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Abstract

Experiments designed to assess differential gene expression represent a rich resource
for discovering how DNA regulatory sequences influence transcription. Results derived
from such experiments are usually quantified as continuous scores, such as fold changes,
test statistics and p-values. We present a de novo motif discovery algorithm, SArKS,
which uses a nonparametric kernel smoothing approach to identify promoter motifs
correlated with elevated differential expression scores. SArKS has the capability to
smooth over both motif sequence similarity and, in a second pass, over spatial proximity
of multiple motifs to identify longer regions enriched in correlative motifs. We applied
SArKS to simulated data, illustrating how SArKS can be used to find motifs embedded
in random background sequences, and to two published RNA-seq expression data sets,
one probing S. cerevisiae transcriptional response to anti-fungal agents and the other
comparing gene expression profiles among cortical neuron subtypes in M. musculus. For
both RNA-seq sets we successfully identified motifs whose kernel-smoothed scores were
significantly elevated compared to the permutation-estimated background distributions.
We found strong similarities between these identified motifs and known, biologically
meaningful sequence elements which may help to provide additional context for the
results previously published regarding these data sets. Finally, because eukaryotic
transcription regulation is highly combinatorial, we also outline how SArKS methods
might be extended to discover synergistic motifs.

Introduction

Discrete sequences—of tones, of symbols, or of molecular building blocks—can provide clues
to other characteristics of the entities from which they are derived: a phrase in a bird’s song
can reveal which species it belongs to, the use of an idiomatic expression can pinpoint a
speaker’s geographic origin, and a specific short string of nucleotide residues can illuminate
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the function of a DNA domain. In these examples, insights are gleaned from informative
motifs—short subsequences that match some frequently recurring discernible pattern.

Of particular interest to us are motifs in DNA sequences which are informative with
regard to patterns of differential gene expression. The identification of such motifs can help
to elucidate the manner in which structure (patterns in DNA sequence) mediates function
(regulation of gene expression). Because DNA is largely invariant, individual cell properties
tend to be determined by their complement of resident proteins. Tight control over protein
expression is, therefore, essential for cellular differentiation, identity, and function. While
prior efforts have identified sequences that participate in regulating eukaryotic gene expression,
the details regarding how and which specific motifs contribute to specific expression profiles
are poorly understood. Here we present an analytical approach toward deciphering this
fundamental biological puzzle.

Regulation of gene expression is achieved via a number of complementary processes. First,
non-coding DNA is replete with short sequences that can bind transcription factors (TFs),
proteins whose own expression varies from cell to cell and over the course of development.
Second, DNA can be methylated, epigenetically altering the accessibility of regulatory and
coding regions to transcriptional machinery. DNA methylation in turn recruits proteins
which modify histones and thereby chromatin structure, further impacting accessibility. In
this report, we take the latter regulatory strategies into consideration but focus primarily on
accessible regions containing TF binding sites.

In the present study, we present a broadly-applicable algorithm for identifying DNA
regulatory domains that support differential gene expression. Our strategy is predicated
on the following suppositions: (a) gene expression regulatory regimes involve the binding
of TFs to their respective sites on non-coding DNA found near, within, or some distance
from a gene; (b) TFs act combinatorially to attract and repel transcription machinery; (c)
the same TF binding site may appear multiple times within a stretch of DNA, interspersed
with other binding sites; (d) the orientation of a TF binding site gains importance closer
to the transcription start site (TSS) of the gene; and (e) there is more than one solution:
different genes, even those co-expressed within a single cell, may rely on different regulatory
mechanisms. As a practical matter, and in accord with these suppositions, we aim to identify
TF binding sites in the vicinity of co-expressed genes and scrutinize their arrangement for
significant patterns that can then be evaluated experimentally.

Many different methods for the identification of TF binding motifs have been described.
Consensus-based methods such as Weeder [1, 2] focus on motifs of length k that occur
repeatedly (allowing for small numbers of mismatches) in sequences of interest. Such
methods can be efficiently implemented using suffix trees: Weeder in particular follows
a suffix tree-based approach originally described in [3] and [4] with an added heuristic
restriction on the pattern of allowed mismatches to maintain the efficiency of the recursive
search method utilized [1].

Alternately, profile-based methods such as MEME [5–7] (Multiple Expectation-Maximization
for Motif Elicitation) fit a profile model (i.e., a matrix composed of the modeled probabilities
of each base occurring at each position of a fixed width motif) of a motif to be compared
to a background model in order to classify subsequences as either matching the motif or
not. MEME fits these profile models using an expectation-maximization (EM) approach,
repeatedly computing the degree to which each subsequence fits the profile (E-step) and then
recalculating the profile by realigning subsequences based on these fits (M-step).
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Chromatin immunoprecipitation (ChIP)-based techniques (e.g. ChIP-seq) for identifying
protein-interacting DNA sequences have led to the application of motif-finding algorithms
to larger sequence data sets than was typical during previous decades [8]. Methods like
MDScan [9] can take advantage of the ranking of sequences on based on ChIP enrichment
to first generate candidate motifs using only the most enriched DNA sequences and then
progressively refine these motifs using the full set of detected DNA sequences.

While MDScan uses functional ranking to separate sequences into sets of higher and
lower priority to better focus limited analytical resources for motif discovery, it does not
attempt to directly compare one set of sequences to the other. In contrast, discriminative
motif analysis [10] seeks to identify motifs specifically differentiating one set of sequences
(e.g., promoter regions for a set of genes with a given expression pattern) from another (e.g.,
a set of reference promoter regions). A number of approaches have been applied to this
problem, including [11–18]. A popular recent example, DREME [19] (Discriminative Regular
Expression Motif Elicitation), employs Fisher’s exact test to assess the significance of motif
matches in sequences of one set compared to the other, with further refinement of motif
profile conducted for satisfactory candidate motifs.

Discriminative approaches incorporate gene-specific information into the motif discovery
process—by, e.g., comparing sequences associated with genes with elevated expression in
an experimental condition of interest to sequences associated with genes whose expression
shows less evidence of elevation—but these methods implicitly assume that genes may be
adequately characterized in a binary manner (e.g., elevated vs. not elevated). Given that
the information used to establish the contrasting gene sets is often obtained in the form of
continuous expression measurements (and derived measures of differential expression such
as t-statistics, f -statistics, etc.), with some genes exhibiting extremely divergent expression
patterns across conditions while (usually many) others show more modest differences, it may
be more useful to develop methods for what might be called “correlative motif discovery”
seeking motifs whose presence signals a trend towards higher or lower values of such a
continuous measure.

Correlating motifs from sequences (e.g., promoter regions) wb with associated continuous
score values yb (e.g., measures of differential expression for the genes associated with the
promoter regions) would be straightforward if we had some way of quantifying potential
motif patterns present within the wb. The algorithm we propose here (illustrated in Fig 1)
builds on this idea by:

1. concatenating all of the sequences wb into one supersequence x (detailed in Eq (1)
below);

2. constructing the suffix array [si] of this supersequence (Eq (4)), where i indexes all
suffixes of x sorted into lexicographic order;

3. mapping the suffix positions i back to the sequences wbi from which the beginnings of
the associated suffixes are derived (Eq (5)); and finally

4. for each suffix array index i, applying kernel smoothing to locally regress ybj on suffix
position j (Eq (6)): the resulting smoothed scores ŷi are then proportional to the
correlations of the scores ybj with the local kernel Kij centered at i.

