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Summary  
 
The goal of computational neuroscience is to find mechanistic explanations of how the 
nervous system processes information to give rise to cognitive function and behaviour. At 
the heart of the field are its models, i.e. mathematical and computational descriptions of 
the system being studied, which map sensory stimuli to neural responses and/or neural to 
behavioural responses. These models range from simple to complex. Recently, deep 
neural networks (DNNs) have come to dominate several domains of artificial intelligence 
(AI). As the term “neural network” suggests, these models are inspired by biological 
brains. However, current DNNs neglect many details of biological neural networks. 
These simplifications contribute to their computational efficiency, enabling them to 
perform complex feats of intelligence, ranging from perceptual (e.g. visual object and 
auditory speech recognition) to cognitive tasks (e.g. machine translation), and on to 
motor control (e.g. playing computer games or controlling a robot arm). In addition to 
their ability to model complex intelligent behaviours, DNNs excel at predicting neural 
responses to novel sensory stimuli with accuracies well beyond any other currently 
available model type. DNNs can have millions of parameters, which are required to 
capture the domain knowledge needed for successful task performance. Contrary to the 
intuition that this renders them into impenetrable black boxes, the computational 
properties of the network units are the result of four directly manipulable elements: input 
statistics, network structure, functional objective, and learning algorithm. With full 
access to the activity and connectivity of all units, advanced visualization techniques, and 
analytic tools to map network representations to neural data, DNNs represent a powerful 
framework for building task-performing models and will drive substantial insights in 
computational neuroscience. 
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Explaining brain information processing requires complex, task performing models 
 
The goal of computational neuroscience is to find mechanistic explanations for how the 
nervous system processes information to support cognitive function as well as adaptive 
behaviour. Computational models, i.e. mathematical and computational descriptions of 
component systems, aim to capture the mapping of sensory input to neural responses and 
furthermore to explain representational transformations, neuronal dynamics, and the way 
the brain controls behaviour. The overarching challenge is therefore to define models that 
explain neural measurements as well as complex adaptive behaviour. Historically, 
computational neuroscientists have had successes with shallow, linear-nonlinear “tuning” 
models used to predict lower-level sensory processing. Yet, the brain is a deep recurrent 
neural network that exploits multistage non-linear transformations and complex 
dynamics. It therefore seems inevitable that computational neuroscience will come to rely 
increasingly on complex models, likely from the family of deep recurrent neural 
networks. The need for multiple stages of nonlinear computation has long been 
appreciated in the domain of vision, by both experimentalists (Hubel & Wiesel, 1959) 
and theorists (Fukushima, 1980; Lecun & Bengio, 1995; Riesenhuber & Poggio, 1999; G. 
Wallis & Rolls, 1997). 

The traditional focus on shallow models was motivated both by the desire for 
simple explanations and by the difficulty of fitting complex models. Hand-crafted 
features, which laid the basis of modern computational neuroscience (Jones & Palmer, 
1987), do not carry us beyond restricted lower-level tuning functions. As an alternative 
approach, researchers started directly using neural data to fit model parameters  
(Dumoulin & Wandell, 2008; M. C.-K. Wu, David, & Gallant, 2006). This approach was 
shown to be particularly successful for early visual processes (Cadena et al., 2017; Gao & 
Ganguli, 2015). Despite its elegance, importance, and success, this approach is ultimately 
limited by the amount of neural observations that can be collected from a given system. 
Even with neural measurement technology advancing rapidly (multi-site array recordings, 
two-photon imaging, or neuropixels, to name just a few), the amount of recordable data 
may not provide enough constraints to fit realistically complex, i.e. parameter-rich 
models. For instance, while researchers can now record separately from hundreds of 
individual neurons, and the number of stimuli used may approach 10,000, the numbers of 
parameters in deep neural networks (DNNs) are many orders of magnitude larger. For 
instance, the influential object recognition network “AlexNet” has 60 million parameters 
(Krizhevsky, Sutskever, & Hinton, 2012), a more recent object recognition network, 
VGG-16, has 138 million parameters (Simonyan & Zisserman, 2015). This high number 
is required to encode substantial domain knowledge, which is required for intelligent 
behaviour. Transferring this information into the model through the bottleneck of neural 
measurements alone is likely too inefficient for understanding and performing real-world 
tasks. 

In search for a solution to this conundrum, the key insight was the idea that rather 
than fitting parameters based on neural observations, models could instead be trained to 
perform relevant behaviour in the real world. This approach brings machine learning to 
bear on models for computational neuroscience, enabling researchers to constrain the 
model parameters via task training. In the domain of vision, for instance, category-
labelled sets of training images can easily be assembled using web-based technologies, 
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and the amount of available data can therefore be expanded more easily than for 
measurements of neural activity. Of course, different models trained to perform a relevant 
task (such as object recognition, if one tried to understand computations in the primate 
ventral stream) might differ in their ability to explain neural data. Testing which model 
architectures, input statistics, and learning objectives yield the best predictions of neural 
activity in novel experimental conditions (e.g. a set of images that has not been used in 
fitting the parameters) is a thus a powerful technique to learn about the computational 
mechanisms that might underlie the neural responses. Together, the combined use of task 
training- and neural data enables us to build complex models with extensive knowledge 
about the world in order to explain how biological brains implement cognitive function. 
 

