
1

UPS-indel: a Universal Positioning System for Indels

Mohammad Shabbir Hasan1, Xiaowei Wu2, Layne T. Watson1,3,4, Zhiyi Li1, Liqing Zhang1,*

1Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.

2Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA.

3Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA.

4Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

Email: [shabbir5, xwwu, ltw, zli04, lqzhang]@vt.edu

* To whom correspondence should be addressed.

Abstract

Background:

Indels, though differing in allele sequence and position, are biologically equivalent when they lead to

the same altered sequences. Storing biologically equivalent indels as distinct entries in databases

causes data redundancy, and may mislead downstream analysis and interpretations. About 10% of

the human indels stored in dbSNP are redundant. It is thus desirable to have a unified system for

identifying and representing equivalent indels in publically available databases. Moreover, a unified

system is also desirable to compare the indel calling results produced by different tools. This paper

describes UPS-indel, a utility tool that creates a universal positioning system for indels so that

equivalent indels can be uniquely determined by their coordinates in the new system, which also can

be used to compare indel calling results produced by different tools.

Results:

UPS-indel identifies nearly 15% indels in dbSNP (version 142) as redundant across all human

chromosomes, higher than previously reported. When applied to COSMIC coding and noncoding

indel datasets, UPS-indel identifies nearly 29% and 13% indels as redundant, respectively.

Comparing the performance of UPS-indel with existing variant normalization tools vt normalize,

BCFtools, and GATK LeftAlignAndTrimVariants shows that UPS-indel is able to identify 456,352 more

redundant indels in dbSNP; 2,118 more in COSMIC coding, and 553 more in COSMIC noncoding

indel dataset in addition to the ones reported jointly by these tools. Moreover, comparing UPS-indel to

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

other state-of-the-art approaches for indel call set comparison demonstrates that UPS-indel is clearly

superior to other approaches in finding indels in common among call sets.

Conclusions:

UPS-indel is theoretically proven to find all equivalent indels, and is thus exhaustive. UPS-indel is

written in C++ and the command line version is freely available to download at http://ups-

indel.sourceforge.net. The online version of UPS-indel is available at http://bench.cs.vt.edu/ups-indel/.

Keywords: Indel; Indel redundancy; Equivalent Indel; dbSNP.

Background

Indel stands for insertion or deletion of bases in a DNA sequence. As the second most common form

of genetic variation, indels play an important role in genome and protein evolution. Due to artificial

factors such as sequencing errors, ambiguous alignment of the reads, inconsistent ways of

representing the same variant by different tools, the same mutation may be recognized as distinct

variations occurring at different locations [1-3]. For example, consider a reference sequence

AGGAAAGAAAGAAAGAAAGAG ranging from position 100285630 to 100285650 and two indels

stored in dbSNP, rs147659011 (GAAA/+) and rs60376183 (AAGA/+), annotated to this region with

positions 100285632 and 100285650, respectively. Although these indel mutations may indeed occur

at different positions, they are biologically equivalent because they result in the same altered

sequence AGGAAAGAAAGAAAGAAAGAAAGAG. Since many databases such as dbSNP, Database

of Genomic Variants (DGV), and Ensembl combine indels resulting from large-scale studies, similar

cases often exist in those databases, leading to a nonnegligible problem of data redundancy. In fact,

about 10% [4] of the human indels stored in dbSNP and 18% [1] in Ensembl are redundant. Resolving

the indel redundancy in major databases is important for subsequent genetics research. Nevertheless,

this problem has not been given the attention it deserves.

Numerous approaches have been developed for systematic comparison of indels to determine

equivalence and hence solve the redundancy problem. The “strict matching” approach matches two

indels if they share the same position, reference, and alternate alleles in two different entries in the

VCF file. However, as demonstrated in [3], this approach fails to find equivalent indels that are not

identical. The “distance based approach” treats two indels as equivalent if both have the same length

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

and occur within a certain distance such as ± 5 bp [5] or ± 25 bp [6]. However, this approach

introduces false positives when neighboring indels are not equivalent [1] and misses equivalent indels

that are farther apart than the distance cutoff. Clearly, selection of an optimal distance cutoff is a

tradeoff of the two types of errors: smaller distance cutoffs result in a decreased false positive rate but

an increased false negative rate.

To address the limitations of the two aforementioned approaches, the more widely used

“normalization” approach attempts to solve the indel redundancy problem by left (or right)

normalization, i.e., consistently shifting the start position of an indel to the left (or right) as long as the

resulting sequence is the same as the one generated by the original mutation [7]. Tools using this

type of variant normalization include vt normalize [2], BCFtools [8], and GATK

LeftAlignAndTrimVariants [9]. These tools usually take a VCF file as input, output another VCF file

with canonical VCF entries for the indels after normalization, and then perform “strict matching” to find

equivalent indels with exactly the same canonical representation. The normalization approach

generally performs well in identifying equivalent indels, but as shown here, fails to normalize complex

variants.

The positions of indels may get changed after left/right normalization, potentially misleading

downstream analysis. For example, the deletion rs536379477 resides in the exon of the transcript

ENST00000590192.1, but the equivalent deletion rs41436444 is in the intron of the same transcript.

Therefore reporting these two indels with the same normalized position might lead to missing

significant insight into genetic diseases or phenotypes of interest. Since the exact positions of most

indel variations are not known, it is thus best to represent the indel of interest with a range of positions,

within which equivalent indels can occur, rather than as a single normalized position. A similar idea

was proposed by Krawitz et al. [10].

