG of the rows i € {1462, 1458, 1463} to the full 10-mer, so that,
following Equation (S9), the final k-mer set M’ = {CATACTGAGA} is recovered (Table 1).

Section S2.5 illustrates the utility of setting a minimum Gini impurity gmin during motif
selection to reduce the false positive rate: 190 out of 1000 random permutations generated
at least one position (™) for which QE(?) =1 > 6 (for this toy model 0 was taken to have
the maximum possible value of 1), but only 20 of these permutations yield any results if
gmin = 0.8506 (following Equation (S5) with v = 0.1) is applied. Based on these results, we
can derive a 95% confidence interval of (1.2%, 3.1%) for the family-wise error rate (FWER,
a type of false positive rate; see Section S2.6).

3.2 Uncovering promoter motifs associated with differential gene expres-
sion

We set out to analyze two published RNA-seq data sets (Mo et al. (2015); Close et al. (2017))
using SArKS. The first study presented transcriptome data for adult mouse neurons sorted
according to cell class (Mo et al. (2015)). In particular, this study was among the first
to profile parvalbumin-expressing (PV) interneurons, a major inhibitory subclass in the
mammalian neocortex. PV basket and chandelier neurons are intimately involved in the
microcircuitry of sensory processing, memory formation and critical period plasticity (Cobb
et al. (1995); Klausberger and Somogyi (2008)). Dysfunction of PV interneurons has been
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3.2 Uncovering promoter motifs associated with differential gene expression
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Figure 2: Locating peaks in kernel-smoothed scores ;. Kernel-smoothed scores §; (Equation (4), using
kernel half-width x = 4) are plotted against suffix array index i for simulated data set. Gold, silver, and
bronze bars indicate positions in lexicographically sorted table of suffixes beginning with prefixes CAT,
ATA, and TAC, which correspond to the first five characters of embedded motif CATACTGAGA. Detailed
information on the peak locations at which the smoothed score ¢; = 1 is presented in Table 1 below.

linked to autism and schizophrenia (Lewis et al. (2005)), and the ability to access these
neurons using a cell-type specific promoter has been a priority for brain scientists. The second
study examined transcriptomes of differentiating interneurons at several developmental time
points (Close et al. (2017)). In the sections below, we describe the parameters and results of
SArKS analyses for both data sets. In Section S3.2.2, we inspect the SArKS-elicited motifs
associated with PV neurons and demonstrate how to extend the application of SArKS to
identify promoter multi-motif domains (MMDs).

3.2.1 Data set 1: cell class-specific transcriptome analysis

We analyzed RNA-seq gene expression data from mouse neocortical neurons pooled based
on genetically defined cell classes (Mo et al. (2015)) to identify regulatory motifs associated
with parvalbumin (PV) neuron-specific gene expression.

After accounting for differential expression and chromatin accessibility (Section S2.7.1),
we examined two sets of sequences for 6,326 unique transcripts. The first set covered
upstream regions -3000 base pairs (bp) to the transcription start site (T'SS), the second set
extended from the TSS to +1000 bp.

We tested a range of half-window sizes k € {250, 500, 1000, 2500} with the maximum
value of 2500 selected to produce a smoothed window of size 2k + 1 = 5001 similar to the
number of input sequences (6326). Note that smaller windows are less likely to contain
sample multiple suffixes from the same promoter sequence: in particular, windows of width
greater than the number of distinct sequences must contain multiple suffixes from at least
one promoter sequence.

For each half-window size k, we applied two minimum Gini impurity values gmin set
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3.2 Uncovering promoter motifs associated with differential gene expression

i Si i k; zlsisi+ ki) b ws i
2257 3959 1 10.25 CATACTGAGA 22 194 0.889
2258 4518 1 10.25 CATACTGAGA 25 0 0.889
2256 3544 1 9.62 CATACTGAGA 21 30 0.864
1460 3960 1 9.25 ATA CTGAGA 22 195 0.889
1461 4519 1 9.25 ATA CTGAGA 25 1 0.889
1459 3545 1 8.75 ATA CTGAGA 21 31 0.889
1462 3456 1 8.50 ATA CTGAG 20 193 0.864
1458 4442 1 8.25 ATA CTGAG 24 175 0.864
5864 3961 1 8.25 TACTGAGA 22 196 0.889
5865 4520 1 8.25 TACTGAGA 25 2 0.889
1463 5595 1 7.88 ATA CTGAG 29 73  0.864
5863 3546 1 7.75 TACTGAGA 21 32 0.889
5862 4443 1 7.25 TAC TGAG 24 176 0.864
1464 5174 1 7.12 ATA CTGA 27 154 0.840
5861 5430 1 6.88 TAC TGAG 28 159 0.840

1

1465 4232 6.25 ATA CTG 23 216 0.815

Table 1: Suffix array peak positions with §; > 6. Illustration of motif selection process (Section 2.1)
applied to simulated data (using kernel half-width x = 4). All positions for which sequence smoothed score
9; > 0 = 1 are shown; table is sorted in descending order of the estimated motif length k;. Columns indicate
values of key variables for the suffix associated with the corresponding peak: (i) suffix array index i giving
position of suffix in lexicographically sorted list of all suffixes; (s;) suffix array value s; giving spatial position
of suffix in concatenated sequence z; (§;) kernel smoothed score §; (Equation (4)); (ki) estimated length k;
(Equation (7)) of conserved |k;]-mer prefix of suffixes within smoothing window centered on suffix array
index 4; (x[s,s; + |ki])) the corresponding conserved | k;]-mer x[s;, s; + [ki]) (Equation (9)); (b;) the input
sequence b; (Equation (3)) from which the suffix is derived; (w;) the spatial position w; at which the suffix is
found within sequence b;; and (g;) the Gini impurity g; (Equation (S4)) for the smoothing window centered
at i. Note that each of these peaks corresponds to a suffix derived from a position within the first three
characters of an instance of the embedded motif CATACTGAGA. Gold highlighting indicates peaks starting
from the first character of the embedded motif, silver the second, and bronze the third.

according to Equation (S5) with first v = 0.1 and then v = 0.2. Also for each value of k, we
examined three separate spatial window sizes A € {0,10,100}. These values were selected to
investigate the performance of SArKS using no spatial smoothing (A = 0), using a window
A = 10 of the typical length scale of eukaryotic transcription factor binding sites (Stewart
et al. (2012)), and using a window A = 100 to target the low end of the enhancer length
distribution (Loots (2008)). Thresholds 6 (for analyses with no spatial smoothing) or spatial
(for analyses with A € {10,100}) were set according to the permutation testing strategy
detailed in Section S2.5 using R = 100 permutations.

3.2.2 Data set 2: differentiating interneuron transcriptome analysis

We examined RNA-seq data for differentiating human interneurons (Close et al. (2017)),
applying SArKS to identify promoter motifs associated with elevated gene expression in
doublecortin-positive (DCX+) GABAergic neurons compared to DCX- cells. Differential
expression was assessed for 6,939 genes as detailed in Section S2.7.2 and we analyzed
upstream sequences (from -3000 bp to the TSS) and downstream sequences (from the TSS
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3.2 Uncovering promoter motifs associated with differential gene expression

to +1,000 bp) as described in Section 3.2.1.

SArKS analysis was conducted using all combinations of half-window size x € {250, 500, 1000, 2500}
and spatial smoothing window A € {0, 10,100} for the reasons described in 3.2.1. However,
for this data set, the minimum Gini impurity thresholds were computed using only v = 0.1—
we had seen little benefit from including the higher value v = 0.2 in our experience with
the Mo 2015 data set (see Section 3.2.4). Thresholds € or fspatia1 Were set according to the
permutation testing strategy detailed in Section S2.5 using R = 100 permutations.

3.2.3 Benchmark comparisons for correlative motif discovery

We conducted a cross-validation benchmarking study to compare SArKS correlative motif
discovery performance to that of five motif search algorithms. Two of these methods, FIRE
(Elemento et al. (2007)) and MOTIF REGRESSOR (Conlon et al. (2003)), as they rely on
alternative approaches to correlative motif discovery. The remaining algorithms, DREME
(Bailey (2011)), HOMER (Heinz et al. (2010)), and STEME (Reid and Wernisch (2014))
are popular discriminative methods which we have run by discretizing our score data with
promoter sequences b considered ‘positive’ sequences if the score vy, > 2, ‘negative’ otherwise.
While there is a definite loss of information in this discretization—the avoidance of which is
one of the primary motivations for the introduction of SArKS, as well as other correlative
motif algorithms—we were interested in direct comparison of correlative and discriminative
algorithms to assess the degree to which correlative algorithms actually benefit from avoiding
discretization.

We split the 6,326 transcripts selected from the Mo 2015 data set into five disjoint subsets
Vi, Va,..., V5 (the name V; intended to suggest the f validation set) of approximately
equal size (|V1| = 1,266, while |V;| = 1,265 for f > 1). The set of 6,939 genes selected from
the Close 2017 data set was similarly partitioned into disjoint cross-validation folds.

For both data sets, for both promoter sequence ranges investigated, and for each of the
algorithms evaluated, five separate motif identification analyses were conducted corresponding
to the five cross-validation folds V. For each analysis f € {1,...,5}, motif discovery was
performed using the sequences and scores from all folds except Vy: the genes assigned to V
were instead held out for validation of the discovered motif (so that the set of genes used
to learn the motif sets was in each case disjoint from the set of genes used for validation).
Existing algorithms were run at their default parameter settings where possible; exact
specifications are given in Section S2.8, while SArKS parameters were set as described in
Sections 3.2.1-3.2.2.