 
Figure 1. Convolutional neural network structure. (A) An example feed forward 

convolutional neural network (CNN) with 3 convolutional layers followed by a fully-
connected layer. Bottom-up receptive fields for selected neurons are illustrated with 
blue boxes. (B) The bottom-up (blue), lateral (green), and top-down (red) receptive 

fields for two example neurons in different layers of a recurrent convolutional neural 
network (RCNN). 

 
 
 
Brain-inspired neural network models are revolutionising artificial intelligence and 
exhibit rich potential for computational neuroscience	
 
Neural network models have become a central class of models in machine learning 
(Figure 1). Driven to optimize task-performance, researchers developed and improved 
model architectures, hardware and training schemes that eventually led to today’s high-
performance DNNs. These models have revolutionised several domains of AI (LeCun, 
Bengio, & Hinton, 2015). Starting with the seminal work by Krizhevsky et al (2012) , 
who won the ImageNet competition in visual object recognition by a large margin, deep 
neural networks now dominate computer vision	 (He, Zhang, Ren, & Sun, 2016; 
Simonyan & Zisserman, 2015; Szegedy et al., 2015), and drove reinforcement learning 
(Lange & Riedmiller, 2010; Mnih et al., 2015), speech-recognition (Sak, Senior, & 
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Beaufays, 2014), machine translation (Sutskever, Vinyals, & Le, 2014; Y. Wu et al., 
2016), and many other domains to unprecedented performance levels. In terms of visual 
processing, deep convolutional, feed-forward networks (CNNs) now achieve human-level 
classification performance (VanRullen, 2017).	

Although originally inspired by biology, current DNNs implement only the most 
essential features of biological neural networks. They are composed of simple units that 
typically compute a linear combination of their inputs and pass the result through a static 
nonlinearity (e.g. setting negative values to zero). Similar to the ventral stream in the 
brain, convolutional neural networks process images through a sequence of visuotopic 
representations: each unit “sees” a restricted local region of the map in the previous layer 
(its receptive field), and similar feature detectors exist across spatial locations (although 
this is only approximately true in the primate brain). Along the hierarchy, CNNs and 
brains furthermore perform a deep cascade of non-linear computations, resulting in 
receptive fields that increase in size, invariance, and complexity. Beyond these 
similarities, DNNs do typically not include many biological details. For instance, they 
often do not include lateral or top-down connections, and compute continuous outputs 
(real numbers that could be interpreted as firing rates) rather than spikes. The list of 
features of biological neural networks not captured by these models is endless. 

Yet, despite large differences and many biological features missing, deep 
convolutional neural networks predict functional signatures of primate visual processing 
across multiple hierarchical levels at unprecedented accuracy. Trained to recognise 
objects, they develop V1-like receptive fields in early layers, and are predictive of single 
cell recordings in macaque IT (Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte, 
2014; for reviews see Kriegeskorte, 2015; Yamins et al., 2014; Yamins & DiCarlo, 2016; 
Figure 2A). In particular, the explanatory power of DNNs is on par with the performance 
of linear prediction based on an independent set of IT neurons and exceeds linear 
predictions based directly on the category labels on which the networks were trained 
(Yamins et al., 2014). DNNs explain about 50% of the variance of windowed spike 
counts in IT across individual images (Yamins et al., 2014), a performance level 
comparable to that achieved with Gabor models in V1 (Olshausen & Field, 2005).  DNNs 
thereby constitute the only model class in computational neuroscience that is capable of 
predicting responses to novel images in IT with reasonable accuracy. DNN modelling has 
also been shown to improve predictions of intermediate representations in area V4 over 
alternative models (Yamins & DiCarlo, 2016). This indicates that, in order to solve the 
task of object classification, the trained network passes information through a similar 
sequence of intermediate representations as the primate brain.  

In human neuroscience too, DNNs have proven capable of predicting 
representations across multiple levels of processing. Whereas lower network levels better 
predict lower level visual representations, subsequent, higher-levels better predict activity 
in higher- more anterior cortical areas, as measured with functional magnetic resonance 
imaging (Eickenberg, Gramfort, & Thirion, 2016; Güçlü & van Gerven, 2015; Khaligh-
Razavi & Kriegeskorte, 2014; Figure 2B-C). In line with results from macaque IT, DNNs 
were furthermore able to explain within-category neural similarities, despite being trained 
on a categorization task that aims at abstracting away from differences across category-
exemplars (Khaligh-Razavi & Kriegeskorte, 2014). At a lower spatial, but higher 
temporal resolution, DNNs have also been shown to be predictive of visually evoked 
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magnetoencephalography (MEG) data (Cichy, Khosla, Pantazis, & Oliva, 2016; Cichy, 
Khosla, Pantazis, Torralba, & Oliva, 2016; Fritsche, G, Schoffelen, Bosch, & Gerven, 
2017). On the behavioural level, deep networks exhibit similar behaviour to humans 
(Hong, Yamins, Majaj, & DiCarlo, 2016; Kheradpisheh, Ghodrati, Ganjtabesh, & 
Masquelier, 2016b, 2016a; Kubilius, Bracci, & Op de Beeck, 2016; Majaj, Hong, 
Solomon, & DiCarlo, 2015) and are currently the best-performing model in explaining 
human eye-movements in free viewing paradigms (Kümmerer, Theis, & Bethge, 2014). 
Despite these advances, however, current DNNs still exhibit substantial differences in 
how they process and recognize visual stimuli (Linsley, Eberhardt, Sharma, Gupta, & 
Serre, 2017; Rajalingham et al., 2018; Ullman, Assif, Fetaya, & Harari, 2016), how they 
generalize to atypical category instances (Saleh, Elgammal, & Feldman, 2016), and how 
they perform under image manipulations, including reduced contrast and additive noise 
(Geirhos et al., 2017). Yet, the overall success clearly illustrates the power of DNN 
models for computational neuroscience. 
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How can deep neural networks be tested with brain and behavioural data? 
 