This paper proposes UPS-indel, a universal positioning system for indels, whereby every indel

variant is represented by a range of positions within which all equivalent indels can occur. This

representation is added to the VCF file resulting in a UVCF file containing not only the original indel

calling results, but also the complete representation of all equivalent indels. The advantage of adding

this column of information to the existing VCF file is (1) the original VCF file structure is unchanged so

the UVCF file is still compatible with many downstream programs, (2) the UPS-indel notation

facilitates the comparison of indels from different VCF files, (3) for equivalent indels that overlap both

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

coding and noncoding regions, having the range column in the indel calling output would allow a

downstream indel annotation system to consider the range rather than a single position, possibly

annotating both a coding and noncoding variant. In summary, this work extends the previous work of

Krawitz et al. [10] and Assmus et al. [1] by a new coordinate system Universal Positioning System

(UPS), a rigorous mathematical proof that all (deletion and insertion) equivalent indels are found, the

handling of complex variants, and a simple modification of an input VCF file to produce an output

UVCF file containing the indel equivalence information. Results show that UPS-indel identifies more

redundant indels than the existing approaches, also enables a comparison between indel calling

results produced by different indel callers, and performs better than other state-of-the-art approaches

for finding indels in common among call sets.

Materials and Methods

This section defines some terms frequently used in this paper.

Alternate Sequence: A sequence that is produced by introducing a specific indel to the reference

sequence at a specific position. This is also known as the mutant sequence.

Let R be the reference sequence and p be either an insertion or a deletion of a given length that

occurs at a given position in the reference sequence. The alternate sequence for insertion is denoted

by R'I = R + p and for deletion by R'D = R – p.

Equivalent Indels: Two indels are considered equivalent if and only if they produce the same

alternate sequence. Note that equivalent indels must be of the same type (insertion and deletion) and

same length.

Redundant Indels: Equivalent indels that are reported as distinct entries in a VCF file are defined

as redundant indels.

Region of Equivalence: This is defined as the range of positions in the reference sequence

where equivalent indels occur.

Cyclic Permutation: A permutation ���, ��, ��, … , ����� � ��	�, 	�, 	�, … , 	���� where �� �

 	���	
��
 � for 0 � � �
 � 1, � can be positive (left cyclic) or negative (right cyclic).

Table 1. An example of equivalent indels.

Equivalent insertions Equivalent deletions

Reference, R GTCTA Reference, R ACTGTTGTG

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

Case 1, R'I G[TC/+]TCTA Case 1, R'D AC[TGT/-]TGTG

Case 2, R'I GT[CT/+]CTA Case 2, R'D ACT[GTT/-]GTG

Case 3, R'I GTC[TC/+]TA Case 3, R'D ACTG[TTG/-]TG

Case 4, R'I GTCT[CT/+]A Case 4, R'D ACTGT[TGT/-]G

Table 1 shows an example of equivalent indels. Observe that all equivalent indels are cyclic

permutations of each other (e.g., a cyclic permutation of CT is TC and cyclic permutations of TGT are

GTT and TTG) and equivalence continues until there is a mismatch (see Supplementary Table 2).

This observation leads to the following theorem.

Theorem 1: All equivalent indels in the region of equivalence are cyclic permutations of each other.

Proof: Consider two equivalent indels d1 and d2 and the equivalence region R they define.

For insertion within R, the alternate sequences are

d1S = Sd2

for some nonempty S. For deletion within R, the alternate (possibly empty) sequence is S starting with

d1S = Sd2.

Case 1. For |S| < |d1|, d1 = SX for nonempty X and d1S = SXS = Sd2 implies d2 = XS is a cyclic

permutation of d1 = SX.

Case 2. For |S| = |d1|, d1 = d2 = S.

Case 3. For |S| > |d1|, S = d1X for nonempty X with |X| < |S|, and d1d1X = d1S = Sd2 = d1Xd2 implies

d1X = Xd2. Repeating this argument for d1X = Xd2 eventually reduces X to one of the previous two

cases.

Another case for deletion is when R is periodic with period |d1|, having the form

R = d1 d1........ d1 (d1)1 where (d1)1 is the first symbol of d1. Then every consecutive subsequence d2 of

R with |d1| = |d2| is an equivalent deletion, and d2 is a cyclic permutation of d1. (Q.E.D)

Corollary. For |S| > |d1|, S must have the form d1 d1.......*…… d2 d2 with an equal number of d1s and

d2s.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

Figure 1: Illustration of two cases of Theorem 1. (A): |d1| > |S|, (B): |d1| < |S|.

Based on the theorem, an algorithm called UPS-indel (see Table 2) exhaustively increases the

range of equivalence as far as possible in both left and right directions from a given indel position.

Finally for each indel in the VCF file, the algorithm reports its range of equivalence, which is called the

Universal Positioning System coordinate (UPS-coordinate). Once indels are represented by their

UPS-coordinates, identifying redundant indels becomes a trivial task of string comparison (e.g., Fig.

2(A), comparison across the 8th column). Note that since UPS-indel implements Theorem 1, which

characterizes indels within an equivalence region, UPS-indel is exhaustive, finding all equivalent

indels.

Table 2. UPS-indel algorithm.