We used tomtom (Gupta et al. (2007)) to compare the pooled motif sets identified by
each algorithm. Figure S3 shows the resulting overlap between motifs sets by algorithm: for
each of the benchmarked algorithms, the majority of identified motifs had a SArKS-identified
counterpart. SArKS also identified many additional motifs.

The Pearson correlation between the count of occurrences of a given motif in sequence
wp with the score y;, across the sequence-score pairs (wy, yp) provides a natural metric for
assessing correlative motif discovery performance. Figure 3 plots the estimated Pearson
correlation values for each motif identified (by each algorithm) evaluated using the held-out
validation set {(wp, yp) | b € V;} appropriate for the fold f in which the motif was discovered
(with 3A and 3B presenting results for the Mo 2015 and Close 2017 data sets, respectively).

As Figure 3A-B and Figure S3 demonstrate, the number of motifs identified by different
algorithms can be highly variable: DREME, FIRE < HOMER, MOTIF REGRESSOR
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Figure 3: Benchmark comparisons of correlations between motif counts and gene specificity
scores in held-out validation subsamples. (A) Each vertical line represents a motif identified by the
indicated algorithm in one of the five cross-validation folds for the Mo 2015 data set (Mo et al. (2015)). The
horizontal position of the line encodes the Pearson correlation coefficient of the motif count with the associated
sequence score (calculated using only the genes in the held-out validation set for the cross-validation fold
in which the motif was identified). The count for a given motif in sequence w;, was assessed using fimo
(Grant et al. (2011)) for DREME, HOMER, MOTIF REGRESSOR, and STEME—all of which represent
motifs as position-weight matrices—and using a simple regular expression search for FIRE (which returns
regular expression representations of motifs) and for SArKS k-mers. In all cases, motif counts were based on
motif occurrences on either the forward or reverse strand. Row: sequence region for motif counts, either 3kb
upstream or 1kb downstream of T'SS; column: interval containing average number of occurrences of motif
within sequence region across all analyzed genes. Widths of violins represent motif density and are scaled
consistently across all panels. (B) Same as (A), except applied to Close 2017 data set (Close et al. (2017)).
(C) Motif regression model predictions correlate with gene specificity scores in held-out cross validation
subsamples. Each of five cross-validation folds is plotted as separate point for each algorithm. Each regression
model was built using feature vector constructed by concatenating counts of upstream motifs in upstream
regions with counts of downstream motifs in downstream regions. Left panel: results of modeling applied to
Mo 2015 data set; right panel: same for Close 2017 data set. Vertical lines indicate mean Pearson correlation
across all folds.
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3.2 Uncovering promoter motifs associated with differential gene expression

SArKS (the motif count for STEME is a fixed input parameter). The interpretation of the
number of motifs is, however, complicated by two factors: (1) the occurrence rate of individual
motifs in the relevant biological sequences (promoters, etc.) may differ substantially (e.g.,
longer motifs may occur less frequently) and (2) some motifs may be very similar in sequence.

The first of these complications is illustrated in Figure 3A-B by faceting horizontally
on motif occurrence rate (count per sequence): one visible trend here is that the DREME-,
FIRE-, and HOMER-identified motifs tend to occur less frequently than do the MOTIF
REGRESSOR and STEME motifs, indicating that DREME, FIRE, and HOMER tend to
define motifs more granularly than do MOTIF REGRESSOR or STEME. SArKS-identified
motifs are spread across a wide range of per-sequence occurrence rates in this plot, as SArKS
identifies both more and less granular motifs as the size of the smoothing window « is varied
through the ranges specified in Sections 3.2.1-3.2.2.

The second complication—the similarities among identified motifs—may be addressed
by noting that correlative motif discovery can also be viewed as a form of feature extraction.
In this vein, we can assess the performance of such algorithms by using the selected motifs
as predictors to build regression models for associated sequence score 1, based on the motif
counts in the sequence wy. Figure 3C plots validation set-estimated Pearson correlations
of the predictions made by building a linear ridge regression model (using generalized
cross-validation (Golub et al. (1979)) to select the L2 regularization parameter) with the
sequence scores for each cross-validation fold by algorithm. Motifs were counted only within
the sequence range in which they were identified, with these counts then merged into a
single feature vector per gene to allow the regression models to consider both up- and
downstream motifs simultaneously. This approach collapses the variation in quantity and
quality of individual motifs down to variation of a single quantity—the regression model
predictions—thereby facilitating a head-to-head comparison of motif discovery algorithms
bypassing both of the complications discussed above. As the similarity of some identified
motifs manifests as collinearity of regression predictors, regularization is a key component of
this modeling approach.

SATKS yields better results than the other algorithms for both validation data sets
(Figure 3C); aside from SArKS, the other two correlational motif discovery algorithms (FIRE
and MOTIF REGRESSOR) do not appear to show a consistent advantage in performance
relative to the discriminative algorithms.

If, instead of using the merged motif feature set, the regression models are built using
only upstream or downstream motif counts, the results shown in Figure S2 are obtained,
making clear that all six algorithms generally perform better when searching the downstream
regions (for which SArKS shows a particularly strong advantage in both data sets).

Considering the downstream motif results, we noted that for every algorithm applied to
the Mo 2015 data set, the motif with the highest Pearson correlation coefficient between
occurrence count and parvalbumin specificity score in the held-out cross-validation fold
exhibited significant tomtom similarity (¢ < 0.1) to the ESRRA/ESRRB/ESRRG trio of TF-
binding motifs documented in the JASPAR database (Mathelier et al. (2015)). Looking at
the Close 2017 downstream motif results, we observed that the most highly cross-validation-
correlated motifs for three of the algorithms—FIRE, HOMER, and SArKS—were significantly
similar to all of the JASPAR motifs TGIF1/TGIF2/MEIS2/MEIS3/PKNOX1/PKNOX2.

In contrast, the top upstream motif results showed no such convergence on common
JASPAR profiles: applied to the Mo 2015 data set, only one pairwise combination of two
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Figure 4: Benchmarked algorithm run times. Average run times per cross-validation fold for each motif
discovery algorithm applied to either upstream (solid circles) or downstream (open circles) regions for selected
genes from Close 2017 data set (for which all analyses were run on the same computer system).

algorithms—FIRE and STEME—produced top upstream motifs (ranked by cross-validated
Pearson correlation) that showed significant tomtom similarity (¢ < 0.1) to a common JAS-
PAR profile (NR5A2, whose binding motif closely resembles the ESRRA/ESRRB/ESRRG
pattern mentioned above). Applied to the Close 2017 data set, no two algorithms produce
motifs similar to the same JASPAR profile.

We see that in those cases where all of the algorithms performed better in the cross-
validation testing (downstream), the top motifs were more likely to converge on known
TF-binding motifs. Interestingly, SArKS outperformed the other algorithms to a greater
degree in the analyses of downstream regions than of upstream regions.

Comparison of all of the motifs discovered by the various algorithms with known TF-
binding motifs is further explored in Section S3.2.1.

Finally, we compared the average run times for each of the benchmarked algorithms
applied to the upstream and downstream cross-validation analyses. As is shown in Figure 4,
SArKS took longer than most of the other algorithms with the exception of STEME; FIRE
and HOMER are quite fast relative to the others. Further discussion of the computational
complexity of SArKS is provided in Section S3.3.

3.2.4 Permutational analysis of SArKS results

The permutation testing procedure used to set SArKS score thresholds can be used for
directly assessing the statistical significance of the motif set SArKS reports as well. This
is done by (1) following the procedure laid out in Sections S2.5 and S2.6 using a set of R
randomly drawn permutations of the input sequence scores to determine threshold values
for motif selection and (2) independently drawing a second set of Ry permutations from
which the false positive rate corresponding to these thresholds can be estimated according
to (S26).

To demonstrate this procedure, we re-applied SArKS to both the Mo 2015 and Close
2017 data sets here including all 6,326 or 6,939 selected genes (respectively) without cross-
validation subsetting. We again investigated all combinations (x, \) € {250, 500, 1000, 2500} x
{0,10,100} for the smoothing half-width x and spatial length A, computing gmi, for each
value of k following Equation (S5) using the v values indicated in Sections 3.2.1-3.2.2, and
determining significance thresholds using R = 100 randomly generated permutations.

For the Mo 2015 data set, the analyses performed using the stricter gmin values obtained
using v = 0.1 yielded larger k-mer motif sets: 3,393 total distinct k-mers versus only 1,232
using v = 0.2 for the upstream sequence set; 380 distinct k-mers using v = 0.1 versus just
180 using v = 0.2 for the downstream sequence set. More than 98% of the k-mers discovered
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using v = 0.2 were also identified using v = 0.1 (for both sequence ranges: 1,208 of the 1,232
upstream; 179 of the 180 downstream). Based on these results for the Mo 2015 analysis, we
focused exclusively on v = 0.1 for the Close 2017 analysis, as described in Section 3.2.2.

The results above demonstrate that restrictive values of v can yield larger motif sets that
include almost all of the motifs obtained using more permissive v values. This highlights the
importance of the Gini impurity filter in focusing SArKS on potential motifs that appear
within sufficiently many distinct sequences wy to achieve reasonable statistical confidence.