DNNs are often trained to optimize external task objectives rather than being derived 
from neural data. However, even human-level performance does not imply that the 
underlying computations employ the same mechanisms (Ritter, Barrett, Santoro, & 
Botvinick, 2017). Testing models with neural measurements is therefore crucial to assess 
how well network-internal representations match cortical responses. Fortunately, 
computational neuroscience has a rich toolbox at its disposal that allows researchers to 
probe even highly complex models, including DNNs (Diedrichsen & Kriegeskorte, 
2017). 

One such tool are encoding models, which use external, fixed feature spaces in 
order to model neural responses across a large variety of experimental conditions (e.g. 
different stimuli, Figure 2A-B). The underlying idea is that if the model and the brain 
compute the same features, then linear combinations of the model features should enable 
successful prediction of the neural responses for independent experimental data 
(Naselaris, Kay, Nishimoto, & Gallant, 2011). For visual representations, the model 
feature space can be derived from simple filters, such as Gabor-wavelets (Kay, Naselaris, 
Prenger, & Gallant, 2008), from human labelling of the stimuli (Huth, Nishimoto, Vu, & 
Gallant, 2012; Mitchell et al., 2008; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009), or 
from responses in different layers of a DNN (Agrawal, Stansbury, Malik, & Gallant, 
2014; Güçlü & van Gerven, 2015). 

Probing the system on the level of multivariate response patterns, representational 
similarity analysis (RSA, Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 
2008; Nili et al., 2014) provides another approach to comparing internal representations 
in DNNs and the brain (Figure 2C). RSA is based around the concept of a 
representational dissimilarity matrix (RDM), which stores the dissimilarities of a 
system’s responses (neural or model) to all pairs of experimental conditions. RDMs can 
therefore be interpreted as describing representational geometries: conditions that elicit 
similar responses are close together in response space, whereas conditions that lead to 
differential responses will have larger distances. A model representation is considered 
similar to a brain representation to the degree that it emphasizes the same distinctions 
among the stimuli, i.e. model and brain are considered similar, if they elicit similar 
RDMs. Comparisons on the level of RDMs side-step the problem of defining a 
correspondence mapping between the units of the model and the channels of brain-
activity measurement. This approach can be applied from voxels in fMRI, (Carlin, 
Calder, Kriegeskorte, Nili, & Rowe, 2011; Guntupalli, Wheeler, & Gobbini, 2016; 
Khaligh-Razavi & Kriegeskorte, 2014; Kietzmann, Swisher, König, & Tong, 2012), to 
single-cell recordings (Kriegeskorte et al., 2008; Leibo, Liao, Freiwald, Anselmi, & 
Poggio, 2017; Tsao, Moeller, & Freiwald, 2008), M/EEG data (Cichy, Pantazis, & Oliva, 
2014; Kietzmann, Gert, Tong, & König, 2017), and behavioural measurements including 
perceptual judgments (Mur et al., 2013).  

Although the internal features in a model and the brain may be similar, the 
distribution of features may not parallel the neural selectivity observed in neuroimaging 
data. This can either be due to methodological limitations of the neuroimaging technique, 
or because respective brain area exhibits a bias for certain features that is not captured in 
the model. To account for such deviations, mixed RSA provides a technique to 
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recombine model features to best explain the empirical data (Khaligh-Razavi, 
Henriksson, Kay, & Kriegeskorte, 2017). The increase in explanatory power due to this 
reweighting thereby directly speaks to the question in how far the original, non-
reweighted feature space contained the correct feature distribution, relative to the brain 
measurements. 