We are thus using the suffix array index i as the aforementioned quantification of the motif
pattern corresponding to the first few characters of the suffix of x beginning at character
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wb: D NA AN DRNAY AY
yb: 0 4 0 3 0

s x[s, |x|) b yb

0 D NA AN DRNAY AY 0 0
1 NA AN DRNAY AY 1 4
2 A AN DRNAY AY 1 4
3 AN DRNAY AY 2 0
4 N DRNAY AY 2 0
5 DRNAY AY 3 3
6 RNAY AY 3 3
7 NAY AY 3 3
8 AY AY 3 3
9 Y AY 3 3

10 AY 4 0
11 Y 4 0

(a) (b)

i si x[si, lbi+1) bi ybi
ŷi

0 2 A 1 4 nan
1 3 AN 2 0 4/3
2 10 AY 4 0 1
3 8 AY 3 3 1
4 0 D 0 0 2
5 5 DRNAY 3 3 1
6 4 N 2 0 7/3
7 1 NA 1 4 7/3
8 7 NAY 3 3 10/3
9 6 RNAY 3 3 2

10 11 Y 4 0 2
11 9 Y 3 3 nan

AN

AY

AY

D

DRNAY

N NA

NAY

RNAY Y

0

1

2

3

4

0 3 6 9

suffix array index i

ŷ i

(c) (d)

Figure 1: Overview of SArKS method. (a) Concatenation of sequences wb to form string x =
D$NA$AN$DRNAY$AY$ (end-of-sequence character indicated by white space instead of $ for visual clarity).
(b) Table of all suffixes of x (part of each suffix following first end-of-sequence character shown in light gray),
along with index b of input sequence wb each suffix derived from and score yb associated with wb. (c) Sorted
suffix table indicating suffix array index i, suffix array value si, suffix (with part following first end-of-sequence
character removed), sequence of origin bi, associated score ybi , and smoothed score ŷi generated using
smoothing window of size 3 (kernel half-width κ = 1). (d) Smoothed scores ŷi plotted against suffix array
index i, indicating peak at i = 8 corresponding to suffix NAY of input sequence DRNAY. Note that prefix
NA of this suffix is longest substring common to the two input sequences w1 and w3 with scores yb > 0.
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si. Because i gives the position of a suffix in the lexicographically sorted list of suffixes of
the concatenated supersequence x, multiple occurrences of a highly conserved motif—even
if they derive from different sequences w—will be consolidated into a run i, i+ 1, . . . , j of
consecutive index values. Kernel smoothing using a kernel of width on the order j − i thus
offers a way to compare the scores ybi , ybi+1

, . . . , ybj to the overall score distribution. In this
way, Suffix Array Kernel Smoothing (or SArKS) provides an efficient method for de novo
discovery of conserved motifs which tend to be found selectively in high-scoring sequences.

We also describe an extension of this method for identification of longer motifs by adding
a second round of kernel smoothing applied over the spatial extent of the sequences in
order to detect longer regions containing clustered motifs. The use of a nonparametric
permutation testing method for computing significance thresholds is then illustrated through
the application of SArKS methods to both simulated and real data sets, thus demonstrating
(a) the manner in which idealized versions of the motif detection problem may be solved for
simulated data and (b) that the algorithm finds plausible candidate patterns with interesting
relationships to sequence elements known to have potential regulatory activity when applied
to two real gene expression data sets. By implementing a correlational approach to motif
discovery, SArKS thus provides a step forward in taking full advantage of the differential
expression information offered by RNA-sequencing experiments in the context of motif
discovery.

Methods

Motif selection

Given n sequences wb (also referred to as words) with associated scores yb, the basic motif
selection algorithm defining SArKS consists of:

Concatenation

Concatenate all words wb (each assumed to end in the line-terminator character $ lexically
prior to all other characters) to form word

x = w0 ∗ w1 ∗ . . . ∗ wn−1 (1)

of length ln = |x| =
∑

b |wb|. Define also

lb =
∑
b′<b

|wb′ | (2)

Thus x[lb, lb+1) = wb; that is, the substring of the concatenated string starting at position lb
(inclusive) and ending immediately before position lb+1 (exclusive) is the sequence wb (in
this paper the first character of a string w is denoted w[0], the second w[1], etc.).

Suffix sorting

Lexically sort suffixes
xs = x[s, |x|) (3)
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into ordered set
S = {xs0 , xs1 , · · · , xsln−1

} (4)

thereby defining suffix array [si] mapping index i of suffix in S to suffix position s in x (in
our software we rely on the Skew algorithm [20] modified to use a difference cover of 7 and
implemented in SeqAn [21] to efficiently compute the suffix array).

Block marking

Define block array [bi] by
bi = max {b | lb ≤ si} (5)

mapping index i of suffix in S to block b containing suffix position si. The block array then
tells us that the character x[si] at position si in the concatenated string x is derived from
wbi [si − lbi ] in the sequence wbi .

Kernel smoothing

Calculate locally weighted averages

ŷi =

∑
jKij ybj∑
jKij

(6)

where the kernel Kij acts as a weighting factor for the contribution of the score ybj to the
smoothing window centered at sorted suffix index i. Loosely speaking, Kij is used to measure
how similar (the beginning of) the suffix x[sj , |x|) is to be considered to (the beginning of)
the suffix x[si, |x|) in the calculation of a representative score ŷi averaged over suffixes similar
to x[si, |x|). As the suffixes have been sorted into lexicographic order, the magnitude of the
difference i− j provides some information regarding this similarity: the key idea of the kernel
smoothing approach described here is that Eq (6) with Kij defined to be a function of |i− j|
may therefore offer a computationally tractable approach for identifying similar substrings
(prefixes of suffixes) which tend to occur preferentially in high scoring words wb.

In this work we use a uniform kernel

K
(κ)
ij =

{
1 if |i− j| ≤ κ
0 otherwise

(7)

which allows Eq (6) to be computed easily in terms of cumulative sums:∑
jK

(κ)
ij ybj∑

jK
(κ)
ij

=
1

2κ+ 1

i+κ∑
j=i−κ

ybj =
1

2κ+ 1

i+κ∑
j=1

ybj −
i−κ−1∑
j=1

ybj

 (8)

The kernel half-width κ appearing in Eq (7) is an important adjustable parameter in the
SArKS methodology controlling the degree of smoothing applied. Increasing κ smooths over
more, and hence generally more diverse, suffixes, potentially increasing statistical power at
the expense of the resolution of the detected motifs. Recommended guidelines for selecting
this parameter are discussed further in Results and discussion.
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k selection

Set length k̂i for k-mer associated with suffix array index i by locally averaging the length of
suffix sequence identity:

k̂i =

∑
j 6=iKij max {k ≤ kmax | x[sj , sj + k) = x[si, si + k)}∑

j 6=iKij
(9)

where kmax functions both to increase computational efficiency and to make k̂i more robust
in the presence of a small number of long identical substrings (all results presented here
based on kmax = 12). Eq (9) is similar to Eq (6) except that: (a) Eq (9) smooths the length
(capped at kmax) of the longest prefix on which the suffixes x[si, |x|) and x[sj , |x|) agree
instead of smoothing the score ybj as in Eq (6); and (b) Eq (9) omits the central term i = j
as it trivially compares suffix the suffix beginning at si to itself and is thus uninformative.

Motif selection

Choose score threshold θ and minimum k-mer size kmin, thereby defining k-mer set M by

M =
{
x[si, si + bk̂ie) | (ŷi ≥ θ) ∧

(
k̂i ≥ kmin

)}
(10)

where bk̂ie is the nearest integer to k̂i. Strategies for setting the filtering threshold θ based
on the permutation testing method described in Permutation testing (and for choosing a
reasonable kmin) are discussed in Results and discussion.