We assessed the statistical significance of these SArKS results following the method of
Section S2.6 with thresholds 6 and Ospatial set by Equation (S24) and Equation (S25) using
z = 4. Upstream sequence analysis of the Mo 2015 set considering R2 = 250 independent
random permutations resulted in 12 (4.8%) for which any of the parameter sets (K, gmin, A)
yielded a nonempty set of identified motifs; for the Close 2017 set, the same procedure
resulted in 8 (3.2%) nonempty motif sets. These upstream sequence results correspond to a
95% family-wise error rate confidence interval (FWER CI) of (2.5%, 8.2%) in the Mo 2015
analysis and (1.4%, 6.2%) in the Close 2017 analysis.

For the downstream sequence analysis, Ro = 250 independent permutations yielded 8
(3.2%) instances of nonempty motif sets for Mo 2015 and 1 (0.4%) nonempty motif set
for Close 2017, from which we estimate 95% FWER CIs of (1.4%, 6.2%) for Mo 2015 and
(0.01%, 2.2%) for Close 2017.

The role of the parameter z in Eqs (S24)-(S25) in balancing FWER against sensitivity
can be seen in the analyses presented here by considering the consequence of increasing z:
at z = 5 for the same 250 permutations, the permutation analysis using upstream regions
resulted in nonempty motif sets in only 2 permutations for Mo 2015 or 1 permutation for
Close 2017. Similarly, for the downstream regions, permutation analysis with z = 5 resulted
in 4 or 1 permutation(s) respectively. The cost of these decreased false positive rates to
sensitivity is apparent in that at most half of the motif k-mers identified using z = 4 were
still discovered using z = 5 in each of the analyses; for the Close 2017 upstream analysis
conducted with z = 5, SArKS returned no significant motif results at all. Here we were
willing to accept the FWER values associated with z = 4 (point estimates ranging from
0.4% to 4.8% in these analyses) in order to maintain a higher sensitivity.

Selection of the parameter z to appropriately balance sensitivity against false positive
rate will generally depend on the range of k, A, and gmin values investigated. When
SArKS analyses are conducted for many combinations of these parameters there will be
correspondingly more possible opportunities for false positives, requiring a higher value of z
to maintain confidence in the results. In cases where the size of the returned motif set may
be large, there is an additional factor to consider: the smaller motif sets associated larger
values of z benefit not only from greater statistical confidence but also from a reduction in
the computational effort required to refine and process the motif set (Section S3.3).

4 Conclusions

We introduce SATKS as a method for de novo correlative motif discovery. SArKS avoids the
dichotomization—and consequent loss of information (Fedorov et al. (2009))—of sequence
scores into discrete groups as required by discriminative motif discovery algorithms. SArKS
does not require specification of parametric background sequence models, instead using
nonparametric permutation methods (Ernst (2004)) to set thresholds for motif identification
and to estimate false positive rates. SArKS smooths over spatial motif location to identify
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multi-motif domains (MMDs), which can in turn help refine the identified motifs. We have
benchmarked SArKS against several existing discriminative and correlative algorithms using
previously published RNA-seq data: SArKS uncovered particularly large motif sets and
SArKS motif sets functioned as more predictive feature sets in a cross-validated regression
modeling approach than did motif sets generated by existing algorithms. SArKS thus offers
an approach to motif discovery capable of fulling exploit differential gene expression data.
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S2

Methods

S2.1 Notation glossary

u*v concatenate strings u and v
|u|  length of string u
uli,j) substring of u starting at i*" character (inclusive) and continuing up until
4§ character (exclusive) using O-based indexing
uli,j] substring of u starting at i*® character (inclusive) and continuing through
the 4 character (inclusive) using 0-based indexing
{a|C(a)} set containing all elements a satisfying condition C'(a)
{a|Ci(a) A Cz(a)} set containing all elements a satisfying conditions C;(a) and Cs(a)
{a]Ci(a) V Cz(a)} set containing all elements a satisfying conditions Cy(a) or Ca(a)
E[A] expectation value of random variable A
V[A] variance of random variable A
1 suffix array index: 0-based position of suffix in lexicographically sorted list
of all suffixes of string =
s; suffix array value: 0-based spatial position of suffix with suffix array index
¢ within string «
b; block array value: 0-based position of block/word in which suffix with suffix
array index ¢ begins
w;  0-based position of suffix with suffix array index ¢ within block b;
7;  kernel smoothed score associated with suffix array index ¢
half-width of kernel applied to generate ¢;

estimate of smoothed k-mer length at suffix array index i
negative spatial shift operator defined by property s, ;) = s; — 1
positive spatial shift operator defined by property s, = s; + 1

0  threshold value for y; for sequence-smoothed peak calling
I set of suffix array indices identified as peaks by SArKS
M  set of k-mer motifs derived from suffix array peak set
ISZ) weighted frequency of block/word b within smoothing window centered on
suffix array index ¢
g;  Gini impurity of smoothing window centered on suffix array index ¢
gmin Minimum value of smoothing window Gini impurity for inclusion in peak
set I
Us, spatially smoothed score associated with spatial array value (spatial position)
Si
A length of spatial kernel applied to generate spatially smoothed scores ﬁsi
]%Si estimate of merged k-mer length at spatial position (suffix array value) s;
Ospatial ~ threshold value for 35% to call significant spatial windows
Ispatia1  set of suffix array indices identified as k-mer starting positions using spatial
smoothing
Mipatial  set of k-mer motifs derived from suffix array index set Ispatial using spatial
smoothing
7w permutation of n blocks/words
II  random variable representing randomly generated permutation
gi(”) sequence smoothed scores calculated with word scores permuted by 7

957

spatially smoothed scores calculated with word scores permuted by m
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S2.2 Limiting the impact of intra-sequence repeats

S2.2 Limiting the impact of intra-sequence repeats

One complicating factor in the strategy described in Section 2.1 is the presence of tandem repeats
(common in eukaryotic DNA (Ellegren, 2004)): if the substring x[s;, s; + rm) (assumed to derive
wholly from the single word wy,) consists of r > 1 repeats of the same m-mer,

x[Si,8; + M) = x[84, 8; + M) * L[S, 8; + M) %k x[8;, 8 +m) (S1)
—_————
1 2 T

then it is likely that the sorted suflix array index positions j and k implicitly defined by s; = s; +am
and s = s; + bm for small a,b > 0 will be close by, since, assuming without loss of generality that
a<b,

x[s; + am, s; + (r — b+ a)m) = x[s; + bm, s; + rm) (S2)

showing that the suffixes of « beginning at positions (s; + am) and (s; + bm) agree on their first
(r — b)m characters. Since all of the positions s; + am for small ¢ must come from the same word
block b; they must have the same associated score yp,. If this score yp, is particularly high, this
phenomenon may lead to windows of high g, values centered on j satisfying s; = s; + am which
result from a very small number of different repeat-containing words (perhaps as few as one if the
number of repeats is high enough within a single high-scoring word). We thus here develop a natural
method for filtering the peak index set I to selectively remove suffix array index values ¢ where the
smoothing window is dominated by a few heavily repeated words wy.
The distribution of weighted word frequencies

F o > Kijoue
’ > Kij

contributing to the window centered at position i of the suffix array table across the full word set
W may for these purposes be summarized by the associated Gini impurity (often used in fitting
classification and regression trees (Breiman et al., 1984)):

=3 1" (11" (S4)
b

2Kk
2k+1

(S3)

which provides a measure ranging from 0 to
to the calculation of g;.

of the degree of uniqueness of the words contributing

As a concrete example, if all of the weighted frequencies word frequencies flgi) = % are the same

for a set of exactly ¢ words w; appearing in the smoothing window centered on i, g; = 1 — %. This
suggests an intuitive interpretation of (1 — g;) as the multiplicative inverse of the “effective word
count” contributing to the smoothing window around <.

Section S2.5 further demonstrates that (1 — g;) is also approximately proportional to the variation
of the smoothed scores 7; that would be expected if there were no association between the sequences
wy, and the scores y; (see Equation (S21) below). This proportionality suggests a simple method for
selection of a gmin value at which most suffix array indices 7 will be retained while filtering out only
those most likely to yield false positive results under permutation testing:

1= gmin=(1+7) (1 — meciliangi> (S5)

As shown in Equation (S21), setting gmin to satisfy Equation (S5) removes suffix indices 4 for which
the variance of the permuted smoothed scores is greater than (1++) times the median value. Thus
any value v > 0 will retain the majority of positions ¢ for further consideration. We have used v = 0.1
or v = 0.2 for all of the examples in the present work, retaining positions for which the permuted
score variance is less than 110% or 120%, respectively, of the median.
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S2.3 Reducing redundancy in reported motif set

z = ug * [CJA|TACTGAGA || * u; * CATACTG AGA * uy

Figure S1: Example k-mers to be removed or extended to reduce redundancy in reported motif
set. Two identified k-mers (u=CATACTGAGA on the left and v=ATACTG on the right) are indicated by
the dark gray highlighting, with two additional separately identified k-mers that are part of u indicated within
the nested black boxes. The two nested k-mers contained within the boxes inside of u will be removed from
the discovered k-mer set by the method of Section S2.3.1, while k-mer v = ATACTG will be extended by the
method of Section S2.3.2 to include the characters highlighted in light gray, replacing v with CATACTGAGA.
The four k-mers indicated in this figure correspond to positions s; € {3959, 3960, 3961, 4232} from Section
3.1.