On the behavioural level, recognition performance (Cadieu et al., 2014; Hong et 
al., 2016; Majaj et al., 2015; Rajalingham et al., 2018), perceptual confusions, and 
illusions provide valuable clues as to how representations in brains and DNNs may differ. 
For instance, it can be highly informative to understand the detailed patterns of errors 
(Walther, Caddigan, Fei-Fei, & Beck, 2009) and reaction times across stimuli, which may 
reveal subtle functional differences between systems that exhibit the same overall level of 
task performance. Visual metamers (Freeman & Simoncelli, 2011; T. S. A. Wallis, 
Bethge, & Wichmann, 2016) provide a powerful tool to test for similarities in internal 
representations across systems. Given an original image, a modified version is created 
that nevertheless leads to an unaltered model response (for instance, the activation profile 
of a DNN layer). For instance, if a model was insensitive to a selected band of spatial 
frequencies, then modifications in this particular range will remain unnoticed by the 
model. If the human brain processed the stimuli via the same mechanism as the model, it 
should similarly be insensitive to such changes. The two images are therefore 
indistinguishable (“metameric”) to the model and the brain. Conversely, an adversarial 
example is a minimal modification of an image that elicits a different category label from 
a DNN (I. J. Goodfellow, Shlens, & Szegedy, 2015; Nguyen, Yosinski, & Clune, 2015). 
For convolutional feedforward networks, minimal changes to an image (say of a bus), 
which are imperceptible to humans, lead the model to classify the image incorrectly (say 
as an ostrich). Adversarial examples can be generated using the backpropagation 
algorithm down to the level of the image, to find the gradients in image space that change 
the classification output. This method requires omniscient access to the system, making it 
impossible to perform a fair comparison with biological brains, which might likewise be 
confused by stimuli designed to exploit the idiosyncratic aspects (Elsayed et al., 2018; 
Kriegeskorte, 2015). The more general lesson for computational neuroscience is that 
metamers and adversarial examples provide methods for designing stimuli for which 
different representations disagree maximally. This can optimise the power to adjudicate 
between alternative models experimentally. 

Ranging across levels of description and modalities of brain-activity 
measurement, from responses in single neurons, to array recordings, fMRI and MEG 
data, and behaviour, the methods described here enable computational neuroscientists to 
investigate the similarities and differences between models and neural responses. This 
essential element is required to be able to find an answer to the question which biological 
detail and set of computational objectives is needed to align the internal representations 
of brains and DNNs, while exhibiting successful task-performance.  
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Figure 2. Testing the internal representations of DNNs against neural data. (A) An 
example of neuron-level encoding with a convolutional neural network (adapted from 
Yamins & DiCarlo, 2016). (B) A CNN based encoding model applied to human fMRI 
data (adapted from Güçlü & van Gerven, 2015). (C) Comparing the representational 

geometry of a trained CNN to human and monkey brain activation patterns using 
representation-level similarity analysis (adapted from Khaligh-Razavi & 

Kriegeskorte, 2014). 
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Drawing insights from deep neural network models 
 
Deep learning has transformed machine learning and only recently found its way back 
into computational neuroscience. Despite their high performance in terms of predicting 
held-out neural data, DNNs have been met with scepticism regarding their explanatory 
value as models of brain information processing (e.g. Kay, 2017). One of the arguments 
commonly put forward is that DNNs merely exchange one impenetrably complex system 
with another (the “black box” argument). That is, while DNNs may be able to predict 
neural data, researchers now face the problem of understanding what exactly the network 
is doing. 

The black box argument is best appreciated in historical context. Shallow models 
are easier to understand and supported by stronger mathematical results. For example, the 
weight template of a linear-nonlinear model can be directly visualised and understood in 
relation to the concept of an optimal linear filter. Simple models can furthermore enable 
researchers to understand the role of each individual parameter. A model with fewer 
parameters is therefore considered more parsimonious as a theoretical account. It is 
certainly true that simpler models should be preferred over models with excessive 
degrees of freedom. Many seminal explanations in neuroscience have been derived from 
simple models. This argument only applies, however, if the two models provide similar 
predictive power. Models should be as simple as possible, but no simpler. Because the 
brain is a complex system with billions of parameters (presumably containing the domain 
knowledge required for adaptive behaviour) and complex dynamics (which implement 
perceptual inference, cognition, and motor control), computational neuroscience will 
eventually need complex models. The challenge for the field is therefore to find ways to 
draw insight from them. One way is to consider their constraints at a higher level of 
abstraction. The computational properties of DNNs can be understood as the result of 
four manipulable elements: the network architecture, the input statistics, the functional 
objective, and the learning algorithm.  

 
 

Insights generated at a higher-level of abstraction: experiments with network 
architecture, input statistics, functional objective, and the learning algorithm 

A worthwhile thought experiment for neuroscientists is to consider what cortical 
representations would develop if the world were different. Governed by different input 
statistics, a different distribution of category occurrences or different temporal 
dependency structure, the brain and its internal representations may develop quite 
differently. Knowledge of how it would differ can provide us with principal insights into 
the objectives that it tries to solve. Deep learning allows computational neuroscientists to 
make this thought experiment a simulated reality. Investigations of which aspects of the 
simulated world are crucial to render the learned representations more similar to the brain 
thereby serve an essential function. 

In addition to changes in input statistics, the network architecture can be subject 
to experimentation. Current DNNs derive their power from bold simplifications. 
Although complex in terms of their parameter count, they are simple in terms of their 
component mechanisms. Starting from this abstract level, biological details can be 
integrated in order to see which ones prove to be required, and which ones do not, for 
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predicting a given neural phenomenon. For instance, it can be asked whether neural 
responses in a given paradigm are best explained by a feed-forward or a recurrent 
network architecture. Biological brains draw from a rich set of dynamical primitives. It 
will therefore be interesting to see to what extent incorporating more biologically inspired 
mechanisms can enhance the power of DNNs and their ability to explain neural activity 
and animal behaviour. 