Limit intra-sequence repeats

One complicating factor in the strategy described in Motif selection is the presence of
highly repetitive sequences (common in eukaryotic DNA [22]): if the substring x[si, si + rm)
(assumed to derive wholly from the single word wbi) consists of r � 1 repeats of the same
m-mer,

x[si, si + rm) = x[si, si +m)︸ ︷︷ ︸
1

∗x[si, si +m)︸ ︷︷ ︸
2

∗ · · · ∗ x[si, si +m)︸ ︷︷ ︸
r

(11)

then it is likely that the sorted suffix array index positions j and k implicitly defined by
sj = si + am and sk = si + bm for small a, b ≥ 0 will be close by, since, assuming without
loss of generality that a < b,

x[si + am, si + (r − b+ a)m) = x[si + bm, si + rm) (12)

showing that the suffixes of x beginning at positions (si + am) and (si + bm) agree on their
first (r − b)m characters. Since all of the positions si + am for small a must come from
the same word block bi they must have the same associated score ybi . If this score ybi is
particularly high, this phenomenon may lead to windows of high ŷj values centered on j
satisfying sj = si + am which result from a very small number of different repeat-containing
words (perhaps as few as one if the number of repeats is high enough within a single high-
scoring word). An example of a repetitive substring receiving a high smoothed score ŷi in
such manner is discussed in DNA motifs associated with anti-fungal response.
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The distribution of weighted word frequencies

f
(i)
b =

∑
jKijδbjb∑
jKij

(13)

contributing to the window centered at position i of the suffix array table across the full word
set W may for these purposes be reasonably summarized by the associated Gini impurity
(often used in fitting classification and regression trees [23]):

gi =
∑
b

f
(i)
b

(
1− f (i)

b

)
(14)

which provides a measure ranging from 0 to 2κ
2κ+1 of the degree of uniqueness of the words

contributing to the calculation of ŷi. Requiring gi ≥ gmin can thus be used to screen out
positions i for which the repeated occurrence of a few high-scoring words in the window
centered at i leads to ŷi ≥ θ. Permutation testing further demonstrates that gi is directly
linked to the variation of the smoothed scores ŷi which would be expected if there were no
association between the sequences wb and the scores yb, thereby providing the motivation for
the use of this particular measure for filtration.

Pruning and extending k-mers

The presence of a k-mer x[si, si +k) associated with a high smoothed score ŷi may also result
in high smoothed scores ŷj when sj = si +m if the substring (k −m)-mers x[si +m, si + k)
also differentiate higher and lower scoring sequences (if perhaps not as well as the superstring
k-mer). The following two steps may be added to the algorithm described in Motif selection
in order to reduce the reporting of such substring results in cases where they are present
only as part of the full k-mer:

Prune nested k-mers

Cases in which both k-mer x[si, si +k) and its sub-(k−m1−m2)-mer x[si +m1, si +k−m2)
(with m1 > 0,m2 ≥ 0) are individually identified can be resolved to report only the longer
k-mer: denoting

I =
{
i
∣∣∣ (ŷi ≥ θ) ∧ (k̂i ≥ kmin) ∧ (gi ≥ gmin)

}
(15)

remove any index i ∈ I if there exists j ∈ I such that the bk̂je-mer interval starting at sj
includes all of the bk̂ie-mer interval starting at si, thus retaining only:

I ′ =
{
i ∈ I

∣∣∣ ∀j ∈ I : (si ≤ sj) ∨
(
si + bk̂ie > sj + bk̂je

)}
(16)

This can be done efficiently using an interval tree.

Extend k-mers

For each i ∈ I ′, define the duplet(
z0
i , z

1
i

)
= arg max

z0,z1≥0

{
z0 + z1

∣∣∣ ∃j ∈ I ′ : x [si − z0, si + bk̂ie+ z1
)

= x
[
sj , sj + bk̂je

)}
(17)

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/133934doi: bioRxiv preprint 

https://doi.org/10.1101/133934
http://creativecommons.org/licenses/by/4.0/


resolving any ties in the arg max in favor of maximal z0. Eq (17) picks out the largest
super-interval

[
si − z0, si + bk̂ie+ z1

)
containing the interval

[
si, si + bk̂ie

)
such that the

extended
(
bk̂ie+ z0

i + z1
i

)
-mer x

[
si − z0, si + bk̂ie+ z1

)
is equal to one of the already

identified k-mers
{
x
[
sj , sj + bk̂je

) ∣∣∣ j ∈ I ′}. Then
M ′ =

{
x
[
si − z0

i , si + bk̂ie+ z1
i

) ∣∣∣ i ∈ I ′} (18)

defines our pruned motif set.

Spatial smoothing

Existing motif discovery approaches often take into account the tendency of some sequence
motifs to exhibit local spatial clustering (thought in some cases to facilitate the cooperative
interactions between TFs required for appropriate gene regulation) [24]. Our algorithm can
also take advantage of this observation, extending candidate regulatory regions through the
application of a second round of kernel-smoothing over the positions within words:

ˆ̂ysi =

∑
j Lsitj ŷj∑
t Lsit

(19)

where we here use uniform kernels of the form

L
(λ)
sitj

=

{
1 if (0 ≤ (tj − si) < λ) ∧ (bi = bj)

0 otherwise
(20)

(generally with width λ 6= κ) to search for regions of length λ with elevated densities of
high-scoring motifs. Note that ˆ̂ysi defined by Eq (19) is indexed not by suffix array index i
but by suffix array value si giving the spatial position si in the concatenated word x.

To use such spatial smoothing as an additional basis for motif selection/filtering, it is
generally necessary to introduce a second threshold θspatial, as the doubly-smoothed scores
ˆ̂ysi will generally be somewhat less dispersed than will be the singly-smoothed ŷi. In this
case, formula (21) for the starting motif set M becomes:

M =
{
x[si, si + bk̂ie)

∣∣∣ (ŷi ≥ θ) ∧ (ˆ̂ysi ≥ θspatial) ∧ (gi ≥ gmin) ∧ (k̂i ≥ kmin)
}

(21)

with similar modification to formula (18) for M ′ then required as well.

Gapped motif detection

While lexical sorting of suffixes assembles occurrences of the same k-mer together into a
block of adjacent index positions i, gapped motifs such as

u = u0 ∗ ugap ∗ u1 (22)

in which there is significant variability in the characters appearing within the internal
substring ugap will be scattered into distinct subblocks dispersed within the larger superblock
corresponding to their common prefix u0. By mixing less relevant suffixes in with those
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corresponding to u within the range of the smoothing kernel, this dispersion can dilute the
apparent correlation ŷi between motif and score.

While the technique described in Spatial smoothing ameliorates this problem to some
extent, it does not specifically focus on the important situation where a head motif u0 is
always followed (after the variable ugap) by the same tail motif u1. We describe here a
method for discovering just such gapped motifs by applying first a relatively relaxed threshold
θ (which may on its own admit many false positives) and then examining the tail sequences
ugap ∗ u1 ∗ · · · following it for evidence of an enriched sequence u1, pruning away candidate
head sequences for which no such corresponding tails can be found.

Defining for any string u:

i
(u)
min = min {i | x[si, si + |u|) ≥ u} (23)

i(u)
max = min {i | x[si, si + |u|) > u} (24)

and noting that i ∈
[
i
(u)
min, i

(u)
max

)
⇐⇒ x[si, si + |u|) = u, we can look for the presence of a

particularly common substring u1 such that the number of occurrences u1 exactly j positions
downstream of an occurrence of u0 in a sufficiently high-scoring word

cj(u0, u1; θ) =
∣∣∣ {i ∈ [i(u0)

min , i
(u0)
max

) ∣∣∣ ŷi ≥ θ ∧ x [i+ |u0|+ j, i+ |u0|+ j + |u1|) = u1

} ∣∣∣
(25)

is significantly higher than expected. In order to quantify the significance of cj(u0, u1; θ)
some sort of background null model is required; for simplicity we assume homogeneity and
independence at different positions i in our examples here, so that according to the null
model,

cj(u0, u1; θ) ∼ Binom

n(u0; θ),

j+|u1|−1∏
a=j

px[a]

 (26)

where
n(u0; θ) =

∣∣∣{i ∈ [i(u0)
min , i

(u0)
max

) ∣∣∣ ŷi ≥ θ}∣∣∣ (27)

is the number of occurrences of u0 in high scoring words (i.e., where ŷi ≥ θ) and px[a] is the
null probability of character x[a]. The method here is not constrained to the use of such a
naive null model, however; a higher-order Markov null model (as has been demonstrated to
improve other motif discovery algorithms [6, 25]) could easily be used instead.