Requiring g; > gmin results in redefining the peak index set I to
T={i| @ =0) A (o) <0 = o) A (9 > Grin) } (S6)

screening out positions ¢ for which the repeated occurrence of a few high-scoring words in the window
centered at i leads to ¢; > 6.

S2.3 Reducing redundancy in reported motif set

The presence of a k-mer z[s;, s; + k) associated with a high smoothed score ¢; can also result in
high smoothed scores g; when s; = s; + m if the substring (k — m)-mers z[s; + m, s; + k) also also
preferentially found in higher-scoring sequences, as pictured in Figure S1. The following two steps
may be added to the algorithm described in Section 2.1 in order to reduce the reporting of such
substrings when they are present only as part of the full k-mer.

S2.3.1 Removing shorter k-mers nested inside longer peak motifs

Cases in which both k-mer z[s;, s; + k) (e.g., CATACTGAGA in Figure S1) and its sub-(k —m1 —ma)-
mer x[s;+mq, $;+k—mg) (with m; > 0,ms > 0; e.g., TACTGAGA in Figure S1 with m; = 2, my = 0)
are individually identified can be resolved to report only the longer k-mer by removing any index
i € I (defined by Equation (S6)) if there exists j € I such that the |k;]-mer interval starting at s,
includes all of the |k;]-mer interval starting at s;, thus retaining only:

I = {z el ’ Viel: (si<s;)V (si+ [ei] > s; + U%ﬂ)} (S7)
This can be done efficiently using an interval tree.

S2.3.2 Extending substring k-mers to match longer motifs from distinct peaks

Besides two cases of nested k-mers which may be removed from the reported motif set by the method
of Section S2.3.1 (ATACTGAGA and TACTGAGA), Figure S1 also depicts a shorter k-mer ATACTG
derived from a distinct occurrence of the same longer k-mer (CATACTGAGA). Because this distinct
occurrence of the longer k-mer was not itself initially identified, the method of Section S2.3.1 does
not remove the shorter substring k-mer from the motif set. However, such substring k-mers may be
extended to the longer k-mer occurrence by the following method: for each 7 € I’, define the duplet

(z?,zil) = arg max {zo + 2! ‘ Jjel: 2 [sl — 20 s + ki —|—zl> =z [sj,sj + L/E:ﬂ)} (S8)

20,21>0

resolving any ties in the argmax in favor of maximal 2°. Equation (S8) picks out the largest

super-interval [si — 29,8 + U%l] + zl> containing the interval {si, s; + U;ﬂ) such that the extended

3
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S2.4 Spatial smoothing to identify multi-motif domains

(U%Z] + 29 + z})—mer x [si — 20 5 + |kl + zl) is equal to one of the already identified k-mers
{x [sj, s + U%ﬂ) ’j € I’}. (In the example of Figure S1, 20 = 1 and 2} = 3, corresponding to the
light gray highlighted characters surrounding the substring k-mer). Then

M’:{x [si—zgsﬁ-U%i]—&-z}) ‘ie[’} (89)

defines our motif set after removal of nested motifs.

S2.4 Spatial smoothing to identify multi-motif domains

SArKS identifies candidate multi-motif domains (MMDs) through the application of a second round
of kernel-smoothing over suffix positions s; within words:

R Lg,t. Uj
Js, = Ly Loty U5 (S10)
Zt Lsit
where we here use uniform kernels of the form
1 if (0<(t;—s A) A (b =b;
v 0 otherwise

(generally with width A # k) to search for regions of length A with elevated densities of high-scoring
motifs. Note that 3551. defined by Equation (S10) is indexed not by suffix array index ¢ but by suffix
array value s; giving the spatial position s; in the concatenated word x.

To use such spatial smoothing for motif selection/filtering, it is necessary to introduce a second
threshold fspatial, @s the doubly-smoothed scores ﬁsi will generally be somewhat less dispersed than
will be the singly-smoothed ¢;. The threshold Ospatia1 can be used to define an index set Ispatial
similar to the manner in which I is defined by Equation (S6), but the task is more complex when we
replace the single spatial position s; by a spatial window [s;, s; + A).

Recalling the definitions of the negative/positive spatial shift operators 7(i)/p(i) which yield the
unique suffix array indexes corresponding to the spatial position immediately before/after s;, so that
Speiy = 8i — L and s,(;) = s; + 1, first define:

Jspatial = {Z ‘ (ﬁsI Z espatial) A (gz Z gmin) A (yn(z) S Qz Z Qp(i))} (812)

Jspatial Tepresents the set of suffix array indices ¢ corresponding to the left endpoints s; of spatial
windows [s;, s; + A\) passing the filters for score threshold fspatiai and minimum Gini impurity gmin,
and for which the sequence-smoothed score g; is at least as high as the spatially adjacent scores 7,
to the left and §,(;) to the right.

Defining the left-directed distance d; from the suffix with sorted suffix array index j to the set

Jspatial by
d; = min {s; —s;|s; <s;} (S13)
1€ Jspatial
we define in turn the set of sorted suffix array indices Ispatia1 marking the starting positions of selected
k-mers by:
[spatial = {Z ‘ (5z < /\) A (gz > Hspatial) A ((677(2) > )\) \ (gn(z) < espatial))} (814)

Equation (S14) identifies suffix array indices i: (1) whose spatial positions s; fall within a spatial
window [s;, s; + A) for some j € Jypatial, (2) whose sequence-smoothed score g; > Ospatial, and (3) for
which the position s; — 1 spatially to the left is either (3A) not in one of the spatial windows specified
by Jspatial or (3B) has associated sequence-smoothed score 9,y < Ospatial- This final criterion is
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S2.5 Permutation testing to establish significance of motif set

included because we want to merge adjacent k-mers whose leftmost positions fall within the same
selected spatial window.
This merging process is implemented by calculating for each index i € Ispatial the length

oy = max [y + 55— 50 [ (6 <) A (5 € [50055) = G > Gupasia)} (S15)
J

of the merged k-mer starting at i. Equation (S15) sets I%Si by selecting the right endpoint I%j + s of
the k-mer beginning at s; to maximize the merged length ]%j + s; — s; over all choices of s; for which
every position s,, between s; and s; has an acceptable sequence-smoothed score g, > Ospatial. It is
then straightforward to obtain the motif set

Mpatial = {x{su s; + VJ‘;,D ‘ (XS Ispatial} (S16)

S2.5 Permutation testing to establish significance of motif set

The significance of the observed correlation between the occurrence of the motifs uncovered by SArKS
and the sequence scores ¥y, can be evaluated by examining results obtained when the sequences wy,
and the scores y; are independent of each other. To this end, the word scores ¥, are subjected to
permutation 7 to define

™ = Yr(b) (S17)
If the permutation 7 is randomly selected independently of both the sequences w; and the scores v,
any true relationships between sequences and scores will be disrupted. This suggests a simple method
for assessing the significance of motifs discovered using a given set of parameters (kernel half-width

K, 0, gmin, etc.): generate R random permutations 7, and for each permutation calculate scores g§””‘>

using Equation (4) (and also gjﬁ” using Equation (S10) if spatial smoothing is employed) with y;
replaced by y,,. In this manner one can estimate the distribution of scores under a null model in
which there is no association between the sequences of the various words wy and the scores y, .
This method of significance testing also provides the motivation for the form of Equation (S4) in
Section S2.2. Let IT be a random variable representing a random permutation and note that the

random variables yry () satisfy

K ) K E .
B [i] = 2, Kigyney | _ X5 K E [yne,)] _; s18)
>, Kij >, Kij
while, assuming that the number of words n = |W| is large enough that we may approximate
yriv) Ly for b # ¥,
X > Kijyne,) ; 472
Vi) =V S R [ | =V X (57 s19)
gt b b

where f\” is defined by Equation (S3) and for all b

V[yny] =V [ynew] = % > - 9)° (S20)
-

Equation (S19) then tells us that

% {@1?“)} oc {fb“r —1-g (S21)

where the Gini impurity g¢; is defined by Equation (S4). Thus smaller values of g; imply higher

variance V [yl()n)} of the window-smoothed scores obtained under random permutation IT (with mean

unchanged). This increased variance will lead to the requirement of larger cutoff values € for reporting
motifs discovered in the unpermuted data with a given degree of confidence unless positions ¢ with
gi < gmin are filtered out as described in Section S2.2.
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S2.6 Permutation testing to set thresholds for multiple parameter combinations

S2.6 Permutation testing to set thresholds for multiple parameter com-
binations
(@)

Multiple combinations (m(o‘), @) gra)

) of the values of SATKS parameters may be explored (with

« indexing the set of desired combinations); for example, Sections 3.2.1-3.2.2 discuss the parameters
used in the benchmarking examples herein and the rationales for their selection.
For any permutation 7, let

Jir) = max {Qfo"”)} (S22)
icIem
o0 — max {jem) (529
ie[is;;;
(ie., gﬁr?a)? ) is the highest filtered sequence-smoothed score obtained after permuting by m, while

2(e,m)

Umax 18 similarly the highest filtered spatially-smoothed score). Then we suggest a simple method

for setting thresholds #(®) and 0% based on a set of randomly generated permutations {m, }:

spatial
0 = mean { gl b + 2 stdev { gl } (S24)
012 s = mean {5z} + = stdev {3} (525)

with higher values of z trading reduced sensitivity for lower false positive rates (in the examples
analyzed in Section 3.2.1 we take z = 4). For the sake of simplicity we have generally used only

one of these two thresholds for any particular combination of parameters «, setting §(®) = —co if
k(@) > 1 or 9§S;tial = —o0 if k(® < 1 (i.e., if spatial smoothing is not employed).