UPS-indel(list_of_indels_in_VCF_file, reference_sequence)

{

For each indel in the list

1. Extract REF allele and ALT allele from VCF file

2. pattern ← diff(REF, ALT)

3. indel ← pattern

4. eq_indel ← getCyclicPermutationFromLeft(indel)

5. pos ← position of indel according to the VCF file

6. position ← pos

7. upperBound ← position

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

8. str ← reference_sequence (position + 1)

9. while((indel + str) == (str + eq_indel))

10. indel ← eq_indel

11. upperBound++

12. str ← reference_sequence (position + 1)

13. eq_indel ← getCyclicPermutationFromLeft(indel)

14. End while

15. indel ← pattern

16. eq_indel ← getCyclicPermutationFromRight(indel)

17. position ← pos

18. lowerBound ← position

19. str ← reference_sequence (position - 1)

20. while((str + indel) == (eq_indel + str))

21. indel ← eq_indel

22. lowerBound--

23. str ← reference_sequence (position - 1)

24. eq_indel ← getCyclicPermutationFromRight(indel)

25. End while

26. if (pattern is an insertion)

27. UPS-coordinate ← +pattern[lowerBound, upperBound]

28. else //pattern is a deletion

29. UPS-coordinate ← –pattern[lowerBound, upperBound]

30. End for

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

}

Note that “left” and “right” cyclic permutations are equivalent – there is no difference. In line 2 of the

UPS-indel algorithm, while extracting the “pattern” from the entries of the RFE and ALT columns of

the input VCF file, UPS-indel performs horizontal decompositions of the complex variants and assigns

the indel part as the value of pattern. For example, suppose in the REF column of a VCF entry there

is an allele “ATAA” and in the ALT column there is an allele “AG”. In this case, UPS-indel performs

horizontal decompositions of the complex variants to produce two separate entries (AT → AG and AA

→ <empty> meaning that there is a deletion of AA).

UPS-indel is written in C++ and can run on Linux, Windows, or Mac operating systems that have a

C++ compiler. UPS-indel uses SeqAn, an open source C++ library containing efficient algorithms and

data structures to analyze large genome sequences [11]. The input of UPS-indel is a reference

chromosome sequence, a VCF file containing a list of indels, and an output file name, for example,

./ups_indel example/chr1.fa example/chr1.vcf example/chr1.uvcf

This command line produces an output file named chr1.uvcf, containing the UPS-coordinates of all

the indels in chr1.vcf. Figure 2(A) shows an example UVCF file.

Figure 2. Different utilities of UPS-indel. (A)UVCF format, (B) redundant indel list, and (C) comparing two uvcf files.

The UVCF file keeps the same content/format as the VCF file, with an additional column that

contains the indel’s UPS-coordinate information. The interpretation of the UPS-coordinate follows:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

• Symbols + and – denote insertion and deletion, respectively, followed by the base pairs

inserted/deleted from the reference, and the UPS-coordinate (in square brackets).

• The UPS-coordinate contains a range of positions in the square brackets representing the

region of equivalence for the indel. For example, the UPS-coordinate +CTTC [62298 -

62302] means there is an insertion of CTTC at position 62298, and the same alternate

sequence can be produced by inserting TTCC at position 62299, or TCCT at position

62300, and so on.

Once indels are represented by the coordinates produced by UPS-indel, one can easily identify

redundant indels within one indel call set or multiple indel call sets. For example, the following

command line

./ups_generate_redundant_indel_list example/chr1.uvcf

example/redundant_indel_list.txt

produces a list of indel groups containing dbSNP IDs of redundant indels (Figure 2(B)).

UPS-indel groups all redundant indels together. For example, consider a group [rs34748242,

rs59148039] with the UVCF entry shown in Table 3. These two indels belong to the same indel type

(insertion), have same base pairs inserted (TG), and share the same UPS-coordinate and hence they

are considered as equivalent.

Table 3. UVCF file for redundant indels.

#CHRM POS ID REF ALT QUAL FILTER UPS-COORDINATE

1 10009638 rs34748242 T TTG . . +TG[10009639 - 10009648]

1 10009639 rs59148039 T TGT . . +TG[10009639 - 10009648]

UPS-indel can compare multiple indel call sets. This utility is particularly useful for generating a high-

confidence indel call set by taking the intersection of the results of different indel callers [12], or

merging the indel calling results from different tools for a consensus variant caller [13], or comparing

indel call sets generated by different indel callers to determine their relative recall, precision, and

accuracy, and to understand the source of their dissimilarities. To use this utility of UPS-indel, after

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

converting two VCF files to UVCF files, one can use the following command to get the comparison

result (Figure 2(C)), which contains useful statistics for downstream analysis:

./ups_compare_uvcf_files example/sample1.uvcf example/sample2.uvcf

example/comparison_result.txt

All of the above mentioned utilities of UPS-indel are also available at http://bench.cs.vt.edu/ups-

indel/ (Figure 3).

Figure 3. Main user interface of UPS-indel.

UPS-indel is compared with other existing tools that also find equivalent indels through variant

normalization. These tools include vt normalize (version 0.5) [2], BCFtools (version 1.3) [8], and

GATK LeftAlignAndTrimVariants (version 3.5) [9]. Like UPS-indel, all of these tools take a VCF file

and the reference genome as input and produce the normalized position of the indels in the VCF file.

Another tool Vindel [4] also finds equivalent indels using a heuristic approach, but was not included in

the comparison as it uses a flat file as input instead of a VCF file.

A VCF file of dbSNP (version 142, GRCh37p13) and the GRCh37 reference genome were used as

the inputs to these tools. The VCF file contains both SNPs and indels, and VCFTools [14] is used to

extract indels from the VCF file. The comparison was extended to the COSMIC dataset as well.

There are other tools that could also be considered for comparison. Both VarMatch [3] and

RTGTools [15] use a branch and bound algorithm to search for equivalent indels. They are not

suitable for processing population scale indel call sets such as dbSNP and COSMIC because densely

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

packed indels in such datasets make the search space too large to be processed by a branch and

bound algorithm. READDI [16] considers repeat-induced ambiguities as well as tool-induced

inaccuracies while searching for equivalent deletions using the longest common extension algorithm.