Cluster k-mers by sequence similarity

There are many cases of interest where motifs are not defined by an exact match to a specific
k-mer but instead may allow for some variation away from an idealized pattern. Thus the set
M defined by Eq (21) is likely to contain many related k-mers which may be more usefully
clustered into a few higher-level motif patterns.

Here we adopt a simple edit distance-based criteria to perform this clustering. First
we define a diameter d ≥ 0 controlling how similar motifs must be to cluster together and
initialize the (ordered) set of clusters C = ∅. We then consider the sequences x[si, si+bk̂ie)
in the reverse order of their smoothed scores ŷi for all suffix indices i surviving all imposed
filters, initializing a new cluster “centered” at x[si, si+bk̂ie) in C if x[si, si+bk̂ie) is not within
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d edits of the centers of any existing clusters (e.g., ACGT would initialize a new cluster if
d = 1 and the only existing cluster was centered on AAG, but would not if a cluster already
existed centered at either ACG or AAGT). If, on the other hand, x[si, si+bk̂ie) is within
d edits of the center of one or more existing clusters, it is added to the first such cluster.
This clustering strategy has previously been efficiently implemented in the software package
starcode [26], on which we rely here.

Permutation testing

In order to decide whether the observed correlation between the occurrence of the motifs
uncovered by the approach described above and the sequence scores yb is meaningful, it is
useful to have a method for examining results that might be obtained if the sequences wb and
the scores yb were independent of each other. To this end, the word scores yb are subjected
to permutation π to define

y
(π)
b = yπ(b) (28)

If the permutation π is randomly selected independently of both the sequences wb and the
scores yb, any true relationships between sequences and scores should be disrupted. This
suggests a simple method for assessing the significance of motifs discovered using a given set
of parameters (θ, kmin, gmin, kernel half-width κ, etc.): generate R random permutations πr
and for each permutation select positions i satisfying ŷ(πr)

i ≥ θ, k̂i ≥ kmin, gi ≥ gmin, and
any other desired criteria (e.g., presence of highly significant tail sequences when searching
for gapped motifs as described in Gapped motif detection, or observation of high spatially-
smoothed scores ˆ̂ysi when the method of Spatial smoothing is employed). In this manner
one can estimate the distribution of the number of motifs which would be chosen under a
null model in which there is no association between the sequences of the various words wb
and the scores yb.

This method of significance testing also provides the motivation for the form of Eq (14) in
Limit intra-sequence repeats. To demonstrate this, let Π be a random variable representing
a random permutation and note that the random variables yΠ(b) satisfy

E
[
ŷ

(Π)
i

]
= E

[∑
jKij yΠ(bj)∑

jKij

]
=

∑
jKij E

[
yΠ(bj)

]
∑

jKij
= ȳ (29)

while, assuming that the number of words n = |W | is large enough that we may approximate
yΠ(b) ⊥⊥ yΠ(b′) for b 6= b′,

V
[
ŷ

(Π)
i

]
= V

[∑
jKij yΠ(bj)∑

jKij

]
≈
∑
b

V
[
f

(i)
b yΠ(b)

]
= V

[
yΠ(·)

]∑
b

[
f

(i)
b

]2
(30)

where f (i)
b is defined by Eq (13) and for all b

V
[
yΠ(·)

]
= V

[
yΠ(b)

]
=

1

n

∑
b′

(yb′ − ȳ)2 (31)

Eq (30) then tells us that

V
[
ŷ

(Π)
i

]
∝
[
f

(i)
b

]2
= 1− gi (32)
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where the Gini impurity gi is defined by Eq (14). Thus smaller values of gi imply higher
variance V

[
y

(Π)
b

]
of the window-smoothed scores obtained under random permutation Π (with

mean unchanged). This increased variance will lead to the requirement of larger cutoff values
θ for reporting motifs discovered in the unpermuted data with a given degree of confidence
unless positions i with gi < gmin are filtered out as described in Limit intra-sequence repeats.

RNA-seq expression analysis

In order to test SArKS, we selected two RNA-seq data sets from Gene Expression Omnibus
database [27] (https://www.ncbi.nlm.nih.gov/geo/): GSE80357, from Saccharomyces
cerevisiae (strain 288c), and GSE63137, from Mus musculus neocortical neurons [28]. Strain
288c data was obtained following exposure of yeast cells to two different anti-fungal agents.
The GSE63137 data set contains detailed transcriptomic and epigenetic information from
three distinct non-overlapping classes of pooled neocortical neurons: principal excitatory
neurons, parvalbumin (PV)-positive GABAergic neurons, and vasoactive intestinal peptide
(VIP)-positive GABAergic neurons.

For the yeast data set GSE80357, we based the sequence scores yb on the provided
gene-level edgeR differential expression results:

yb =

{
log Λb if Λb > 0

0 otherwise
(33)

(where Λb is the edgeR likelihood ratio statistic for gene b provided in the analysis results for
GSE80357).

Because the position of the first used exon often provides information on which TSS
is used—and hence on what DNA region defines the applicable promoter—in multicellu-
lar eukaryotes, we reanalyzed the GSE63137 RNA-seq data at the transcript level, using
kallisto [29] to quantify and normalize transcript level expression against Ensembl mouse
cDNA reference GRCm38 [30]. Both mean and variance filters were applied (retaining only
transcripts for which at least 100 pseudocounts were obtained when summed across all
samples, whose mean normalized expression met or exceeded the median of the transcript
mean normalized expression levels, and whose normalized expression variance across full
sample set similarly met or exceeded the median such value) to winnow the set of transcripts
analyzed [31]. In order to simplify downstream analysis, only the isoform with highest
mean expression level across all samples was retained for each detected gene. Finally, as
previously analyzed epigenetic information on chromatin accessibility was available from
the same study [28], only transcripts for which the transcription start sites were located
within ATAC-seq peaks (i.e., were accessible) for all examined neuron classes were retained
for analysis. Imposing this condition minimizes the likelihood that epigenetic factors, rather
than regulatory sequence characteristics, underlie the variations in gene expression across
cell classes.

Differential gene expression was then assessed on normalized expression values via standard
Student’s t-test comparing data for PV neuron data to excitatory and VIP neuron data, with
the resulting t-statistic providing a rough estimate of the gene’s enrichment in PV neurons
to be used as score yb for transcript b. To prevent the few very large magnitude t-statistics
from unduly influencing motif discovery, we enforced a ceiling of 10 on the magnitude of yb,
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so that

yb =


−10 if tb ≤ −10

tb if − 10 < tb < 10

10 if tb ≥ 10

(34)

Results and discussion

Illustration using simulated data

To illustrate the method, we first applied it to a simple simulated data set in which 30
random sequences wb were generated with each letter wb[s] drawn independently from a
Unif {A,C,G,T} distribution; to the last 10 sequences (i.e., those wb with b ≥ 20) we then
embedded the k-mer motif CATACTGAGA (k = 10) by choosing a position sb (independently
for each sequence wb) from Unif {0, . . . , |wb| − k} and replacing wb[sb, sb + k) by the desired
k-mer sequence. Scores were assigned to the sequences according to whether the motif had
been embedded:

yb =

{
0 if b ∈ [0, 20)

1 if b ∈ [20, 30)
(35)

The kernel half-width κ = 4 was chosen for this simulation in order to obtain smoothing
windows of approximately the same size as the number of motif-positive sequences, 2∗κ+1 ≈
|{b | yb = 1}|. In cases where one might expect that most high-scoring sequences exhibit a
single conserved copy of a motif while few low-scoring sequences contain the motif, this may
be generalized to provide a reasonable starting point for selection of window size: choose
κ ≈ 1

2 |{b | yb ≥ φ}| where φ divides “high-scoring” sequences from “low-scoring” ones.
Fig 2 plots ŷi as obtained from Eq (6) when the method of Motif selection is followed

using a uniform kernel with κ = 4. The highest peaks in the plot correspond to the positions
of various substrings of the embedded motif, and lead to the set M of k-mers defined by the
x[si, si + bk̂ie) column of table 1.