In order to characterize the false positive rate associated with the entire set of analyses across all of
the parameter settings employed while controlling for multiple hypothesis testing, a family-wise error
rate (FWER) € resulting from these thresholds can then be estimated by generating an independent
set of R’ permutations {m/.} and counting the number of permutations 7. for which a nonempty set

n

of k-mer motifs is identified using any of the parameter sets (n(o‘), @), 95:1);) ) That is, writing

e=|{rfarrem Il 2oy 20} (526)

spatia

(where I(®™) and 197) are defined respectively by Equation (S6) and Equation (S14) using the

spatial
thresholds 6(®) and Gig‘;ﬁal determined using the original permutation set {, }) we can infer confidence
intervals by noting that the random variable E instantiated in e satisfies E' ~ Binom(R’, €) under the
permutation test null hypothesis. We can thus derive confidence intervals (Cls) for the FWER (in
the weak sense, as the permutation test represents a complete null hypothesis with no true positives

(Farcomeni, 2008)) by applying the Clopper-Pearson method for estimation of binomial Cls.

S2.7 RNA-seq expression analysis

S2.7.1 Assigning PV differential expression scores for Mo 2015 data set

In order to test SArKS, we selected the M. musculus neocortical neuron RNA-seq data set GSE63137
(Mo et al., 2015) from Gene Expression Omnibus (GEO) database (Barrett et al., 2013) (https://www.ncbinlm.nih.gov/geo/
This data set contains detailed transcriptomic and epigenetic information from three functionally
and neurochemically distinct classes of pooled neocortical neurons: principal excitatory neurons,
parvalbumin-positive (PV) GABAergic neurons, and vasoactive intestinal peptide-positive (VIP)
GABAergic neurons.
Because the position of the first exon can help pinpoint the TSS—and hence the DNA region
containing the putative promoter—we reanalyzed the GSE63137 RNA-seq data using kallisto


https://doi.org/10.1101/133934
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/133934; this version posted October 25, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

S2.7 RNA-seq expression analysis

Mo 2015 Close 2017

All 111,669 23,045

Detected 73,912 15,490

+ Highly Expressed 37,721 6,939
+ Highly Varying 29,164
- Duplicate Isoforms 11,857
+ Accessible 6,326

Final SATKS Set 6,326 6,939

Table S1: Filters applied to select gene sets for SArKS analysis. The Mo 2015 data set (bulk RNA-
seq) was realigned and analyzed at isoform level, hence counts in first column indicate distinct transcripts
or isoforms. For the single-cell RNA-seq Close 2017 data set, the original gene-level alignment counts were
analyzed; counts in second column indicate distinct genes. No variance filter was applied for the Close
2017 data set, as none of the 6,939 highly expressed genes exhibited low estimated variance. Epigenetic
accessibility data was available for the Mo 2015 samples but not the Close 2017 samples.

(Bray et al., 2015) to quantify and normalize transcript level expression against Ensembl mouse
c¢DNA reference GRCm38. Transcript species were filtered by mean expression to focus on those for
which reliable expression estimates could be made, retaining only transcripts for which at least 100
pseudocounts were obtained when summed across all samples and whose mean normalized expression
met or exceeded the median of the transcript mean normalized expression levels. We also filtered
out transcripts that showed low variance across the full sample set, retaining only those for which
the estimated variance 67 of normalized expression values met or exceeded median{67} across all
transcript species (Bourgon et al., 2010). In order to simplify downstream analysis, only the isoform
with highest mean expression level across all samples was retained per gene. Finally, as based on
chromatin accessibility data (Mo et al., 2015), only transcripts for which the transcription start
sites were located within ATAC-seq peaks (i.e., were accessible) for all examined neuron classes were
analyzed. This accessibility-based filter reduced the likelihood that epigenetic features, rather than
regulatory sequences, determine the variations in gene expression between cell classes.

Differential gene expression was assessed using normalized expression values via standard Student’s
t-test (comparing data for PV neurons to data for excitatory and VIP neurons), with the resulting
t-statistic providing an estimate of a gene’s enrichment in PV neurons (score y, for transcript b).
One potential issue with the use of such ¢-statistics with small sample numbers—here, two samples
associated with each neuron type—is that especially low within-group standard deviation estimates
can result in very large magnitude t-statistics for a few genes. For example, the average estimated
within-group standard deviation of the 76 genes with |¢t;| > 10 (with |¢p| ranging up to a maximum
value of 49.6) was less than 30% of the average within-group standard deviation of the full set of
6,326 analyzed genes (Table S1). Every one of the 76 genes with such high magnitude t-statistics
had a within-group standard deviation estimate below the median value for the full gene set.

The phenomenon of low within-group variance estimates leading to inflated test statistics has
previously led to the application of empirical Bayes methods (Smyth, 2004) using moderated t-
statistics in place of standard t-statistics for calculating differential expression p-values. As we are
here instead interested in using the t-statistics to derive word scores yp, for which no particular
distributional assumptions are required, we have adopted a simpler approach to prevent the few very
large magnitude t-statistics from unduly influencing motif discovery by applying a ceiling of 10 on
the magnitude of y;:

—10 ift, < —10
yp=1<t, if —10<t, < 10 (S27)
10 ift, > 10
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S2.8 Specifications for running existing motif discovery algorithms

S2.7.2 Assigning DCX differential expression scores for Close 2017 data set

We also examined an RNA-seq data set comparing transcriptomes of in witro-induced human
embryonic stem cells and the resulting cultured interneurons (Close et al., 2017). We applied SArKS
to identify promoter motifs associated with elevated gene expression in doublecortin-positive (DCX+)
interneurons. We restricted our analysis to the post-induction day 54 (D54) timepoint, where most
of the DCX+ neurons were post-mitotic and GABAergic, and for which the largest total number of
cells had been profiled, minimizing the within-group expression variations.

We used the normalized gene expression levels from GEO (Barrett et al., 2013) records for this
data set (accession GSE93593). We chose not to reanalyze the sequencing data in this case because we
did not want to split the read counts per cell—which, given the large numbers of cells observed, tend
to be much lower than read counts per sample in bulk RNA-seq—across multiple distinct transcripts
for each gene. We found 15,490 genes for which (1) nonzero aligned read counts were detected in at
least one (out of 585) analyzed cells and (2) a unique entry was found in the GRCh38 annotation of
the human genome. We retained the 6,939 genes from this set for which the average aligned read
count per cell was > 25 for further analysis (Table S1). As the variance of the log2-transformed
transcripts-per-million (TPM) normalized expression levels was quite high (> 1 for 6,852 of the
6,939 genes, > 0.5 for all 6,939 genes), we did not apply any variance filter for this data set. As no
epigenetic information was available, no accessibility filtering could be conducted.

For the filtered high-read-count gene set, differential expression was assessed via a simple two
group t-test comparing the DCX+ cells to the DCX- cells and SArKS scores were assigned according
to Equation(S27), just as was done for the Mo 2015 data set.

S2.8 Specifications for running existing motif discovery algorithms

Existing algorithms were run at their default parameter settings (defined either within the source code
or in associated documentation), with two exceptions: (1) MOTIF REGRESSOR was run searching
only for motifs positively correlating with score to enable more direct comparison of its output with
that of the other algorithms (none of which look for anticorrelated motifs by default). (2) STEME
was run in discriminative mode using a high order Markov model on the negative sequences exactly
as suggested in the online documentation (https://pythonhosted.org/STEME /using.html); however,
STEME’s implementation requires pre-specification of the number of motifs to report, defaulting to
a single motif if unspecified. Given that (Reid and Wernisch (2014)) extensively compared STEME
to DREME with the finding that the two were generally comparable in performance, we took the
upper bound on the observed DREME motif set size (10 motifs) as the number of motifs for STEME
to report.
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S2.8 Specifications for running existing motif discovery algorithms

## -
## DREME options:
dreme \
-p $pos_seq_fasta \
-n $neg_seq_fasta \
-oc $out \
~png

## -

## FIRE options:

perl fire.pl \
—-expfiles=$scores \
--exptype=continuous \
--fastafile_dna=$seq_fasta \
--seqlen_dna=$seq_len \
--nodups=1

##H -
## HOMER options:
homer2 denovo \
-i $pos_seq_fasta \
-b $neg_seq_fasta

## -
## MOTIFREGRESSOR options:
MotifRegressor.pl \

$scores \

$seq_fasta \

null 1 1 2 1 0 50 250 50 250 5 15 50 30 \

$out
## _interpretation of MOTIFREGRESSOR parameters above_
## null : background sequence distribution to be computed based on input sequences
## 1 : use column 1 from $scores to rank sequences
## 1 : use column 1 from $scores to perform regression
## 2 : data does need to be further log-transformed
## 1 : look for motifs in high-scoring (as opposed to low-scoring) sequences
## O : select fixed count of top motifs (as opposed to setting fixed score threshold)