This tool is limited to finding deletions only, and hence not included in the comparison for the dbSNP

and COSMIC datasets. Nevertheless, in this study a smaller dataset is used to compare UPS-indel

with VarMatch (Version available on April 5, 2017), RTGTools (Version 3.7.1), and READDI (Version

available on April 5, 2017).

Results and Discussion

Finding equivalent indels in the dbSNP dataset

The input VCF file contains about 8.9 million indels from the human genome. For this input, UPS-

indel produces the UVCF file and the other three tools, vt normalize, BCFtools, and GATK

LeftAlignAndTrimVariants, generate the normalized VCF file. These three tools perform left

normalization of indels and output a left normalized representation. Therefore, for these three tools,

two indels are equivalent if and only if they satisfy the following conditions:

(1) Both indels are of the same type (insertion or deletion).

(2) Both indels share the same pattern after normalization: [value of the REF column in the

normalized VCF file – value of the ALT column in the normalized VCF file – value of the POS

column in the normalized VCF file]. Note that one might think that considering the position

should suffice, because after normalization, equivalent indels should have the same position in

the VCF file. However, the example in Table 4 shows that indels rs371246544 and rs71724031

have the same normalized position but are not equivalent.

Table 4: An example explaining why considering only normalized position does not suffice for

identifying redundant indels for vt normalize and BCFtools.

VCF Entry for input

#CHRM POS ID REF ALT

1 39549110 rs371246544 AT ACATAC

1 39549111 rs71724031 T TAC

Entry in the normalized VCF

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

#CHRM POS ID REF ALT

1 39549111 rs371246544 T CATAC

1 39549111 rs71724031 T TAC

The comparison is based on the criterion: the redundant indel ratio =

����� ���	
� �� �

��
��� ��

�������� ���	
� �� �

��
��� ��

� ������

����� ���	
� �� ��

��

where the numerator is the total number of redundant indels reported since only one indel from

each redundant indel group should be reported in the output and the remaining should be considered

as redundant.

Figure 4. Comparison among the tools based on redundant indel ratio for the dbSNP dataset.

Figure 4 shows the comparison of the redundant indel ratios reported by UPS-indel, vt normalize,

BCFtools, and GATK LeftAlignAndTrimVariants for indels in the dbSNP dataset. For the entire human

genome, UPS-indel identified ~ 15% redundant indels (see Supplementary Table 3 and

Supplementary Figure 1 for chromosome-wise comparison), as compared to 11.82% by vt normalize,

11.82% by BCFtools, and 11.81% by GATK LeftAlignAndTrimVariants. At the chromosome level,

UPS-indel identified about 3% more redundant indels than the other three tools.

Examining the sets of redundant indels detected by UPS-indel and the other tools shows that vt

normalize and BCFtools produce exactly the same results for all chromosomes. Moreover, all the

redundant indels detected by vt normalize, BCFtools, and GATK LeftAlignAndTrimVariants are also

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

detected by UPS-indel, as shown in Figure 5. Further, for all chromosomes, UPS-indel identified a

total of 456,352 more redundant indels than the other tools. As proved in the methods, UPS-indel

identifies all the redundant indels, the comparison result shows that the other three tools are not

exhaustive in finding all the redundant indels.

Why are several indels found as redundant by UPS-indel but not by other tools? An investigation

shows that these equivalent indels are missed by the other tools because, due to the computation

time limit, they cannot exhaustively search every cyclic permutation at every feasible position as is

done by UPS-indel. For example, long multiallelic indels are not considered by default for

normalization. Had the tools considered these indels separately, they would have been able to find an

equivalent indel located at a different position. For this situation, UPS-indel splits the VCF entry into

multiple entries by default and considers each of the indels separately while finding redundant indels.

Table 5 provides such an example.

Figure 5. Venn diagram to compare the number of redundant indels detected by UPS-indel and other tools. (Venn

Diagrams are generated using the R package VennDiagram [17].)

Table 5: Example of multiallelic insertion type indels missed by other tools but detected as redundant

by UPS-indel.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

(A) VCF Entry

#CHRM POS ID REF ALT

1 724188 rs60022176 A AATGGA, AATGGAATGGAATGGA, AATGGAATGGG

(B) UVCF Entry

#CHRM POS ID REF ALT UPS-COORDINATE

1 724188 rs60022176 A AATGGA +AATGG[724138 - 724189]

1 724188 rs60022176 A AATGGAATGGAATGGA +AATGGAATGGAATGG[724138

- 724189]

1 724188 rs60022176 A AATGGAATGGG +ATGGAATGGG[724189 -

724189]

(C) Redundant indels

#CHRM POS ID REF ALT UPS-COORDINATE

1 724137 rs374587598 T TAATGG +AATGG[724138 - 724189]

1 724188 rs60022176 A AATGGA +AATGG[724138 - 724189]

For the indel shown in Table 5 (panel A), no normalization was done by vt normalize, BCFtools, or

GATK LeftAlignAndTrimVariants. UPS-indel splits the entry into three indels and finds the UPS-

coordinate for each of them separately (Table 5, panel B). Splitting the VCF entry and considering the

indels separately, UPS-indel managed to find another indel equivalent to one of the indels (Table 5,

panel C). Therefore UPS-indel reports indels with id rs374587598 and rs60022176 as redundant.

The example in Table 5 is for insertion; an example for deletion is illustrated in Table 6.