Pruning table 1 as described in Pruning and extending k-mers, Eq (16) leaves only the
rows for i ∈ {2257, 2258, 2256, 1462, 1458, 1463}. Applying Eq (17) then extends the 8-mer
ATACTGAG of the rows i ∈ {1462, 1458, 1463} to the full 10-mer, so that, following Eq (18),
the final k-mer set M ′ = {CATACTGAGA}.

Permutation testing illustrates the utility of setting a minimum k-mer length kmin and/or
a minimum block Gini impurity gmin during motif selection: 190 out of 1000 random
permutations generated at least one position i(π) for which ŷ(π)

i(π)
= 1 ≥ θ (where θ was taken

to have the maximum possible value of 1), but none of these permutations yield any results
if kmin = 6 is applied to restrict attention to hexamer or longer motifs. Alternatively, if
a relatively stringent minimum Gini impurity gmin = 0.878 (selected so that only those
i for which bi−κ, bi−κ+1, . . . , bi+κ are all distinct are retained) is enforced, only 2 of 1000
permutations yield positive results, yielding a 95% CI of (0.024%, 0.72%) for family-wise
error rate (FWER).

We repeated the process of generating 30 random sequences, embedding the motif
CATACTGAGA into the last 10 of them, and then applying suffix array kernel smoothing to
the sequence scores 1000 times. In 999 out of these 1000 iterations, the maximum value

ŷmax = max {ŷi | gi ≥ gmin} (36)
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Figure 2: Locating peaks in kernel-smoothed scores ŷi. Variation of kernel-smoothed ŷi (Eq (6), with
kernel half-width κ = 4) along suffix array index i for simulated data set. Gold, silver, and bronze bars
indicate positions in suffix array table of suffixes beginning with prefixes CAT, ATA, and TAC, corresponding
to first 5 characters of embedded motif CATACTGAGA.

Table 1: Suffix array positions with ŷi ≥ θ.

i si ŷi k̂i x[si, si + bk̂ie) bi ωi gi

2257 3959 1 10.25 CATACTGAGA 22 194 0.889
2258 4518 1 10.25 CATACTGAGA 25 0 0.889
2256 3544 1 9.62 CATACTGAGA 21 30 0.864
1460 3960 1 9.25 ATACTGAGA 22 195 0.889
1461 4519 1 9.25 ATACTGAGA 25 1 0.889
1459 3545 1 8.75 ATACTGAGA 21 31 0.889
1462 3456 1 8.50 ATACTGAG 20 193 0.864
1458 4442 1 8.25 ATACTGAG 24 175 0.864
5864 3961 1 8.25 TACTGAGA 22 196 0.889
5865 4520 1 8.25 TACTGAGA 25 2 0.889
1463 5595 1 7.88 ATACTGAG 29 73 0.864
5863 3546 1 7.75 TACTGAGA 21 32 0.889
5862 4443 1 7.25 TACTGAG 24 176 0.864
1464 5174 1 7.12 ATACTGA 27 154 0.840
5861 5430 1 6.88 TACTGAG 28 159 0.840
1465 4232 1 6.25 ATACTG 23 216 0.815

Illustration of motif selection process from Motif selection applied to simulated data set with
window half-width κ = 4 and score threshold θ = 1 (here kmin = gmin = 0).
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Table 2: Unpermuted scores consistently exceed permuted scores only when motif is present.

ŷmax − ŷ(π)
max motif (+) motif (-)

− 2/9 0 14
− 1/9 0 165

0 1 650
1/9 93 159
2/9 790 12
1/3 116 0

Distribution of differences between ŷmax obtained by suffix array kernel smoothing using
unpermuted sequence scores yb and ŷ

(π)
max obtained using permuted sequence scores yπ(b) over

1000 simulations (30 random sequences of 250 characters each) run either with (motif (+)
column) or without (motif (-) column) inclusion of motif CATACTGAGA in final 10
sequences.

(with gmin = 0.878) calculated using the unpermuted sequence scores exceeded the maximum
value

ŷ(π)
max = max {ŷ(π)

i | gi ≥ gmin} (37)

obtained using one set of randomly permuted sequence scores per iteration. The full
distribution of the differences ŷmax − ŷ(π)

max is given in the motif (+) column of table 2. Table
2 also contains (motif (-) column) the distribution of ŷmax − ŷ(π)

max values for 1000 repetitions
of an amended version of this process in which the sole modification was to omit the motif
embeddings: in this case, ŷmax exceeded ŷ

(π)
max in only 171 of the simulations, while ŷ(π)

max
exceeded ŷmax in 179 simulations (with equality between the two holding in the remaining
650 iterations). The symmetry of the distribution of ŷmax − ŷ(π)

max around 0 in the motif
(-) case is to be expected since the scores yb are independent of the sequences wb whether
permuted or not if no motifs are included.

Gapped motif detection

Following a similar strategy to that laid out in the Illustration using simulated data above, we
generated a second simulated data set containing 30 random 250 character control sequences
and then embedding a specific motif into the last 10 of them (again defining yb by Eq
(35)) in order to test the gapped-motif detection strategy of Gapped motif detection. In
this case, however, the motif was specified as CATA..CTGA, where the periods between
CATA and CTGA represent different pairs of bases randomly assigned to each sequence:
1 AG, 1 CA, 3 CG, 1 GA, 1 GT, and 3 TG (the high frequency of G—in 7 out of 10
embeddings—immediately prior to CTGA here resulted purely from random chance).

This is a more challenging motif discovery problem than the one discussed above. We
therefore asked whether approach Gapped motif detection enables SArKS to find correlative
motifs in small data sets even when there is no single long conserved section.

The assumptions underlying the selection of κ in the initial simulation study (Illustration
using simulated data) are not satisfied in the gapped motif simulations, as the head motif
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Figure 3: Joint distribution of smoothed scores and spatially-smoothed scores. Heatmap depicting
binned fractions of suffixes exhibiting different combinations of sequence-smoothed ŷi (Eq (6)) and spatially-
smoothed ˆ̂ysi (Eq (19)) values for simulated gapped motif detection problem. Subplots are vertically faceted
by Gini impurity gi (Eq (14)) and horizontally faceted according to whether quantities calculated using
permuted scores y(π)b (left) or unpermuted scores yb (right). Dotted lines correspond the threshold values
θ = 0.6 and θspatial = 0.44

4-mer u0 = CATA is not sufficiently long to guarantee that it will not be present by random
chance. Indeed, given independent equiprobable characters in the concatenated sequence x of
length l = 30 ∗ 250 = 7, 500, we would expect any individual k-mer to appear approximately
4−kl times on average; for k = 4 and l = 7, 500 this yields an expectation of ≈ 29 random
occurrences (in addition to embedded occurrences), or about one per sequence—including
the first 20 sequences into which it was not embedded—in our example.

This introduces a new scale to consider: the expected number of total occurrences of
the head motif u0 (here CATA), which we could approximate in this case by the expected
number of random occurrences (29) plus the expected number of embedded occurrences
(10) at about 39 (actual number of u0 = CATA occurrences in simulated data set was 32).
However, while this gives us a rough sense of the ceiling on the window size to which the head
u0 contributes, there will generally be subwindows of the window containing all occurrences
of u0 that are particularly enriched in suffixes of higher-scoring sequences w20, w21, . . . , w29 .
Thus we targeted window sizes slightly below this expected count (39): the value of κ = 12,
corresponding to a full window size of 2 ∗ κ+ 1 = 25 was chosen as the mid-point between
κ = 4 appropriate for motifs very unlikely to occur by chance and the value of κ ≈ 20
corresponding to the expected half-width of the window of all suffixes beginning with u0.