Given input statistics and architecture, the missing determinants that transform the 
randomly initialised model into a trained DNN are the objective function and the learning 
algorithm. The idea of normative approaches is that neural representations in the brain 
can be understood as being optimized with regard to one or many overall objectives. 
These define what the brain should compute, in order to provide the basis for successful 
behaviour. While experimentally difficult to investigate, deep learning trained on 
different objectives allows researchers to ask the directly related inverse question: what 
functions need to be optimized such that the resulting internal representations best predict 
neural data? Various objectives have been suggested in both the neuroscience and 
machine learning community. Feed-forward convolutional DNNs are often trained with 
the objective to minimize classification error (Krizhevsky et al., 2012; Simonyan & 
Zisserman, 2015; Yamins & DiCarlo, 2016). This focus on classification performance has 
proven quite successful, leading researchers to observe an intriguing correlation: 
classification performance is positively related to the ability to predict neural data 
(Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014). That is, the better the 
network performed on a given image set, the better it could predict neural data, even 
though the latter was never part of the training objective. Despite its success, the 
objective to minimize classification error in a DNN for visual object recognition requires 
millions of labelled training images. Although the finished product, the trained DNN, 
provides the best current predictive model of ventral stream responses, the process by 
which the model is obtained is not biologically plausible.  

To address this issue, additional objective functions from the unsupervised 
domain have been suggested, allowing the brain (and DNNs) to create error signals 
without external feedback. One influential suggestion is that neurons in the brain aim at 
an efficient sparse code, while faithfully representing the external information (Olshausen 
& Field, 1996; Simoncelli & Olshausen, 2001). Similarly, compression-based objectives 
aim to represent the input with as few neural dimensions as possible. Autoencoders are 
one model class following this coding principle (Hinton & Salakhutdinov, 2006). 
Exploiting information from the temporal domain, the temporal stability or slowness 
objective is based on the insight that latent variables that vary slowly over time are useful 
for adaptive behaviour. Neurons should therefore detect the underlying, slowly changing 
signals, while disregarding fast changes likely due to noise. This potentially simplifies 
readout from downstream neurons (Berkes & Wiskott, 2005; Földiák, 1991; C. Kayser, 
Körding, & König, 2003; Christoph Kayser, Einhäuser, Dümmer, König, & Körding, 
2001; Körding, Kayser, Einhäuser, & König, 2004; Rolls, 2012; Wiskott & Sejnowski, 
2002). Stability can be optimized across layers in hierarchical systems, if each subsequent 
layer tries to find an optimally stable solution from the activation profiles in previous 
layer. This approach was shown to lead to invariant codes for object identity (Franzius, 
Wilbert, & Wiskott, 2008) and viewpoint-invariant place-selectivity (Franzius, Sprekeler, 
& Wiskott, 2007; Wyss, König, & Verschure, 2006). Experimental evidence in favour of 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2018. ; https://doi.org/10.1101/133504doi: bioRxiv preprint 

https://doi.org/10.1101/133504
http://creativecommons.org/licenses/by-nc/4.0/


the temporal stability objective in the brain has been provided by electrophysiological 
and behavioural studies (N. Li & DiCarlo, 2008, 2010; G. Wallis & Bülthoff, 2001). 

Many implementations of classification, sparseness and stability objectives ignore 
the action repertoire of the agent. Yet, different cognitive systems living in the same 
world may exhibit different neural representations because the requirements to optimally 
support action may differ. Deep networks optimizing the predictability of the sensory 
consequence (Weiller, Märtin, Dähne, Engel, & König, 2010), or cost of a given action 
(Mnih et al., 2015) have started incorporating the corresponding information. On a more 
general note, it should be noted that there are likely multiple objectives that the brain 
optimizes across space and time (Marblestone, Wayne, & Kording, 2016), and neural 
response patterns may encode multiple types of information simultaneously, enabling 
selective read-out by downstream units (DiCarlo & Cox, 2007). 

In summary, one way to draw theoretical insights from DNN models is to explore 
what architectures, input statistics, objective functions, and learning algorithms yield the 
best predictions for neural activity and behaviour. This approach does not elucidate the 
role of individual units or connections in the brain. However, it can reveal what features 
of biological structure likely support selected functional aspects, and what objectives the 
biological system might be optimised for, either via evolutionary pressure, or during the 
development of the individual. 

 
 

Looking into the black box: receptive field visualization and “in silico” 
electrophysiology, 

In addition to contextualising DNNs on a more abstract level, we can also open 
the ‘black box’ and look inside. Unlike a biological brain, a DNN model is entirely 
accessible to scrutiny and manipulation, enabling, for example, high-throughput “in 
silico” electrophysiology. The latter can be used to gain an intuition for the selectivity of 
individual units. For instance, large and diverse image sets can be searched for the stimuli 
that lead to maximal unit activation (Figure 3). Building on this approach, the technique 
of network dissection has emerged, which provides a more quantitative view on unit 
selectivity (Zhou, Bau, Oliva, & Torralba, 2017). It uses a large dataset of segmented and 
labelled stimuli to first find images and image regions that maximally drive network 
units. Based on the ground-truth labels for these images, it is then derived whether the 
unit’s selectivity is semantically consistent across samples. If so, an interpretable label, 
ranging from colour-selectivity, to different textures, object parts, objects, and whole 
scenes, is assigned to the unit. This characterization can be applied to all units of a 
network layer, providing powerful summary statistics. 