Table 6. Example of multiallelic deletion type indels missed by other tools but detected as redundant

by UPS-indel.

VCF Entry

#CHRM POS ID REF ALT

1 7552657 rs376707888 GTG G, GTGCA

UVCF Entry

#CHRM POS ID REF ALT UPS-COORDINATE

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

1 7552657 rs376707888 GTG G -GT[7552657 - 7552658]

1 7552657 rs376707888 GTG GTGCA +CA[7552658 - 7552658]

Redundant indels

#CHRM POS ID REF ALT UPS-COORDINATE

1 7552656 rs139294420 CGT C -GT[7552657 - 7552658]

1 7552657 rs376707888 GTG G -GT[7552657 - 7552658]

In addition to the scenario mentioned above, GATK LeftAlignAndTrimVariants does not normalize

any of the multiallelic indels regardless of the size which is also mentioned in [2]. Table 7 shows an

example of this occurrence explaining why GATKLeftAlignAndTrim finds fewer number of redundant

indels than vt normalize and BCFtools.

Table 7. Example of a multiallelic indel that is normalized by vt normalize and BCFtools but not by

GATKLeftAlignAndTrim.

VCF Entry for dbSNP

#CHRM POS ID REF ALT

1 823905 rs397728418 AA A, AAA

VCF Entry for GATK LeftAlignAndTrimVariants

#CHRM POS ID REF ALT

1 823905 rs397728418 AA A, AAA

VCF Entry for vt normalize and BCFtools

#CHRM POS ID REF ALT

1 823903 rs397728418 GA G, GAA

One might think that decomposing multiallelic indels into several biallelic indels produces the same

results as UPS-indel for the normalization tools. To check this, the “decompose” utility of vt was used

to perform a vertical decomposition of multiallelic indels into biallelic indels. Applying vt normalize to

the decomposed indels could not find equivalent indels for complex variants, whereas UPS-indel is

able to find the equivalent indels. Table 8 shows an example of this occurrence. Since vt normalize

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

and BCFtools produce exactly the same results, these complex variants are missed by BCFtools as

well.

Table 8. Example of a complex variant that is missed by vt normalize but detected as redundant by

UPS-indel.

VCF Entry (A)

#CHRM POS ID REF ALT

1 2273131 rs369694942 GAAA G

1 2273140 rs373243812 AAAAA AG

UVCF Entry (B)

#CHRM POS ID REF ALT UPS-COORDINATE

1 2273131 rs369694942 GAAA G -AAA[2273132 - 2273147]

1 2273140 rs373243812 AAAAA AG -AAA[2273132 - 2273147]

In the example shown in Table 8, VCF entries for the indels with ids rs369694942 and

rs373243812 remain the same in the input and the output for vt normalize (Panel A), i.e., no

normalization is done. Here the second indel (rs373243812) is a complex variant containing both a

SNP (A → G) and a deletion of length three (AAA), and is ignored by vt normalize. However, UPS-

indel performs a horizontal decomposition of the complex variant to produce two separate entries (AA

→ AG and AAA → <empty>) and finds the equivalent indel with id rs369694942 having a deletion of

length three (AAA) in the UPS-Coordinate 2273132 to 2273147 (Panel B).

Finding equivalent indels in the COSMIC dataset

UPS-indel was used to find redundant indels in the COSMIC (Catalogue Of Somatic Mutations In

Cancer) dataset, the world’s most comprehensive resource for exploring the impact of somatic

mutations in human cancer [18]. With data collected for more than 2,500 human cancers, this archive

describes millions of coding mutations, noncoding mutations, and other gene expression variants

across the human genome.

For all chromosomes in the COSMIC dataset, UPS-indel identified 28.17% and 13.11% redundant

indels in the COSMIC coding and noncoding indel datasets, respectively, which are higher than the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

redundant indel ratios reported by the other tools. Figure 6 shows the comparison of the redundant

indel ratios reported by UPS-indel, vt normalize, BCFtools, and GATK LeftAlignAndTrimVariants for

both the COSMIC coding and noncoding datasets. Comparisons for chromosome-wise redundant

indel ratios among the tools are given in Supplementary Materials (See Table 4 and Figure 2 for

COSMIC coding and Table 5 and Figure 3 for noncoding indels).

Figure 6. Comparison of redundant indel ratio for (A) COSMIC coding and (B) COSMIC noncoding indels.

Similarly, examining the sets of redundant indels identified by the tools, Figure 7 shows that for

both the COSMIC coding and noncoding indels, UPS-indel identified all the redundant indels detected

by the other tools. In addition to that, for the whole genome, 2,118 (Figure 6A) and 553 (Figure 6B)

unique redundant indels for COSMIC coding and noncoding indels, respectively, are detected by

UPS-indel but missed by other tools.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

18

As for dbSNP, the reason why some COSMIC coding and noncoding indels were considered as

redundant by UPS-indel but missed by other tools is that, in the normalized VCF for these other tools,

redundant indels must contain the same pattern: [value of the REF column in the normalized VCF file

– value of the ALT column in the normalized VCF file – value of the POS column in the normalized

VCF file]. The reason for this pattern match restriction was given earlier. In Table 9, all tools except

UPS-indel missed the indel with id COSM5068028 in the redundant indel group consisting of indels

with id COSM3732389 and id COSM5348791, because of not having the same pattern. Therefore it

might be assumed that only normalized position should be considered to group them together.