## 50* : number of initial top motifs

## 250* : number of sequences with high values for confirmation

## 50x : (ignored since we are only interested in high-scoring motifs)

## 250% : (ignored since we are only interested in high-scoring motifs)

## 5% : minimum motif width

## 15% : maximum motif width

## 50* : number of seed candidate motifs

## 30* : number of motifs reported before regression

## _all parameters marked with * were set at the example (e.g.) values given in
## MOTIFREGRESSOR’s README.MR file_

##H -
## STEME options:
steme \
—--output-dir=$out \
--num-motifs=10 \
--bg-model-order=5 \
--bg-fastafile=$neg_seq_fasta \
$pos_seq_fasta
## _see https://pythonhosted.org/STEME/using.html_
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Ymax — ?QI(IQX motif (—I—) motif (—)

—29 0 7
—-19 0 275
0 29 479
19 951 229
29 420 10

Table S2: Unpermuted scores consistently exceed permuted scores only when motif is present.
Distribution of simulated differences fimax — 4™ obtained by suffix array kernel smoothing when CATACT-
GAGA motif is embedded into 10 high score sequences (motif (+) column) or when it is not (motif (-)

column). The values Jmax were calculated by smoothing the unpermuted sequence scores y, while the values

yfﬂx were obtained using permuted sequence scores y, ). When motif is included, §max — gf’r) tends to be

positive—i.e., unpermuted smoothed scores usually exceed permuted—while when motifs are not present the
distribution is symmetric about 0, reflecting the lack of signal for SArKS to detect.

S3 Results and Discussion

S3.1 Illustration of SArKS using simulated data

To demonstrate that the results of Section 3.1 are not a quirk of a single simulation,
we repeated the process of (1) generating 30 random sequences, embedding the motif
CATACTGAGA into the last 10 sequences, and (2) applying SArKS to the sequences and
sequence scores 1000 times. In 971 iterations, the maximum value

:l)max = max {gz ‘ gi > gmin} (828)
calculated using the unpermuted sequence scores exceeded the maximum value

:’QI(IQX = max {gz(ﬂ—) | 9i Z gmin} (829)

obtained using one set of randomly permuted sequence scores per iteration. The full
distribution of the differences §max — QI(IQX is shown in the motif (4) column of Table S2.
We also examined the results of SArKS applied to simulated data in which no motif
was present to find; for this purpose, we repeated an amended version of the simulation
process 1000 times, omitting the motif embeddings. The distribution of §max — g)r(ﬁgx for these
no-motif simulations is presented in the motif (-) column of Table S2. In this case, Jmax
exceeded ;QI(IQX in only 239 of the simulations, while QI(IQX exceeded Jmax in 282 simulations,
with equality between the two holding in the remaining 479 iterations. The symmetry of
the distribution of fyax — gﬁ;;?x around 0 in the motif (-) case is to be expected since the
scores Y are independent of the sequences w;, whether permuted or not if no motifs are
included. By contrast, the strong asymmetry of the distribution of gmax — g}r(rgx when the
motif is present demonstrates the ability of the permutation approach to differentiate a true

signal from background noise.
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Figure S2: Motif regression model predictions correlate with gene specificity scores in held-out
validation subsamples. Each of five cross-validation folds is plotted as separate point for each algorithm;
fewer than five points are shown for corresponding algorithm if it failed to identify any motifs in one or more
cross-validation folds. Upper panels: regions 3kb upstream of T'SS; lower panels: regions 1kb downstream of
TSS. Vertical lines indicate mean Pearson correlation across all folds (including a value of 0 for any fold in
which algorithm failed to identify any motifs).

S3.2 Uncovering promoter motifs associated with differential gene expres-
sion

S3.2.1 Benchmark comparisons to existing algorithms

The cross-validated regression modeling strategy described in Section 3.2.3 builds a single
regression model based on the concatenated upstream and downstream motif count vectors.
We also built two more separate regression models—one using as feature set only the
upstream motif counts, the other only the downstream motif counts—for each of the two
data sets, obtaining the results presented in Figure S2. SArKS generally outperformed
the other algorithms in these comparisons, though for the upstream analysis of the Close
2017 data, DREME and HOMER  offer similar performance; all of the algorithms have their
poorest performance in this particular analysis. For both data sets the regression model
predictions on the held-out validation folds are noticeably better in the downstream analyses
than the upstream analyses, as discussed in Section 3.2.3.

We used tomtom (Gupta et al., 2007) to compare the pooled motif sets identified by
each algorithm and detected overlap between motifs sets by algorithm (S3). There exists a
significantly similar (¢ < 0.1) SArKS-identified motif for the majority of motifs identified
by any of the existing algorithms in the Mo 2015 data set. For the Close 2017 data set, at
least 50% of the motifs identified by DREME, FIRE, MOTIF REGRESSOR, and STEME
can be paired with a significantly similar SArKS motif, though this is true for only 39% of
HOMER-identified motifs.

An alternative benchmarking approach is to compare the motifs identified algorithmically
to databases of known TF-binding motifs, such as JASPAR (Mathelier et al., 2015). For
the presence of a TF-binding site to be biologically relevant in a cell, it is necessary for the
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Figure S3: Counting motif similarities shows substantial overlap between algorithms. Each cell
indicates the count of motifs identified by the target motif set algorithm for which there is a motif in the query
set with significant tomtom similarity (¢ < 0.1). Cells are colored according to the numbers they contain.

TF itself to be present as well. In the context of our analysis of the two RNA-seq data
sets, we checked whether or not mRNA encoding TFs whose binding sites were similar to
discovered motifs are enriched among either the PV neuron (Mo 2015) or DCX+ cell (Close
2017) transcripts. We classified a TF gene as enriched if there was at least one distinct
mRNA transcript for the gene with (1) at least 100 reads (or pseudocounts for the Mo 2015
set) and (2) for which the mean TPM-normalized estimated expression level in either the
PV samples (Mo 2015) or DCX+ cells (Close 2017) > the median of the genewise means
for all measured transcripts/genes in the relevant data set. Figure S4A is similar to a
receiver-operating characteristic plot in which the motif discovery algorithms are regarded
as classifying JASPAR motifs as positive when they show sufficient similarity to any of
the discovered motifs; the distance of a point above the diagonal indicates the degree to
which an algorithm preferentially identifies binding motifs for TFs showing high RNA-seq
expression levels in the target cell population. SArKS identifies motifs similar to a larger
fraction of JASPAR than do the other algorithms while maintaining a preference for motifs
for highly expressed TFs.

Figure S4B illustrates the overlaps between the sets of JASPAR motifs with similarities
among the motifs identified by the motif discovery algorithms: For all algorithms applied to
the Close 2017 data set and all but HOMER in the Mo 2015 data set, the set of JASPAR
motifs with significant similarity (¢ < 0.1) to one of the algorithm-identified motifs overlaps
by more than 50% with the set of JASPAR motifs significantly similar to a SArKS motif.
The degree of overlap between the JASPAR matches among the various algorithm motif sets
tends to be higher than the degree of overlap directly between the motif sets themselves.
This suggests that the presence of a similar JASPAR motif may provide supporting evidence
that a given detected motif is a not a false positive.
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Figure S4: Discovered motifs overlap with known transcription factor binding sites. (A) Fractions
of JASPAR-annotated TFs for which the algorithms indicated identified a motif with significant tomtom
similarity (¢ < 0.1) to the corresponding JASPAR binding motif. Vertical axis: fractions calculated using
only the JASPAR-annotated TFs whose measured expression in either PV neurons (left panel) or DCX+
cells (right panel) were in top 50% by mean normalized expression (TPM) and had at least 100 associated
reads. Horizontal axis: fractions calculated using only the remaining JASPAR-annotated TFs with measured
expression below these expression filters. (B) Each cell indicates the count of JASPAR motifs for which
there is a motif in both of the indicated algorithm motif sets with significant tomtom similarity (¢ < 0.1).
Cells are colored according to the numbers they contain.
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sequence range v  half-window x  gmin  fraction g; > gmin

Upstream 0.1 250 0.9976 92.44%
Upstream 0.1 500 0.9987 90.16%
Upstream 0.1 1000 0.9992 87.46%
Upstream 0.1 2500 0.9996 83.89%
Upstream 0.2 250 0.9974 95.27%
Upstream 0.2 500 0.9986 93.82%
Upstream 0.2 1000 0.9991 92.27%
Upstream 0.2 2500 0.9995 89.61%
Downstream 0.1 250 0.9976 94.12%
Downstream 0.1 500 0.9987 91.12%
Downstream 0.1 1000 0.9992 86.83%
Downstream 0.1 2500 0.9996 81.96%
Downstream 0.2 250 0.9974 97.04%
Downstream 0.2 500 0.9986 95.74%
Downstream 0.2 1000 0.9991 93.87%
Downstream 0.2 2500 0.9995 90.88%

Table S3: Gini index filters remove small fractions of suffix array positions. Fraction of suffix array
positions ¢ for which Gini impurity values ¢g; > gmin, With gmin selected according to Equation (S5) (applied
to Mo 2015 data set).

S3.2.2 Case study: analysis of SArKS results for Mo 2015 data set

The values of gmin obtained for the analysis of the Mo 2015 gene set (6,326 genes remaining
after application of filters described in Section S2.7.1), along with the fraction of suffix array
index values ¢ for which g; > gmin, are listed in Table S3.