Another method for understanding a unit’s preferences is via feature visualization, 
a rapidly expanding set of diverse techniques that directly speak to the desire for human 
interpretability beyond example images. One of many ways to visualize what image 
features drive a given unit deep in a neural network is to approximately undo the 
operations performed by a convolutional DNN in the context of a given image (Zeiler & 
Fergus, 2014). This results in visualisations such as those shown in Figure 3A. A related 
technique is feature visualisation by optimization (see Olah, Mordvintsev, & Schubert 
(2017) for a review), which is based on the idea to use backpropagation (Rumelhart, 
Hinton, & Williams, 1986) potentially including a natural image prior, to calculate the 
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change in the input needed to drive or inhibit the activation of any unit in a DNN 
(Simonyan & Zisserman, 2015; Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015). As 
one option, the optimisation can be started from an image that already strongly drives the 
unit, computing a gradient in image space that enhances the unit’s activity even further. 
The gradient-adjusted image shows how small changes to the pixels affect the activity of 
the unit. For example, if the image that is strongly driving the unit shows a person next to 
a car, the corresponding gradient image might reveal that it is really the face of the person 
driving the unit’s response. In that case, the gradient image would deviate from zero only 
in the region of the face and adding it to the original image would accentuate the facial 
features. Relatedly, optimisation can be started from an arbitrary image, with the goal of 
enhancing the activity of a single or all units in a given layer (as iteratively performed in 
Google’s DeepDream). Another option is to start from pure noise images, and to again 
use backpropagation to iteratively optimise the input to strongly drive a particular unit. 
This approach yields complex psychedelic looking patterns containing features and 
forms, which the network has learned through its task training (Figure 3B). Similar to the 
previous approach that characterizes a unit by finding maximally driving stimuli, gradient 
images are best derived from many different test images to get a sense of the orientation 
of its tuning surface around multiple reference points (test images). Relatedly, it is 
important to note that the tuning function of a unit deep in a network cannot be 
characterised by a single visual template. If it could, there would be no need for multiple 
stages of nonlinear transformation. However, the techniques described in this section can 
provide first intuitions about unit selectivities across different layers or time-points.  

 
DNNs can provide computational neuroscientists with a powerful tool, and are far 

from a black box. Insights can be generated by looking at the parameters of DNN models 
at a more abstract level. For instance, by observing the effects on predictive performance 
resulting from changes to the network architecture, input statistics, objective function, 
and learning algorithm. Furthermore, in silico electrophysiology enables researchers to 
measure and manipulate every single neuron, in order to visualize and characterize its 
selectivity and role in the overall system. 
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Figure 3. Visualizing the preferred features of internal neurons. (A) Activations in a 

random subset of feature maps across layers for strongly driving ImageNet images 
projected down to pixel space (adapted from Zeiler & Fergus, 2014). (B) Feature 

visualization based on image optimization for two example units. Starting from pure 
noise, images were altered to maximally excite, or inhibit the respective network unit. 
Maximally and minimally driving example stimuli are shown next to the optimization 

results (adapted from Olah et al., 2017). 
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What neurobiological details matter to brain computation? 
 
A second concern about DNNs is that they abstract away too much from biological 
reality to be of use as models for neuroscience. Whereas the black box argument states 
that DNNs are too complex, the biological realism argument states that they are too 
simple. Both arguments have merit. It is conceivable that a model is simultaneously too 
simple (in some ways) and too complex (in other ways). However, this raises a 
fundamental question: Which features of the biological structure should be modelled and 
which omitted to explain brain function (Tank, 1989)? 

Abstraction is the essence modelling and is the driving force of understanding.  If 
the goal of computational neuroscience is to understand brain computation, then we 
should seek the simplest models that can explain task performance and predict neural 
data. The elements of the model should map onto the brain at some level of description. 
However, what biological elements must be modelled is an empirical question. DNNs are 
important not because they capture many biological features, but because they provide a 
minimal functioning starting point for exploring what biological details matter to brain 
computation. If, for instance, spiking models outperformed rate-coding models at 
explaining neural activity and task performance (for example in tasks requiring 
probabilistic inference (Buesing, Bill, Nessler, & Maass, 2011)), then this would be 
strong evidence in favour of spiking models. Large-scale models will furthermore enable 
an exploration of the level of detail required in systems implementing the whole 
perception-action cycle (Eliasmith et al., 2012; Eliasmith & Trujillo, 2014). 