However, then the indel with id COSM3685916 would be placed in the same group, although it is a

deletion type indel whereas the others are insertion type indels, and also the resultant sequences are

different. UPS-indel groups the indels correctly by placing indels with ids COSM5068028,

COSM3732389, and COSM5348791 in the same redundant indel group as they have the same base

pair inserted, have the same region of equivalence, and also are of the same indel type.

GATKLeftAlignAndTrimVariants found fewer redundant indels than other tools because

GATKLeftAlignAndTrimVariants does not consider very large indels for normalization. For example,

the indels with ids COSM5196837 and COSM5066846, which are deletions of length 371bps and 222

bps, respectively, are not considered by GATKLeftAlignAndTrimVariants for normalization. The

reason is that GATK LeftAlignAndTrimVariants uses 200 bps as the default size of the sliding window

on the reference (the parameter --reference_window_stop) while left aligning the alleles which is

smaller than the length of the missed deletions.

Table 9. Example of COSMIC indel that is missed by other tools but detected as redundant by UPS-

indel.

VCF Entry for COSMIC

#CHRM POS ID REF ALT

1 150917623 COSM5068028 TG TGG

1 150917623 COSM3732389 T TG

1 150917623 COSM3685916 TG T

1 150917624 COSM5348791 G GG

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

VCF Entry for other tools after normalization

#CHRM POS ID REF ALT

1 150917623 COSM5068028 TG TGG

1 150917623 COSM3732389 T TG

1 150917623 COSM3685916 TG T

1 150917623 COSM5348791 T TG

UVCF Entry for UPS-indel

#CHRM POS ID REF ALT UPS-COORDINATE

1 150917623 COSM5068028 TG TGG +G[150917624 - 150917632]

1 150917623 COSM3732389 T TG +G[150917624 - 150917632]

1 150917623 COSM3685916 TG T -G[150917624 - 150917631]

1 150917624 COSM5348791 G GG +G[150917624 - 150917632]

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 7. Venn diagram to compare the number of redundant indels detected by UPS-indel and other tools in (A)

COSMIC coding and (B) COSMIC noncoding indel datasets.

These tools are also compared based on the average running time taken to process the input VCF

file for normalization (by vt normalize, BCFtools, and GATKLeftAlignAndTrimVariants) or for

generating the UPS-Coordinate (by UPS-indel). All tools were run on a desktop computer having an

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

Intel Core i7-2600 CPU with eight cores (at 3.40 GHz) and 16GB of RAM. Table 10 shows the

average running time for chromosome 1 of the dbSNP VCF file. Among these tools BCFtools is the

fastest taking 6 seconds followed by vt normalize (6.18 seconds), GATK LeftAlignAndTrimVariants

(17.22 seconds), and UPS-indel (35.22 seconds), which is the slowest. Since UPS-indel searches for

equivalent indels exhaustively and is theoretically rigorous, the computation time is not surprisingly

higher than that for other heuristic normalization tools.

Evaluating UPS-indel’s performance in comparing different indel call sets

In genomic research related to indel calling, an important step in downstream analysis is to

compare multiple indel call sets for (1) generating a highly accurate benchmark indel call set by taking

the intersection of multiple call sets as done by Zook et al. [12] for the sample NA12878, (2) merging

the call sets of different indel callers in a consensus caller as done by Trubetskoy et al. [13] for exome

data, and (3) evaluating the accuracy of a newly proposed indel calling tool by comparing its indel call

set with the benchmark call set. Comparing different indel call sets is also a common step in studies

comparing the performance of different indel callers as done in [5],[19], and [20]. Different indel callers

having different representations of the same indel complicates the comparison of different indel call

sets. In addition to strict matching of indels, as mentioned earlier, a naïve but previously commonly

used approach to compare multiple indel calling results is based on a simple distance criterion, that is,

indels are considered to be equivalent if they are within a distance threshold (e.g., ±5bp or ±25bp).

For example, the original 1000 Genomes project used ±25bp to compare multiple indel calling results

[6] . To illustrate the advantage of using a UVCF file instead of a distance criterion or normalized VCF

for comparing multiple VCF files, the alignment file for chromosome 11 of a single sample (HG00851)

was picked up from the 1000 Genomes project and five indel callers: Dindel [21], GATK Unified

Genotyper [9], GATK Haplotype Caller, Platypus [22], and Pindel [23] were used to produce VCF files

for indels. The resultant VCF files were compared to determine the number of common indels from

these five tools using three different approaches, namely a distance based approach, comparing the

VCF files normalized by vt normalize and GATK LeftAlignAndTrimVariants, and comparing the UVCF

files produced by UPS-indel. For the distance based approach, two indels are considered equivalent if

(1) they belong to the same indel type (either both are insertion type or both are deletion type) , (2)

have the same base pairs inserted/deleted, and (3) are in close proximity (within ±5 bps from each

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

other). For the normalized VCF files and UVCF files, the same approach was used as discussed

earlier for finding redundant indels.

First the VCF files produced by the five indel calling tools were compared to find overlap among

them to determine the number of common indels using the distance based approach. In the second

step, the VCF files of the five indel calling tools were normalized using vt normalize and GATK

LeftAlignAndTrimVariants separately. For this sample, both normalization tools produced the same

normalized VCF files. The normalized VCF files of five indel calling tools were compared to

determine the common number of indels. Finally, UPS-indel was used to produce the UVCF files for

the five indel calling tools and these UVCF files were compared to determine the common number of

indels.

The result shows that the distance based approach found 584 indels in common from the five indel

calling tools while 5,514 and 5,575 common indels were found by the normalized VCF and UPS-indel

UVCF approaches, respectively. This demonstrates the better suitability of UPS-indel, compared to

distance based or existing normalization based approaches, for comparing multiple VCF files. Note

that this small number (61) of common indels identified by UPS-indel, but missed by the normalization

tools, is based on a single chromosome of a single sample only, and much better performance of

UPS-indel would be expected for the whole genome, as observed for the dbSNP and COSMIC

datasets.