The spatial length scale λ = 10 over which to smooth ˆ̂ysi for this application is based
on the length of the target motif u0 ∗ ugap ∗ u1 = CATA..CATG. It could be argued that a
slightly lower value of λ would be more appropriate, since there is little reason to expect
that suffixes beginning with the last few characters of u1 will generate high scores ŷi; results
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Table 3: Tail sequences for head CATA in gapped motif simulation.

j u1 cj(u0, u1; θ) log10 p

2 CTGA 10 -18.83
1 GCTGA 7 -16.19
2 CTG 10 -12.86
3 TGA 10 -12.86
1 GCTG 7 -11.99
1 GCT 7 -7.83

Ranked p-values for k-mers u1 found j positions after u0 = CATA cj(u0, u1; θ = 0.6) ≥ 5
times in gapped motif simulated set.

similar to those presented for λ = 10 were obtained using λ as low as 5 (though θspatial must
be set higher for smaller values of λ).

Fig 3 plots the joint distributions of ŷi and ˆ̂ysi for both permuted and unpermuted scores
and further split into low- and high-Gini impurity gi indices, with thresholds θ = 0.6 and
θspatial = 0.44 indicated by dotted lines. This plot suggests a useful method for selecting θ
and θspatial: repeatedly permute the sequence scores yb to obtain y(π)

b to estimate permuted
score distributions; thresholds should then be selected high enough that permuted scores
rarely exceed them (after filtering out low Gini impurity suffix indices i; note the tighter
distribution of ŷi values for the permuted, high Gini impurity panel as compared to the
corresponding low Gini impurity panel, consistent with Eq (32)). Upon further inspection of
the unpermuted, high Gini impurity panel of Fig 3, a few disconnected islands containing
some of the high-scoring indices i corresponding to occurrences of CATA..CATG may be
observed; note that no such islands appear in the permuted distributions.

Thus having set κ = 12, λ = 10, θ = 0.6, θspatial = 0.44, and having used the median of
the Gini impurities gi to define gmin = 0.931, we followed the methods of Motif selection–
Pruning and extending k-mers, modified to incorporate spatial smoothing as described in
Spatial smoothing, thereby obtaining M ′ = {CATA} containing only the embedded head
sequence u0.

Table 3 shows the results of searching for common k-mers (3 ≤ k ≤ 6) u1 occurring
within 10 positions downstream of u0 = CATA occurrences ranked using the simple binomial
null-model described in Gapped motif detection. The most significant hit found is for the
correct motif tail sequence u1 = CTGA, while the remainder of the table contains various
substrings of either CTGA or GTCGA, reflecting the randomly occurring bias favoring G
immediately preceding the tail sequence in the simulated data.

For permutation testing of this gapped motif detection problem, a threshold p-value of
10−10 was applied to determine if any meaningful downstream hits u1 were detected: at this
threshold, while 202 of 1000 permutations y(π)

b resulted in positive detection of a head motif
u0 only 1 of these yielded a positive u1 motif hit (corresponding to 95% CI (0.0025%, 0.56%)
for FWER). These results thus demonstrate that statistical analysis of the composition of
trailing tail sequences can complement the basic SArKS approach to facilitate the detection
of gapped motifs that might otherwise be missed.
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Figure 4: Joint distribution of smoothed scores and Gini impurities. Heatmap indicating binned
fractions of suffixes exhibiting different combinations of sequence-smoothed ŷi (Eq (6)) and Gini impurities
(Eq (14)) for the yeast data set GSE80357; left panel indicates scores smoothed on permuted data, right
panel on unpermuted data. Dotted lines correspond to threshold values gmin = 0.9950 and θ = 1.5.

DNA motifs associated with anti-fungal response

We used the methods of Results and discussion to examine potential sequence motifs related
to gene expression differences between yeast samples treated with a pair of synergistic
anti-fungal agents and a set of matched control specimens as measured in the RNA-seq data
set, GEO accession number GSE80357 [32]. The scores yb for the genes in this data set
were derived from the analysis provided in the data set submission as described in RNA-seq
expression analysis Eq 33.

The sequences wb for this application were defined to be the 500 bases immediately
upstream (5’) of the transcription start site (TSS) of each of 5,436 genes for which edgeR [33]
analysis results were included in the GSE80357 submission. Using the genome annotations
collected in version R64-2-1 of the S. cerevisiae gff created by the Saccharomyces Genome
Database we calculated that 71.1% of the annotated genes had TSSs were at least 500
bases downstream of the next TSS upstream (median separation between consecutive TSSs
calculated to be 888 bases, while mean separation was 1336 bases).

Fig 4 shows the joint distributions of gi and either ŷi or ŷ
(π)
i (obtained by smoothing

either the true scores yb or permuted scores y(π)
b , respectively) as indicated. The propensity

for increased variance in the smoothed scores at lower values of gi underlying Eq (32) can
be clearly observed. One consequence of this phenomenon for this data set is that a suffix
beginning with a block of 23 consecutive thymine residues simultaneously yields both the
highest (unpermuted) ŷi and the lowest Gini impurity gi (corresponding to the far-left end
of the uppermost red tendril in the right panel of Fig 4); only 53 distinct promoter region
sequences wb contribute to the 251 positions composing the smoothing window centered on
this suffix, with 23 of the 251 suffixes derived from a single promoter sequence.

We chose the Gini impurity filter value gmin = 0.9950 to satisfy

1− gmin = (1 + γ)

(
1−median

i
gi

)
(38)
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with γ = 0.2, thus removing suffix indices i for which the variance of the permuted smoothed
scores ŷ(Π)

i would be more than approximately 120% of the median value (see discussion
leading to Eq (32)); this filter removes only 0.74% of all suffixes from consideration. The
threshold θ = 1.5 was determined by examining the distribution of ŷ(πr)

max values generated
using randomly permuted scores y(πr)

b : only 5 of 250 such permutations generated any scores
exceeding 1.5 for κ = 125 and gmin = 0.9950 (95% CI (0.65%, 4.6%) for FWER). Using
these parameter values and following Motif selection–Pruning and extending k-mers we
obtained M ′ = {TGACTCA, GACTCA, TGACTC, GACTCAT, TGACTAT, ATGACTAA,
ATGACTC, TTAGTCA, CCGTACA, AGATAAG, AGATAAGA, GATAAGC, TATATAAG,
TATATAAAG} clustering (setting maximum edit distance d = 3) into 3 clusters centered at
TGACTCA, CCGTACA, and AGATAAG.

AFT1

GZF3ZAP1

YAP1 RAP1

Figure 5: Regulatory
relationships be-
tween TFs of interest.
Gray=previously identi-
fied, white=corresponds to
motif identified here.

Assessing the similarities of the centers of these 3 high-scoring
k-mer clusters to known biological motifs using tomtom [34], we
found:

TGACTCA similar to binding motif for Yap1p (E-value 0.024)

CCGTACA similar to binding motif for Rap1p (E-value 0.093)

AGATAAG similar to binding motif for Gzf3p (E-value 0.080).

While there is little evidence of relevant differential expression for
the gene Yap1 (likelihood-ratio (LR)=0.185, p = 0.67, yYap1 = 0,
log2-fold-change (logFC)=0.05), the genes for both Rap1 (LR=8.65,
p = 0.0033, yRap1 = 2.16, logFC=0.31) and Gzf3 (LR=50.5, p =
1.2e− 12, yGzf3 = 3.92, logFC=0.79) both appear to have elevated
expression levels in the simultaneous amphotericin B (AMB) and
lactoferrin (LF) treatment group relative to control. Pang et. al.
have suggested that the synergistic anti-fungal activity of AMB and
LF may involve disruption of oxidative stress response: Yap1 is an
essential TF in the normal oxidative stress response [35]. Pang et.
al. also discuss the involvement of iron and zinc homeostasis in the synergistic response;
Gzf3 has been computationally annotated to Gene Ontology (GO) terms for zinc ion binding
and metal ion binding [36,37]. Furthermore, there is also evidence that the TFs identified
with binding sites similar to SArKS identified motifs may regulate or be regulated by TFs
previously studied by Pang et. al.: Fig 5 depicts putative regulatory relationships (as found
in the YEASTRACT [38] database of documented associations) between these TFs and the
two TFs Aft1p and Zap1p previously suggested by [32] as critical actors in the synergistic
response of S. cerevisiae to the combination of AMB and LF. The distillation of these motifs
demonstrates the power of our methodology to uncover candidate sequences that may support
differential gene expression.