S3.2.2.1 Top motif identified in sequences downstream of TSS

The highest ¢; value obtained—detected in the downstream sequence analysis using
k = 250, A = 0, and v = 1.1 in the downstream region analysis—corresponded to the
k-mer TGACCTTG. This k-mer is very similar to a number of JASPAR TF-binding
motifs. The strongest matches are to the binding motifs of ESRRB (¢ = 0.00078), ESRRA
(¢ = 0.00078), and ESRRG (¢ = 0.00301). In fact a large fraction of the motifs associated
with identified peaks in g; identified in the downstream analysis exhibit significant similarity
to one of the JASPAR motifs ESRRB, ESRRA, or ESRRG, as is illustrated in Figure S5B.
The ESRR(A/B/G) TFs are all members of the estrogen-related receptor family; there is
evidence that these receptors are involved in brain functions including synaptic transmission,
neuronal firing, and mitochondrial biogenesis (Saito and Cui, 2018). This particular set of
motifs may also help to explain the overall stronger performance of all of the motif discovery
algorithms using the downstream sequences relative to the upstream sequences (Figure 3A),
as we noted that all of these algorithms identified motifs similar to each of these JASPAR
motifs (Section 3.2.3).
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Figure S5: Contributions of top motifs to peak composition. (A) Log-scaled histograms of peaks
i € I (or Ispatial when spatial smoothing is employed) identified in upstream analysis for which corresponding
k-mer motifs: (1) are prefixed with CACCTGC or CCACCTGC (indicated in red) or are suffixed by the
reverse complement sequences GCAGGTG or GCAGGTGG (purple); (2) are otherwise spatially located
within a blast hit to the B1 SINE sequence (gold); (3) exhibited significant tomtom similarity (¢ < 0.1)
to one of the JASPAR motifs ESRRA, ESRRB, or ESRRG (blue); or (4) did not satisfy any of the above
criteria (gray). Horizontal panels: half-window x values used in analysis; vertical panels: spatial smoothing
length A. (B) Log-scaled histograms of peaks identified in downstream analysis; color coding is as in (A)
except that black replaces gray. C?CACCTGC and its reverse complement do not occur in downstream peak

set.
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Figure S6: Sequence score ¥, distributions are shifted upwards in sequences containing one or
more copies of top SArKS motifs Each plot shows distribution of sequence scores split by the number of
occurrences of motif indicated by the row label (TGACCTTG, CCACCTGC, or B1) found in the sequence
range indicated by the column label (upstream or downstream). The first two motifs—k-mers TGACCTTG
and CCACCTGC—were counted using regular expression matching (allowing matches on either forward or
reverse strands), while B1 counts were assessed using blastn (percent identity > 90%, alignment length > 70).
Distributions are summarized by notched boxplots (area scaled to square root of sequence count; notch width
is 1.57 times the interquartile range (IQR) divided by square root of sequence count) laid over kernel density
estimates drawn as gray violins (area scaled to sequence count). Scores < —2.5 or > 2.5 are lumped together
into lower and upper ends of distribution, respectively. The score distribution for both TGACCTTG-positive
upstream sequences and TGACCTTG-positive downstream sequences is shifted upwards, though the shift is
notably larger in the downstream sequences. For the top motif CCACCTGC derived from analysis of the
upstream sequences, however, the scores for the downstream sequences containing the k-mers do not show
the same upward shift in the score distribution.

S3.2.2.2 Top motifs identified in sequences upstream of TSS

ESRRB/ESRRA/ESRRG binding motifs were also identified by SArKS analysis of the
upstream sequences, but they did not account for either the highest scores ¢; nor did they
correspond to a large fraction of the overall k-mer motif sets discovered (Figure S5A). Figure
S6 sheds some light on this: the distribution of sequence scores ¥, for downstream sequences
containing one or more copies of the top SArKS octamer TGACCTTG is shifted upward
to a much higher degree than is the the distribution of ¥, values for upstream sequences
containing TGACCTTG.

Instead, For five of the 12 distinct combinations of smoothing half-window s and spatial
window A investigated using SArKS, the k-mer CCACCTGC was identified at the positions s;
with maximal values of §; (the k-mers GCACACCTT, TGGAACTCACT, CCTGGAAC, and
CAGCCTGG (identified using two distinct parameter combinations at the same suffix index
i) were associated the highest g; values using the remaining seven parameter combinations).
The octamer CCACCTGC contains the canonical core recognition E-box sequence CANNTG
(specifically, the E12-box variant CACCTG (Bouard et al., 2016); we note that the significant
SArKS peak set contains many peaks corresponding to the 7-mer CACCTGC as well as
the longer octamer adding the extra initial C). Comparison of CCACCTGC with known
motifs from the JASPAR database using tomtom finds some evidence of similarity to 10
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TF-binding motifs (SNAI2, MAX, SCRT2, SCRT1, TCF3, MNT, 1d2, MAX::MYC, TCF4,
and FIGLA; g-values of 0.14 for each), though no similarities significant at ¢ < 0.1. Unlike
the case for the ESRR(A/B/G) motifs discovered in the downstream analyses, for which all
of the benchmarked algorithms detected a matching motif, only one of the other algorithms
(HOMER) detected a motif similar to either CACCTGC or CCACCTGC (tomtom ¢ < 0.1;

no other algorithm produced any motifs matching even at ¢ < 0.5).

S3.2.2.3 B1 SINE sequence identified through MMD analysis

As the octamer CCACCTGC was identified in analyses with spatial window length A
ranging up to 100, we performed a multiple sequence alignment using muscle (Edgar, 2004)
of the 100-mers z[s; — 50,s; + 50) for these positions s; (Figure STA); three of the five
100-mers thus aligned were very similar (Levenshtein distance < 7) to the 99-mer consensus
sequence constructed. Furthermore, the consensus sequence also contains CCTGGAAC and
CCAGGCTG (reverse complement of CAGCCTGG).

A blast screen of known repeated elements in the mouse genome for a consensus
sequence uncovered a 93.9% identical base pair stretch of the B1 short interspersed element
(SINE) sequence (SINEBase (Vassetzky and Kramerov, 2013)). The B1 SINE family consists
of retrotransposon-derived sequences appearing throughout the mouse genome, especially
upstream and within introns of genes implicated in DNA remodeling and expression regulation
(Tsirigos and Rigoutsos, 2009). Additional observations have further suggested that SINEs
function as transcriptional enhancers (Ichiyanagi, 2013; Elbarbary et al., 2016; Ge, 2017).

Figure S5A indicates the number of SArKS-identified peaks that fall within blast hits
between the upstream sequences w;, and the B1 SINE consensus sequence as well as the
numbers of peaks corresponding to the top motifs discussed above. The upstream SArKS
peaks derived from analyses involving spatial-smoothing (A € {10,100}) are dominated by
B1 sequences, many including the CCACCTGC motif or its reverse-complement.

S3.2.2.4 SArKS motifs correspond to variations on B1 sequence

Figure S7B provides a more detailed view of these peak counts by splitting them out by
position to which the corresponding k-mers align to the B1 consensus and by whether they
are matched or mismatched to the B1 consensus at each position. The k-mer CCACCTGC
itself is not quite a perfect match to the canonical B1, containing a single base substitution
away from the octamer CCGCCTGC whose reverse complement GCAGGCGG is found at
positions 49-56 of the SINEBase B1 sequence. This substitution is responsible for the peak
at position 54 in the mismatch counts in Figure STB—one of the few positions at which
there are more mismatches than matches. This G to A substitution creates the above noted
E-box sequence CANNTG, while the unmodified octamer CCGCCTGC does not match
any JASPAR motifs at ¢ < 0.5. This highlights the ability of SArKS to discover potentially
functionally significant variations within a recurring sequence.

One of the remaining top upstream k-mer motifs mentioned above, GCACACCTT,
similarly matches the nonamer GCACGCCTT spanning positions 15-23 of the SINEBase
B1 sequence, but with a single G to A substitution. The modified nonamer GCACACCTT
identified by SArKS shows significant similarity (tied ¢ values of 0.038) to several JASPAR
motifs (TBX21, EOMES, TBX15, TBX1, and TBX2), while the unmodified B1 nonamer
GCACGCCTT again shows no similarity to any JASPAR motifs at ¢ < 0.5, again suggestive
that specific SINE variants may promote differential gene expression.
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Figure S7: SArKS-discovered motifs within B1 SINE elements. (A) Multiple sequence alignment
(muscle) of 100-mers surrounding top CCACCTGC motif peaks with reverse-complement of B1 consensus
sequence. Associated genes are indicated to the left. Gray highlighting: > 50% agreement in the multiple
sequence alignment. (B) Number of upstream motif k-mer peaks in B1 regions that align to each position
within the B1 sequence. Gray bars: number of peak k-mers derived from upstream sequence regions for which
a blast hit (percent identity > 90%, alignment length > 70) to B1 was found and for which an alignment of
the k-mer to B1 aligned a matching base at the position in question. Red bars: number of k-mers within
B1 blast hits which align against B1 with a mismatched base at the position in question. Above each bar
is a label indicating the B1 consensus base at that position. Note that the lack of a gray bar at position
89 results from the lack of consensus base for B1 at this position (marked by N above the red bar), so that
all k-mers that align against this position must produce a mismatch. The consensus base labels are drawn
darker and the bars are marked with an asterisk at positions (19 and 54) where two of the top SArKS peaks
exhibit changes compared to the B1 consensus sequence. While essentially the entirety of the B1 consensus is
represented by identified k-mer motifs, there is more variation away from the consensus towards the left end
and at a couple of isolated positions further in than along most of the length of B1.
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S3.2  Uncovering promoter motifs associated with differential gene expression