As mentioned earlier, the tools VarMatch [3], RTG Tools [15], and READDI [16] are also used for

comparing indel call sets. However, VarMatch and RTG Tools, which use a branch and bound

algorithm, are not suitable for population-scale indel call sets like dbSNP and COSMIC due to densely

packed indels in those call sets. READDI processes deletions only. These tools are compared with

UPS-indel (using the deletion call set of Platypus containing 14,438 deletions for chromosome 11 of

the above mentioned single sample from the 1000 Genomes project as the baseline) on the deletion

call sets of Dindel, GATK Unified Genotyper, GATK Haplotype Caller, and Pindel as the query call set

to check overlap with the baseline. Table 10 shows the comparison of overlaps.

Table 10. Comparison between VarMatch, RTG Tools, READDI, and UPS-indel of the number of

overlaps found between the baseline and query call sets from chromosome 11 of an individual.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

Variant Caller Name VarMatch (EVQ mode) RTG Tools READDI UPS-indel

Dindel 8,933 8,717 8,796 8,973

GATK Haplotype Caller 11,113 10,765 10,954 11,129

GATK Unified Genotyper 7,734 7,596 7,563 7,734

Pindel 6,507 3,654 9,524 9,836

Table 10 shows that UPS-indel finds more common indels than the state-of-the-art tools when

comparing multiple indel call sets. These tools are heuristic and therefore ignore indels that violate a

particular heuristic criterion. For example, READDI searches for equivalent indels in an indel’s

neighboring region defined by the neighborhood size, and RTG Tools uses a cutoff strategy when the

search space is too large. UPS-indel, on the other hand, exhaustively searches for and finds all

equivalent indels, thus finds more common indels than the aforementioned tools.

Conclusion

This paper describes UPS-indel, a user friendly tool that creates a universal positioning system

called UPS-coordinates for all indels listed in a VCF file, and exhaustively finds all equivalent indels.

The UPS-coordinate is a range of positions where all indels equivalent to a specific indel can occur.

Since equivalent indels produce the same mutant sequence and thus have the same biological effect,

reporting them as separate indels causes data redundancy and may artificially inflate the statistics of

indel variations. Under the proposed universal positioning system, all equivalent indels have the same

UPS-coordinate which avoids possible annotation ambiguity. Therefore, by checking the UPS-

coordinate, one can easily filter out redundant indels from variant databases. UPS-indel is robust

enough to handle complex variants and is able to detect more redundant indels than the currently

existing approaches. UPS-indel could be widely used for easy and accurate systematic comparison of

indels generated by different indel calling programs or deposited in databases. By eliminating the

indel redundancy issue, this work offers the community the proposed universal positioning system to

represent indels (so as to avoid ambiguity), which can greatly improve various downstream genomic

analyses related to indels.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

Additional File

Additional File 1: Supplementary materials of UPS-indel: a Universal Positioning System for

Indels. This additional file includes an example of redundant indels in dbSNP; an example of

equivalent deletion; chromosome wise redundant indel ratio of UPS-indel, vt normalize, BCFtools and

GATK LeftAlignAndTrimVariants; chromosome wise Redundant indel ratio of UPS-indel, vt normalize,

BCFtools, and GATK LeftAlignAndTrimVariants for COSMIC coding indel dataset; chromosome wise

redundant indel ratio of UPS-indel, vt normalize, BCFtools, and GATK LeftAlignAndTrimVariants for

COSMIC noncoding indel dataset; a bar graph showing the chromosome wise comparison of

redundant indel ratio among UPS-indel, vt normalize, BCFtools, and GATK LeftAlignAndTrimVariants

for the dbSNP dataset; a bar graph showing the chromosome wise comparison of redundant indel

ratio among UPS-indel, vt normalize, BCFtools, and GATK LeftAlignAndTrimVariants for COSMIC

coding indels; a bar graph showing the chromosome wise comparison of redundant indel ratio among

UPS-indel, vt normalize, BCFtools, and GATK LeftAlignAndTrimVariants for COSMIC noncoding

indels

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

The latest version of dbSNP VCF file can be found here:

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/VCF/. VCF file for the COSMIC coding mutation

is available at http://grch37-

cancer.sanger.ac.uk/cosmic/files?data=/files/grch37/cosmic/v78/CosmicCodingMuts.vcf.gz and non

coding mutation dataset is available at http://grch37-

cancer.sanger.ac.uk/cosmic/files?data=/files/grch37/cosmic/v78/CosmicNonCodingVariants.vcf.gz .

All of these VCF files contain SNPs, Indels, and other types of genetic variants. To extract only indels,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

25

we used VCFtools which is available at http://vcftools.sourceforge.net/. The command line version of

UPS-indel is available at http://ups-indel.sourceforge.net with the instruction of how to install and use

UPS-indel.

Competing interests

The authors declare that they have no competing interests.

Funding

This material is based on research sponsored by Air Force Research Laboratory under agreement

number FA8650-09-2-3938. The U.S. Government is authorized to reproduce and distribute reprints

for Governmental purposes notwithstanding any copyright notation thereon. The views and

conclusions contained herein are those of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either expressed or implied, of the Air Force

Research Laboratory or the U.S. Government.