DNA motifs associated with neuron subtype-specific expression

Finally we applied the SArKS motif discovery methodology to an RNA-seq data set comprising
gene expression data for different mouse neocortical neuron subtypes [28]. These authors
developed an approach for the purification of genetically defined cell types in mammals and
applied it in conjunction with a variety of next-generation sequencing methods—including
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Table 4: Expression filters.

Distinct Transcripts Count

All 111,669
Detected 73,912

+ Highly Expressed 37,721
+ Highly Varying 29,164

- Duplicate Isoforms 11,857
+ Accessible 6,326

Number of distinct transcript species remaining after sequential application of filters
described in RNA-seq expression analysis.

ATAC-seq and MethylC-seq as well as the aforementioned RNA-seq—to investigate epigenetic
variation between three different subtypes of neocortical neurons. This data set has many
useful features for correlative motif analysis using SArKS beyond the quantification of
differential expression, including especially information regarding which regions of the genome
are accessible to transcriptional machinery via ATAC-seq. This information is useful not only
for filtering the set of genes included in SArKS analysis (as discussed in ), but also through
the application of ATAC-seq footprint analysis in conjunction with differential methylation
analysis that was performed in [28] to infer TF binding at cell-type specific regulatory regions,
yielding a set of independently identified TF-binding motifs to which we may compare our
own results.

Our initial goal was to identify potential regulatory motifs associated with transcripts
enriched in parvalbumin (PV) GABAergic neurons. Because we focused on putative regulatory
regions in the vicinity of actively used gene transcription start sites, we quantified expression
at the transcript level, filtered transcripts, and determined differential expression as described
in RNA-seq expression analysis; table 4 indicates the results of the various transcript filters:
6,326 distinct transcripts, each representing a unique gene, were retained for analysis. For
this data set, we conducted three separate SArKS analyses, two focusing upstream (5’) of
the TSSs for the transcripts of interest and the other downstream (3’).

For the selected transcript set, we selected gupstream
min = 0.9987 and gdownstream

min = 0.9976
both again using Eq (38) but with the lower value γ = 0.1 (thus filtering out 9.8% of suffix
indices upstream and 5.9% of suffix indices downstream). The lower values here relative to
those used for the GSE80357 yeast data set were motivated by the use of longer sequences wb
(appropriate for the less compact mouse genome) increasing the potential for false positive
motif signals and thus requiring more stringent thresholds to maintain a high rate of negative
results in permutation testing.

Upstream promoter analysis

We first examined upstream sequences wb for each of the 6,326 remaining transcript species
from 3 kb 5’ of the TSS to the TSS (the TSSs of 85.5% of mouse genes annotated in
Ensembl GRCm38 are separated by greater than 3 kb from the nearest upstream TSS;
median separation 23 kb, mean separation 54 kb). Regarding the 979 transcript species
whose t-statistic scores yb ≥ φ = 2 for the PV versus other neuron subtypes comparison (see
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RNA-seq expression analysis for details) as high-scoring, we began with half-window size set
at a high-end estimate of κ = 500 (corresponding to full window size of 2κ+ 1 = 1001). In
order to select a windowed score threshold θ for the upstream sequence analysis, we generated
250 random permuted score sets y(πr)

b and calculated maximum scores ŷ(πr)
max (defined as in

Eq (37)) for each: these ranged from 0.424 to 0.560. Based on this distribution, we selected
θ = 0.55 as our threshold for this application; 249 out of 250 ŷ(πr)

max were less than this
threshold (95% CI (0.010%, 2.2%) for FWER). Applying the methods of Motif selection–
Pruning and extending k-mers using these sequences as the various wb and the associated
transcript t-statistics as the scores yb (Eq (34)) with parameters κ = 500, θ = 0.55, and
gupstream
min = 0.9987 resulted in M ′upstream = {CCACCTGC, CCACCTGCC}, which clusters
into a single motif centered on CCACCTGC for any d > 0.

The identified upstream motif sequences CCACCTGC and CCACCTGCC both contain
the canonical core recognition E-box sequence CANNTG (more specifically, the E12-box
variant CACCTG [39]). Comparison of CCACCTGC with known motifs from the JASPAR
database [40] using tomtom finds some similarity to TF-binding motifs for SNAI2 (E-value
0.20), MAX (E-value 0.27), SCRT2 (E-value 0.30), SCRT1 (E-value 0.36), and TCF3 (E-
value 0.38). 3 of these TFs (SCRT2, SCRT1, and TCF3) were included in the set of genes
whose measured expression levels met the minimum mean and variance filters for analysis
described in RNA-seq expression analysis; the remaining TFs, SNAI2 and MAX, both met
the mean expression criteria but had low expression variance across the 6 analyzed samples.
Normalized expression levels of SCRT2 and SCRT1 were elevated in PV neurons relative to
excitatory and VIP neurons (t-statistic scores ySCRT2 = 5.40 (p = 0.0057) and ySCRT1 = 8.87
(p = 0.00089)), while TCF3 shows little evidence of differential expression between any of
the classes of neurons (anova FTCF3 = 0.59). Interestingly, the motifs for both SNAI2 and
TCF3 were also included in list of TFs identified as possibly regulating cell-type specific
expression (for at least one of the 3 cell types studied) using a combination of ATAC-seq
footprint analysis and differential methylation analysis in the original study associated with
this data set [28].

Use of a smaller smoothing window defined by κ = 250 for the upstream promoter
sequence analysis generated very similar results (M ′ = CCACCTGG) to those obtained with
κ = 500 but with slightly degraded performance under permutation testing: ŷmax greater
than only 243 out of 250 permuted ŷ

(πr)
max values for κ = 250 compared to 249 out of 250

permuted scores for κ = 500. We thus retained the larger κ = 500 smoothing window here.

Upstream promoter analysis with spatial smoothing

To detect longer regulatory sequences within 3 kb upstream regions of the 6,326 analyzed
genes we applied the spatial smoothing method of Spatial smoothing. We retained the same
kernel half-window size κ = 500 and Gini impurity cutoff gupstream

min = 0.9987 and selected the
spatial length scale λ = 100 to target the low end of the enhancer length distribution [41].
Permutation testing then led us to select the combination of θ = 0.5 and θspatial = 0.25 (for
which there were no positive hits in 250 random permutations (95% CI (0%, 1.5%) FWER)).
This resulted in positive hits both for the previously found sequence CCACCTGCC and for
4 closely spaced positions in the ŷi-versus-i plot (i ∈ {8919530, 8919531, 8919548, 891958})
corresponding to variations on a lengthy sequence beginning CTGGAACTCACTCTG . . .;
the suffixes corresponding to these 4 peaks were identical in the first 46 nucleotide positions
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and exhibited substantial similarity beyond that.
Because of the high degree of similarity over the longer length of these sequences we

bypassed the k̂i calculations of Eq (9) and instead compared the common first 46 bases
of each to known databases, finding an indel-free alignment with 45 of 46 bases perfectly
matched with the B1 rodents/Mammalia short interspersed element (SINE) sequence from
SINEBase [42]; looking at longer surrounding regions, for each of the 4 peaks we found an
alignment to B1 covering at least 132 of the 145 nucleotides in B1 with at least 94% sequence
identity. The B1 SINE family consists of retrotransposon-derived sequences which appear
repeatedly throughout the mouse genome; recently there have been suggestions that there
may be positive selection for the presence of these sequences upstream and in introns of
genes with specific functions [43] and that they might also function as enhancers [44].