Distinct Transcripts Count

All analyzed 6,326
+ Protein coding 5,017
+ High expression in PV 1,595

+ Low expression in non-PV 196
4+ PV : non-PV log-ratio > 1 92
+ Top 5% SArKS regression score 13
+ Top 5% t-statistic score vy, 11

Table S4: SArKS-based regression modeling assists in selecting candidate upstream regions for
promoting PV-specific expression. Number of distinct transcripts remaining after sequential application
of described filters. Annotation of transcripts as protein coding or otherwise taken from Ensembl GRCm38
(Aken et al., 2016). Expression levels were considered high in PV samples if the average within-PV value of
logo(TPM + 1) > log, (10 + 1), while expression levels were considered low in non-PV samples if the average
non-PV log, (TPM + 1) < log,(10 + 1). Log-ratios were calculated as the difference of the PV-averaged- and
non-PV-averaged-log, (TPM + 1) values, so that a log-ratio of one represents at least a two-fold increase in
expression levels. SATKS regression scores were calculated using a ridge regression model built using counts
of all k-mer motifs identified by SArKS applied to 3kb upstream promoter regions.

S3.2.2.5 SArKS-based candidate promoter selection

Finally, to illustrate how SArKS can be used to help select candidate regulatory regions
for promoting specific expression patterns, we again constructed a ridge regression model
based on the counts of SArKS-identified k-mer motifs. We applied the same modeling
strategy as described in Section 3.2.3 to the promoter regions defined by the 3,000 base pairs
immediately preceding the TSSs of each of the 6,326 distinct analyzed transcripts. Each
distinct transcript was then assigned a score by resubstitution into the resulting regression fit.
Table S4 shows a sequence of filters in which these regression scores were applied alongside
other relevant criteria to select candidate PV-specific promoter regions. The promoter
regions associated with the genes ATP5SL, GPRC5B, IFT27, KCNH2, MAFB, PAQR4,
SLC29A2, SYT2, TBC1D2B, TMEM186, and TTC39A comprise the 11 candidates (from
the final row of Table S4) selected for further experimental validation. Table S5 shows which
of the top motifs discussed above are present in each of the candidate promoter regions: all
regions except those for GPRC5B and MAFB contain at least one match for the ESRRB
motif, while several also contain one or more copies of the E-box sequence and/or a match
to the B1 SINE sequence. The promoter for IFT27 contains a match to a variant the Bl
sequence with the substitution creating the E-box sequence CACCTGC. It is worth noting
that there are many other SArKS motifs contributing to the promoter ranking model used
here. Indeed, in accord with the principle that there is likely to be more than one way for
combinations of motifs to achieve expression specificity, the candidate promoters for the
genes GPRC5B and MAFB are ranked highly based exclusively on motifs other than the
highest scoring ones.
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S3.3 Computational complexity and scalability of SArKS

Promoter ESRRB C?CACCTGC (E-box) Bl

ATP5SL 3 1/3 0
GPRC5B 0 0/1 0
IFT27 1 0/2 1
KCNH2 2 0 0
MAFB 0 0 0
PAQR4 2 2 0
SLC29A2 1 0 1
SYT?2 2 1 0
TBC1D2B 3 1 0
TMEM186 2 0 1
TTC39A 2 0/1 0

Table S5: Selected candidate promoter regions contain different combinations of top motifs.
Counts for the JASPAR motif ESRRB—the best JASPAR match to the top SArKS motif TGACCTTG—
were assessed using fimo, while counts of the E-box sequence CCACCTGC or its reverse complement were
assessed using simple string matching. If a promoter had additional matches to the substring CACCTGC (on
either strand) omitting the initial C, a second count for this reduced match is indicated after a forward slash.
Matches for the B1 SINE sequence were counted using blast requiring a minimum 90% sequence identity
and 70 bp alignment length.

S3.3 Computational complexity and scalability of SArKS

One of the major motivations behind SArKS’ method of discovering motifs—searching
for blocks of lexicographically similar suffixes derived predominantly from high-scoring
sequences—Ilies in the scalability of suffix-based methods. The number of suffixes of a string
(or set of strings) scales linearly with the length of the string(s) involved: as a result, the
steps involved in the SArKS algorithm for identifying significant peaks scale linearly in both
runtime and memory space with the combined size of the set of input sequences. We discuss
this in more detail below. We then discuss the complexity of the later steps involved in
extracting information regarding specific motif k-mers from the significant SArKS peak set.

The existing implementation of SArKS generates and then stores in memory the full
suffix array of the concatenated sequence x = wqg * ...wy_1: this step is asymptotically
linear in the length of the concatenated sequence both in terms of runtime and memory
(Kérkkainen and Sanders, 2003). There is one caveat regarding the memory requirement
here: the suffix array for a sequence of length [ contains a permutation of the first [ integers;
while the length of this array is linear in [, the number of digits required to specify each
integer grows logarithmically with [ as well. An uncompressed suffix array (as used here)
thus technically requires memory specified in bits scaling with [logl. Assuming the default
use of 64-bit integers (as is done in the numpy-based python implementation we have used),
however, memory will scale linearly for sequences of length up to ~ 10'® characters, far
beyond current practical limits.

Given the inverted suffix array s yielding the value of the suffix array index i correspond-
ing to the suffix array value s;, the block array (Equation(3)) can be constructed in linear
time and space (again in terms of the length of the concatenated sequence x) by (1) looping
through the positions s in the concatenated string x, (2) checking whether the active block
b needs to be incremented according to whether s > lp;1 (Section 2.1), and (3) filling in the
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S3.3 Computational complexity and scalability of SArKS

position is of the block array with the active block value b.

Kernel smoothing using a uniform kernel may be implemented in linear time by com-
puting differences of cumulative sums (Equation(6)). The array of Gini impurity values
(Equation(S4)) can be computed in linear time by successively computing the difference in
consecutive values resulting from shifting the smoothing window by one position and updat-
ing the associated block frequencies Equation(S3). Identification of peaks (by comparing
the score of each position to the scores of the two spatially adjacent positions) in the array
of smoothed suffix scores ;, along with the filtering of the resulting peak set based on score
threshold # and Gini impurity threshold gmin, again requires time linear in the length of
the concatenated sequence x. Similar remarks hold for the analogous spatial smoothing
operations.

Permutation testing requires repetition of the above steps R times, where R is the number
of permutations, and is hence still asymptotically linear in the length of the concatenated
sequence x. While in principle parallelizable, each permutation will require its own smoothed
(and, if desired, spatially smoothed) score array, so that parallelization requires memory
linear in R * |z|.

Motif length selection according to Equation(7) could be naively implemented in O (kpax *
k) time per peak by directly comparing each suffix in the smoothing window to the suffix
corresponding to the suffix array index around which the window is centered. In fact it is
generally faster to use the suffix array to compute the suffix array index bounds for which
the k-mer prefixing the central suffix is conserved (this may be done quite efficiently using
the Burrows-Wheeler transform (Ferragina and Manzini, 2000); in our implementation of
SArKS we have generally avoided this in order to reduce the memory requirements of the
algorithm, favoring instead a slightly less efficient binary search approach). Either way,
motif length selection generally requires time linear in the size of the peak set; in practice,
when the peak set is large, this step can be relatively time consuming.

Merging of spatially adjacent k-mers originating within the same spatial smoothing
window (Equation(S15)) may be computed in time linear in the size of the peak set times
the length of the spatial smoothing window A. In the case of large peak sets, this step can
be time consuming as well.
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S4 Future directions
S4.1 Gapped motif detection

While lexical sorting of suffixes assembles occurrences of the same k-mer into a block of
adjacent index positions ¢, gapped motifs such as

U = UQ * Ugap * U1 (S30)

in which there is significant variability in the characters appearing within the internal
substring ug,, Will be scattered into distinct subblocks dispersed within the larger superblock
corresponding to their common prefix ug. This dispersion can dilute the apparent correlation
1; between motif and score by mixing non-matching suffixes in with those corresponding to
u within the range of the smoothing kernel.

While the technique described in Section S2.4 ameliorates this problem, it does not
specifically focus on the important situation where a head motif ug is always followed by the
same tail motif u; after the variable region ug,,. Such gapped motifs might be discovered
using SATKS by first applying a relatively relaxed threshold 6 (which may on its own admit
many false positives) and then examining the tail sequences ugap, * ug * - - - following it for
evidence of an enriched sequence u;, removing candidate head sequences for which no such
corresponding tails can be found. In this way, the ability of SArKS to detect motifs with
particularly variable internal positions may be improved.

S4.2 Other applications of SArKS

While we have tested SArKS as a method for identifying candidate cell type-specific regulatory
motifs, it could also be applied to sequence motifs associated with state dependent changes
in activated neurons of a single class as well as to differential gene expression in cancer
and in specimens that have been exposed to varying physical or chemical stimuli. We also
anticipate uses far afield from analysis of biological sequences, including motif discovery in
time series data (Fu, 2011), or, by considering node or edge sequences produced by random
walks, analysis of complex network structure (Masoudi-Nejad et al., 2012).
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