Author contributions

M.S.H. developed the software and conducted the computational experiments. M.S.H, X.W., Z.L. and

L.Z. designed and analyzed the experiments. L.W. did the mathematical validation. L.Z. planned and

supervised the experimental design. M.S.H, X.W. L.W., and L.Z. wrote the manuscript with input from

all authors. All of the authors have read and approved the final manuscript.

Acknowledgement

The authors thank S. Tithi and V. Vijayan for their comments and suggestions.

References

[1] J. Assmus, J. Kleffe, A. O. Schmitt, and G. A. Brockmann, "Equivalent indels–ambiguous

functional classes and redundancy in databases," PLoS One, vol. 8, p. e62803, 2013.

[2] A. Tan, G. R. Abecasis, and H. M. Kang, "Unified representation of genetic variants,"

Bioinformatics, vol. 31, pp. 2202-2204, 2015.

[3] C. Sun and P. Medvedev, "VarMatch: robust matching of small variant datasets using flexible

scoring schemes," Bioinformatics, p. btw797, 2016.

[4] Z. Li, X. Wu, B. He, and L. Zhang, "Vindel: a simple pipeline for checking indel redundancy,"

BMC Bioinformatics, vol. 15, p. 359, 2014.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

26

[5] M. S. Hasan, X. Wu, and L. Zhang, "Performance evaluation of indel calling tools using real

short-read data," Human Genomics, vol. 9, pp. 1-14, 2015.

[6] T. G. P. Consortium, "A map of human genome variation from population-scale sequencing,"

Nature, vol. 467, pp. 1061-1073, 2010.

[7] H. Fang, E. A. Grabowska, K. Arora, V. Vacic, M. C. Zody, I. Iossifov, et al., "Indel variant

analysis of short-read sequencing data with Scalpel," bioRxiv, p. 028050, 2015.

[8] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, et al., "The sequence

alignment/map format and SAMtools," Bioinformatics, vol. 25, pp. 2078-2079, 2009.

[9] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, et al., "A

framework for variation discovery and genotyping using next-generation DNA sequencing

data," Nature Genetics, vol. 43, pp. 491-498, 2011.

[10] P. Krawitz, C. Rödelsperger, M. Jäger, L. Jostins, S. Bauer, and P. N. Robinson, "Microindel

detection in short-read sequence data," Bioinformatics, vol. 26, pp. 722-729, 2010.

[11] A. Döring, D. Weese, T. Rausch, and K. Reinert, "SeqAn an efficient, generic C++ library for

sequence analysis," BMC Bioinformatics, vol. 9, p. 11, 2008.

[12] J. M. Zook, B. Chapman, J. Wang, D. Mittelman, O. Hofmann, W. Hide, et al., "Integrating

human sequence data sets provides a resource of benchmark SNP and indel genotype calls,"

Nature Biotechnology, vol. 32, pp. 246-251, 2014.

[13] V. Trubetskoy, A. Rodriguez, U. Dave, N. Campbell, E. L. Crawford, E. H. Cook, et al.,

"Consensus Genotyper for Exome Sequencing (CGES): improving the quality of exome

variant genotypes," Bioinformatics, p. btu591, 2014.

[14] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, et al., "The

variant call format and VCFtools," Bioinformatics, vol. 27, pp. 2156-2158, 2011.

[15] J. G. Cleary, R. Braithwaite, K. Gaastra, B. S. Hilbush, S. Inglis, S. A. Irvine, et al.,

"Comparing Variant Call Files for Performance Benchmarking of Next-Generation Sequencing

Variant Calling Pipelines," bioRxiv, p. 023754, 2015.

[16] R. Wittler, T. Marschall, A. Schönhuth, and V. Mäkinen, "Repeat-and error-aware comparison

of deletions," Bioinformatics, vol. 31, pp. 2947-2954, 2015.

[17] H. Chen and P. C. Boutros, "VennDiagram: a package for the generation of highly-

customizable Venn and Euler diagrams in R," BMC Bioinformatics, vol. 12, p. 1, 2011.

[18] S. A. Forbes, D. Beare, P. Gunasekaran, K. Leung, N. Bindal, H. Boutselakis, et al.,

"COSMIC: exploring the world's knowledge of somatic mutations in human cancer," Nucleic

Acids Research, vol. 43, pp. D805-D811, 2015.

[19] J. A. Neuman, O. Isakov, and N. Shomron, "Analysis of insertion–deletion from deep-

sequencing data: software evaluation for optimal detection," Briefings in Bioinformatics, vol.

14, pp. 46-55, 2013.

[20] G. Highnam, J. J. Wang, D. Kusler, J. Zook, V. Vijayan, N. Leibovich, et al., "An analytical

framework for optimizing variant discovery from personal genomes," Nature Communications,

vol. 6, 2015.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

27

[21] C. A. Albers, G. Lunter, D. G. MacArthur, G. McVean, W. H. Ouwehand, and R. Durbin,

"Dindel: accurate indel calls from short-read data," Genome research, vol. 21, pp. 961-973,

2011.

[22] A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S. R. Twigg, A. O. Wilkie, et al., "Integrating

mapping-, assembly-and haplotype-based approaches for calling variants in clinical

sequencing applications," Nature genetics, vol. 46, pp. 912-918, 2014.

[23] K. Ye, M. H. Schulz, Q. Long, R. Apweiler, and Z. Ning, "Pindel: a pattern growth approach to

detect break points of large deletions and medium sized insertions from paired-end short

reads," Bioinformatics, vol. 25, pp. 2865-2871, 2009.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/133553doi: bioRxiv preprint

https://doi.org/10.1101/133553
http://creativecommons.org/licenses/by-nc-nd/4.0/