Convolutional DNNs like AlexNet (Krizhevsky et al., 2012), and VGG 
(Simonyan & Zisserman, 2015) were built to optimise performance, rather than 
biological plausibility. However, these models draw from a history of neuroscientific 
insight and share many qualitative features with the primate ventral stream. The defining 
property of convolutional DNNs is the use of convolutional layers. These have two main 
characteristics: (1) local connections that define receptive fields and (2) parameter 
sharing between neurons across the visual field. Whereas spatially restricted receptive 
fields are a prevalent biological phenomenon, parameter sharing is biologically 
implausible. However, biological visual systems learn qualitatively similar sets of basis 
features in different parts of a retinotopic map, and similar results have been observed in 
models optimizing a sparseness objective (Güçlü & van Gerven, 2014; Olshausen & 
Field, 1996). Moving toward greater biological plausibility with DNNs, locally connected 
layers that have receptive fields without parameter sharing were suggested (Uetz & 
Behnke, 2009). Researchers have already started exploring this type of DNN, which was 
shown to be very successful in face recognition (Sun, Wang, & Tang, 2015; Taigman, 
Ranzato, Aviv, & Park, 2014). One reason for this is that locally connected layers work 
best in cases where similar features are frequently present in the same visual 
arrangement, such as faces. In the brain, retinotopic organization principles have been 
proposed for higher-level visual areas (Levy, Hasson, Avidan, Hendler, & Malach, 2001), 
and similar organisation mechanisms may have led to faciotopy, the spatially 
stereotypical activation for facial features across the cortical surface in face-selective 
regions (Henriksson, Mur, & Kriegeskorte, 2015). 
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Beyond the feed-forward sweep: recurrent DNNs 
Another aspect in which convolutional AlexNet and VGG deviate from biology is 

the focus on feed-forward processing. Feedforward DNNs compute static functions, and 
are therefore limited to modelling the feed-forward sweep of signal flow through a 
biological system. Yet, recurrent connections are a key computational feature in the 
brain, and represent a major research frontier in neuroscience. In the visual system, too, 
recurrence is a ubiquitous phenomenon. Recurrence is likely the source of 
representational transitions from global to local information (Matsumoto, Okada, Sugase-
Miyamoto, Yamane, & Kawano, 2005; Sugase, Yamane, Ueno, & Kawano, 1999). The 
timing of signatures of facial identity (Barragan-Jason, Besson, Ceccaldi, & Barbeau, 
2013; Freiwald & Tsao, 2010) and social cues, such as direct eye-contact (Kietzmann et 
al., 2017), too, point towards a reliance on recurrent computations. Finally, recurrent 
connections likely play a vital role in early category learning (Kietzmann, Ehinger, 
Porada, Engel, & König, 2016), in dealing with occlusion (Oord, Kalchbrenner, & 
Kavukcuoglu, 2016; Spoerer, McClure, & Kriegeskorte, 2017; Wyatte, Curran, & 
O’Reilly, 2012; Wyatte, Jilk, & O’Reilly, 2014) and object-based attention (Roelfsema, 
Lamme, & Spekreijse, 1998). 

Whereas the first generation of DNNs focused on feed-forward, the general class 
of DNNs can implement recurrence. By using lateral recurrent connections, DNNs can 
implement visual attention mechanisms (Z. Li, Yang, Liu, Wen, & Xu, 2017; Mnih, 
Heess, Graves, & Kavukcuoglu, 2014), and lateral recurrent connections can also be 
added to convolutional DNNs (Liang & Hu, 2015; Spoerer et al., 2017). These increase 
the effective receptive field size of each unit, and allow for long-range activity 
propagation (Pavel et al., 2017). Lateral connections can make decisive contributions to 
network computation. For instance, in modelling the responses of retinal ganglion cells, 
the introduction of lateral recurrent connections to feed-forward CNNs lead to the 
emergence of contrast adaptation in the model (McIntosh, Maheswaranathan, Nayebi, 
Ganguli, & Baccus, 2017). In addition to local feedforward and lateral recurrent 
connections, the brain also uses local feedback, as well as long-range feedforward and 
feedback connections. While missing from the convolutional DNNs previously used to 
predict neural data, DNNs with these different connection types have been implemented 
(He et al., 2016; Liao & Poggio, 2016; Srivastava, Greff, & Schmidhuber, 2015). 
Moreover, long short-term memory (LSTM) units (Hochreiter & Schmidhuber, 1997) are 
a popular form of recurrent connectivity used in DNNs. These units use differentiable 
read and write gates to learn how to use and store information in an artificial memory 
“cell”. Recently, a biologically plausible implementation of LSTM units has been 
proposed using cortical microcircuits (Costa, Assael, Shillingford, de Freitas, & Vogels, 
2017).  