Downstream promoter analysis

Finally we conducted a third analysis focusing on sequences wb extending 1 kb downstream
(3’) of the TSS. Here significant results were obtained using either κ = 500 or the smaller
window κ = 250; we chose to focus on the κ = 250 results as they generated longer, potentially
more specific, motifs. We chose θ = 0.8 to be higher than all of the ŷ(πr)

max resulting from
250 random permutations πr (the maximum observed y(πr)

max was 0.760; 95% CI for FWER
again (0%, 1.5%)) and again applied Motif selection–Pruning and extending k-mers, here
setting the Gini impurity cutoff to gdownstream

min = 0.9976. The resulting motif set M ′downstream
(Eq (18)) contained 7 distinct k-mers: AAGGTCA, ACCTTGG, GACCTTG, GACCTTGG,
TGACCTT, TGACCTTG, and TGTCCTTG (with the last of these corresponding to the
maximal value of ŷi). Clustering according to Cluster k-mers by sequence similarity (d = 3)
divides these sequences into two clusters centered at TGACCTTG and AAGGTCA which
are clearly reverse complements of the same motif.

Fig 6 shows the distributions of t-statistics for transcript species whose downstream
sequences either do or do not contain the highest-scoring octamer TGACCTTG. Comparison
of the k-mer sequences with known motifs from the JASPAR database [40] using tomtom
shows that these k-mers are very similar to the ESRRA/ESRRB/ESRRG binding motifs
(e.g., E-value 0.00079 for TGACCTTG match to ESRRA and ESSRB motifs from JASPAR
CORE, E-value 0.0046 for match to ESRRG motif). Notably, ESRRA, ESRRB, and ESRRG
were all among the previously identified motif set described in [28]. The genes for ESRRA
and ESRRG both passed the mean and variance filters employed in RNA-seq expression
analysis and both exhibited significantly elevated expression in PV neurons relative to both
excitatory and VIP neurons (yESRRA = 3.63 (p = 0.022), yESRRG = 3.34 (p = 0.029)), while
ESRRB did not meet the applied mean expression filter (though the low expression levels
observed do also indicate elevated expression in PV neurons, tESRRB = 10.2 (p = 0.00052)).
TGACCTTG also matched 2 other JASPAR motifs at E-values below 0.1: RORA (E-value
0.0097) and NR5A2 (E-value 0.02). The TF-binding motif for RORA was also in the set
of motifs flagged in [28]; neither of the genes RORA nor NR5A2 showed much evidence of
elevated expression in PV neurons (yRORA = 0.556, yRXRB = 0.825).

Combining motifs

Fig 7 presents the fractions of analyzed transcript species matching each of the 3 motifs
here identified—CCACCTGC and B1 SINE upstream of the TSS and the cluster centered
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Figure 6: Sequences containing TGACCTTG tend to be more specifically expressed in PV than
sequences not containing TGACCTTG. Distribution of sequence scores yb derived from differential
expression t-statistics for comparison of PV subtype versus VIP and excitatory subtype neurons (Eq (34))
for transcript species for which k-mer TGACCTTG is either not found (black) or found (red) in first kilobase
downstream of transcription start site.
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Figure 7: Combined impact of motifs on differential PV expression. Mosaic plot indicating co-
occurrence trends between motifs identified near transcript TSSs and evidence of difference expression (PV
versus other t-statistic binarized with threshold φ = 2). TGACCTTG... represents a match to any of the 7
k-mers composing M ′downstream, CCACCTGC represents a match to that specific k-mer, and B1 represents a
BLAST match to the mouse B1 repeat sequence identified (alignment length ≥ 70, identical match ≥ 65%).
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on TGACCTTG downstream of the TSS—in a mosaic plot (area of tiles proportional to
corresponding fractions. The boxes in the mosaic plot are colored according to whether the
observed fraction of sequences containing the motif is above or below the fraction predicted
by a null model in which all indicated factors (presence of motif or elevated t-statistic) occur
independently: gold=fraction greater than expected under independence, blue=less. Also
encoded is the fraction of distinct transcripts with PV-versus-other-subtype t-statistic scores
yb ≥ φ = 2. It is apparent that the downstream ESRRA/ESRRB/ESRRG related motif
TGACCTTG. . . has the strongest association with specificity of expression in PV cells,
and also that there is a large degree of overlap between the transcript species whose 3 kb
upstream regions contain either the E-box CCACCTGC pattern or the B1 sequence pattern
(in fact we noted that for some of the highest-scoring B1 matches, a single adenine residue
insertion relative to the consensus B1 sequence created a CCACCTGCC match within the B1
region). It is less obvious that the upstream motifs (CCACCTGC or B1) contribute to much
increased specificity for those transcript species for which the downstream TGACCTTG. . .
motifs is present. These results suggest that if motifs with more complex combinatorial
patterns of association with differential expression are sought it may be useful to take this
into account explicitly within the SArKS framework.

Future Directions

Because the regulation of eukaryotic gene expression likely involves interactions among
multiple short sequence motifs [45], it is of interest to discover motifs that work together
synergistically to confer cell-type specific gene expression profiles. To achieve this objective
we need to extend the methods associated with continuous sequence scores introduced in the
present study by, e.g., utilizing multivariate kernel regression models such as

ŷij =

∑
k,l

Kijkl ybk∑
k,l

Kijkl
(39)

where the 4-index kernel Kijkl might be chosen to satisfy constraints along the lines of

Kijkl =


0 if (|i− k| > κ2) ∨ (|j − l| > κ2)

0 if (bi 6= bj) ∨ (bk 6= bl)

1 otherwise
(40)

That is, i and k must correspond to suffixes with sufficiently similar prefixes (as must j and
l), while i and j must come from the same word (as must k and l); see Fig 8.

As discussed in the Introduction, we have made a number of suppositions here regarding
the mechanisms by which eukaryotic transcription is regulated, including but not limited
to the combinatorial mode of TF action just discussed. A future challenge is to optimally
choose the stretch of DNA to be examined relative to the nearby genes: while we have
investigated sequences defined solely by proximity to the TSS, it is well known that regulatory
elements may lie quite far from their target genes [46]. It would be advantageous to develop
more sophisticated approaches to both (a) the identification of genomic regions most likely
to contain regulatory elements and (b) the linkage of potential regulatory element-dense
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Figure 8: Potential strategy for identifying synergistic motifs. Visualization of a quartet (i, j, k, l)
satisfying constraints (40): the suffix x[si, |x|) originating from sequence wbi shares a common prefix with
the suffix x[sk, |x|) originating from sequence wbk ; a second pair of suffixes x[sj , |x|) and x[sl, |x|) sharing a
(different) prefix in common are also found in the sequences wbj = wbi and wbl = wbk , respectively.

regions to governed genes. One place to start may be with information on evolutionary
conservation [47] and epigenetic modification [48] near genes of interest.

Finally, while we have tested SArKS on biological sequences, we anticipate uses far afield
from this example, including motif discovery in time series data [49], or, by considering node
or edge sequences produced by random walks, analysis of complex network structure [50].

Conclusions

We here introduce SArKS as a method for de novo correlative motif discovery in order
to more fully exploit the results of modern quantitative methods (such as RNA-seq) by
avoiding the dichotomization—and consequent loss of information [51]—of sequence scores
into discrete groups as required by standard discriminative motif discovery algorithms. SArKS
has also been designed with an eye towards minimizing the reliance on specification of specific
background sequence models, instead using nonparametric permutation methods [52] to set
significance thresholds for motif identification. SArKS is also capable of a second smoothing
pass over spatial location of motifs within the sequences in which they are found following the
initial smoothing by lexicographic sequence similarity in order to identify longer, potentially
interrupted, motifs. Finally, we provide several examples of the usage of SArKS along with
detailed analysis of the results thus obtained.
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