The field of recurrent convolutional DNNs is still in its infancy, and the effects of 
lateral and top-down connections on the representational dynamics in these networks, as 
well as their predictive power for neural data are yet to be fully explored. Recurrent 
architectures are an exciting tool for computational neuroscience and will likely allow for 
key insights into the recurrent computational dynamics of the brain, from sensory 
processing to flexible cognitive tasks (Song, Yang, & Wang, 2016, 2017). 
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Optimising for external objectives: backpropagation and biological plausibility 
Apart from architectural considerations, backpropagation, the most successful 

learning algorithm for DNNs, has classically been considered neurobiologically 
implausible. Rather than as a model of biological learning, backpropagation may be 
viewed as an efficient way to arrive at reasonable parameter estimates, which are then 
subject to further tests. That is, even if backpropagation is considered a mere technical 
solution, the trained model may still be a good model of neural system. However, there is 
also a growing literature on biologically plausible forms of error-driven learning. If the 
brain does optimise cost functions during development and learning (which can be 
diverse, and supervised, unsupervised, or reinforcement-based), then it will have to use a 
form of optimization mechanism, an instance of which are stochastic gradient descent 
techniques. The current literature suggests several neurobiologically plausible ways in 
which the brain could adjust its internal parameters to optimise such objective functions 
(Lee, Zhang, Fischer, & Bengio, 2015; Lillicrap et al., 2016; O’Reilly, 1996; Xie & 
Seung, 2003). These methods have furthermore been shown to allow deep neural 
networks to learn simple vision tasks (Guerguiev, Lillicrap, & Richards, 2017). The brain 
might not be performing the exact algorithm of backpropagation, but it might have a 
mechanism for modifying synaptic weights in order to optimise one or many objective 
functions (Marblestone et al., 2016). 
 
 
Stochasticity, oscillations, and spikes 

Another aspect in which DNNs deviate from biological realism is that DNNs are 
generally deterministic, while biological networks are stochastic. While much of this 
stochasticity is commonly thought to be noise, it has been hypothesized that this 
variability could code for uncertainty (Fiser, Berkes, Orbán, & Lengyel, 2010; Hoyer, 
Hyvarinen, Patrik, Aapo, & Hyv, 2003; Orban, Berkes, Fiser, & Lengyel, 2016). In line 
with this, DNNs that include stochastic sampling during training and test can yield higher 
performance, and are better able to estimate their own uncertainty (McClure & 
Kriegeskorte, 2016). Furthermore, current recurrent convolutional DNNs often only run 
for a few time steps, and the roles of dynamical features found in biological networks, 
such as oscillations, are only beginning to be tested (Finger & König, 2013; Reichert & 
Serre, 2013; Siegel, Donner, & Engel, 2012). Another abstraction is the omission of 
spiking dynamics. However, DNNs with spiking neurons can be implemented 
(Hunsberger & Eliasmith, 2016; Tavanaei & Maida, 2016) and represent an exciting 
frontier of deep learning research. These considerations show that it would be hasty to 
judge the merits of DNNs based on the level of abstraction chosen in the first generation.  
 
 
Deep learning: a powerful framework to advance computational neuroscience 
 

Deep neural networks have revolutionised machine learning and AI, and have 
recently found their way back into computational neuroscience. DNNs reach human-level 
performance in certain tasks, and early experiments indicate that they are capable of 
capturing characteristics of cortical function that cannot be captured with shallow linear-
nonlinear models. With this, DNNs offer an intriguing new framework that enables 
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computational neuroscientists to address fundamental questions about brain computation 
in the developing and adult brain. 

Computational neuroscience comprises a wide range of models, defined at various 
levels of biological and behavioural detail (Figure 4). For instance, many conductance-
based models contain large amounts of parameters to explain single or few neurons at 
great level of detail but are typically not geared towards behaviour. DNNs, at the other 
end of the spectrum, use their high number of parameters not to account for effects on the 
molecular level, but to achieve behavioural relevance, while accounting for overall neural 
selectivity. Explanatory merit is not only gained by biological realism (because this 
would render human brains the perfect explanation for themselves), nor does it directly 
follow from simplistic models that cannot account for complex animal behaviour. The 
space of models is continuous and neuroscientific insight works across multiple levels of 
explanation, following top-down and bottom-up approaches (Craver, 2009). The usage of 
DNNs in computational neuroscience is still in its infancy, and the integration of 
biological detail will require close collaboration between modellers, experimental 
neuroscientists, and anatomists. 

DNNs will not replace shallow models, but rather enhance the researchers’ 
investigative repertoire. With computers approaching the brain in computational power, 
we are entering a truly exciting phase of computational neuroscience. 
 
	
	
Further	reading:	
	

- Kriegeskorte	(2015)	–	introduction	of	deep	learning	as	a	general	framework	
to	understand	brain	information	processing	

- Yamins,	&	DiCarlo	(2016)	–	perspective	on	goal-driven	deep	learning	to	
understand	sensory	processing	

- Marblestone	et	al.	(2016)	–	review	with	a	focus	on	cost	functions	in	the	brain	
and	DNNs	

- Lindsay	(2018)	–	overview	of	how	DNNs	can	be	used	as	models	of	visual	
processing	

- LeCun	et	al.	(2015)	–	high	level	overview	of	deep	learning	developments	
- Googfellow	et	al.	(2016)	–	introductory	book	on	deep	learning	
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Figure 4. Cartoon overview of different models in computational neuroscience. Given 

computational constraints, models need to make simplifying assumptions. These can 
either be regarding the biological detail, or behavioral relevance of the model output. 

The explanatory merit of a model is not dependent on the exact replication of 
biological detail, but on its ability to provide insights into the inner workings of the 

brain at a given level of abstraction. 
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